
Detecting Signatures of Positive Selection along Defined
Branches of a Population Tree Using LSD

Pablo Librado*,1,2 and Ludovic Orlando1,2

1Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
2Laboratoire d’Anthropobiologie Mol�eculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Universit�e de Toulouse, Universit�e Paul
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Abstract

Identifying the genomic basis underlying local adaptation is paramount to evolutionary biology, and bears many
applications in the fields of conservation biology, crop, and animal breeding, as well as personalized medicine.
Although many approaches have been developed to detect signatures of positive selection within single popula-
tions and population pairs, the increasing wealth of high-throughput sequencing data requires improved methods
capable of handling multiple, and ideally large number of, populations in a single analysis. In this study, we
introduce LSD (levels of exclusively shared differences), a fast and flexible framework to perform genome-wide
selection scans, along the internal and external branches of a given population tree. We use forward simulations to
demonstrate that LSD can identify branches targeted by positive selection with remarkable sensitivity and specif-
icity. We illustrate a range of potential applications by analyzing data from the 1000 Genomes Project and uncover
a list of adaptive candidates accompanying the expansion of anatomically modern humans out of Africa and their
spread to Europe.
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Introduction
Adaptation to local environments allowed life to spread
across all ecosystems around the globe, ranging from deep-
sea floors to high altitude mountain ranges (Yi et al. 2010; Fan
et al. 2016; Sun et al. 2017). The evolutionary mechanism
underlying adaptation is natural selection by which individu-
als carrying beneficial alleles show increased reproductive fit-
ness in given environmental conditions. The variance in
reproductive success across individuals results in abnormal
gene genealogies, and ultimately distorts patterns of DNA
variation at and around selected loci, leading to a local mo-
lecular footprint of positive selection. This footprint involves
reduced levels of molecular diversity, extended homozygosity
tracts, and increased differentiation from other populations.
The development of statistical methods tailored to the de-
tection of these signatures (Vitti et al. 2013) remains one of
the most active research areas in evolutionary genomics
(Hudson et al. 1987; McDonald and Kreitman 1991; Berg
and Coop 2015; Field et al. 2016; Peyregne et al. 2017).

Amongst the wide range of methods available for detect-
ing positive selection, Williamson et al. have designed a
composite likelihood ratio (CLR) test that contrasts the fit
of two competing models to patterns of DNA variation ob-
served within a given genomic window (Williamson et al.
2007). The CLR test builds on Kim and Stephan (2002)
(Kim and Stephan 2002) and is particularly relevant for
detecting recent episodes of positive selection that led to

the (almost) fixation of a novel variant emerging in a given
population, the so-called recent hard sweeps. It has been
implemented in a number of statistical packages, such as
SweepFinder and SweeD (Pavlidis et al. 2013; DeGiorgio
et al. 2016). Other methods, such as the long-range haplotype
(LRH) and iHS tests, exploit genomic tracts of extended hap-
lotype homozygosity (EHH) to detect haplotypes that have
not been broken down by recombination and have reached
intermediate population frequencies faster than expected un-
der neutrality (Sabeti et al. 2002; Voight et al. 2006). EHH-
derived methods are especially sensitive to ongoing sweeps,
where the selected haplotype has not reached fixation. Other
statistics, such as nsL (Ferrer-Admetlla et al. 2014) and H12
(Garud et al. 2015), provide complementary approaches cap-
turing signatures of positive selection on standing variation,
the so-called soft sweeps. In soft sweeps, the selected variant
pre-existed in the population, possibly cosegregated in mul-
tiple genomic backgrounds, until it became adaptive follow-
ing environmental changes.

Regardless of the nature of the underlying sweeps, popu-
lations submitted to different pressures develop lineage-
specific adaptations to local environments. CLR and EHH
methods were further extended to accommodate cross-
population comparisons, through XP-CLR (Chen et al.
2010) and XP-EHH (Sabeti et al. 2007) tests. However, the
first cross-population test for diversifying selection was devel-
oped by Cavalli-Sforza (1966) and Lewontin and Krakauer, in

A
rticle

� The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Open Access
1520 Mol. Biol. Evol. 35(6):1520–1535 doi:10.1093/molbev/msy053 Advance Access publication March 29, 2018

Deleted Text: and colleagues
Deleted Text: Composite 
Deleted Text: Likelihood 
Deleted Text: Ratio 
Deleted Text: -


the early 1970s, based on the FST index of genetic differenti-
ation (LK test) (Lewontin and Krakauer 1973). The LK test
established the basis for multiloci approaches, which assume
that demography impacts the levels of genetic diversity at the
scale of the whole genome, whereas adaptation only leaves
local signatures of selection, which increases the levels of ge-
netic differentiation around selected loci.

The LK test suffers from a number of well-characterized
limitations (Nei and Maruyama 1975). These include a rela-
tively high false-positive rate when only a reduced number of
genetic markers are available, as the full FST distribution
expected under neutrality cannot be then accurately esti-
mated. The LK test was thus almost abandoned for decades,
until molecular methodologies opened for a cost-effective
characterization of large-scale SNP panels. This, however,
did not mitigate another major limitation of the LK test,
pertaining to the assumption of independent demes, which
is violated if populations are related by complex demographic
histories. This limitation was tackled through the develop-
ment of novel statistical methods accounting for hierarchical
population structures. For example, Bonhomme et al. pre-
sented FLK and hapFLK (Bonhomme et al. 2010; Fariello
et al. 2013), two extensions of the LK test accommodating
tree-like relationship between populations and dynamic
changes in the effective size over time. FLK and hapFLK, how-
ever, cannot a priori identify which lineage(s) of the popula-
tion tree were targeted by selection. These methods are thus
uninformative regarding both the timing and environmental
conditions underpinning adaptation.

Under the FLK framework, lineage(s) that experienced se-
lection are identified a posteriori, by first building gene trees
from specific genomic regions (hereafter referred to as local
gene trees), and then searching for unusually long branches as
a proxy for adaptation. In contrast, the locus-specific branch
length (LSBL) (Shriver et al. 2004), as well as the derived
population-branch statistics (PBS), consider a predefined tri-
furcating population tree, including two focal populations
and an outgroup population. They then evaluate the fraction
of the FST differentiation index that is exclusively attributable
to each focal population (i.e., external branch) (Yi et al. 2010).
Similar to PBS, 3P-CLR does not rely on the reconstruction of
local gene trees, and is tailored to the detection of selective
sweeps in the internal branch of a three-population tree
(Racimo 2016).

In this study, we present LSD, a new cross-population
framework that exploits the levels of exclusively shared
differences existing between populations, in order to identify
loci that underwent selection along the internal and external
branches of a population tree. Using forward simulation, we
demonstrate that LSD shows improved performance when
compared with PBS under a wide range of conditions.
Applying LSD to the 1000 Genomes Project (The 1000
Genomes Project Consortium 2015), we detect candidate
loci that participated in the adaptive diversification of ana-
tomically modern humans (AMH), following their dispersal
out of Africa some �50–100 thousand years ago, and their
subsequent colonization of northern Europe some �40–45
thousand years ago (Bae et al. 2017; Nielsen et al. 2017).

Results and Discussion

General Overview
Cross-population methods quantify shifts in allele frequencies
as proxies for genomic signatures of positive selection. Only a
limited number of cross-population methods, however, are
currently devised for detecting lineage-specific adaptations,
and their applicability is merely limited to three-population
trees. PBS and LSBL, for example, leverage an outgroup pop-
ulation to calculate the Gromov product, a widely used con-
cept in spatial geometry that reveals the allele frequency
changes experienced by each population (fig. 1A).

Instead of relying on an outgroup, LSD calculates the
Gromov product from the most recent common ancestor
(MRCA) of two sister populations, namely A and B. This
MRCA delineates the allele frequencies segregating within
population ancestral to A and B (fig. 1B), and therefore rep-
resents a better initial point for tracking allele frequency
changes, without the uncertainty provided by a
phylogenetically distant outgroup. More importantly, work-
ing on population pairs opens for investigating any sort of
internal or external branch along a bifurcating population
tree (fig. 1C).

The Gromov product of two populations based on their
MRCA could be calculated from ancestral allele frequencies,
as detailed in the Materials and Methods section. Genome-
wide data from ancestral populations are, however, generally
not available. LSD overcomes this limitation by integrating
three or more populations through local gene trees, which are
rooted according to an external outgroup. Local gene trees
are built from particular genomic regions (e.g., protein-coding
regions or windows of predefined size), and assumed to have
evolved within a given population history (fig. 1C and D).

As an illustration, assume that we have a five-population
tree (populations A–E), and that we aim at detecting loci
positively selected in the lineage leading to population A
(fig. 1C). For each local gene tree, we first search for the
subtree that includes all individuals from A, and all individuals
from its sister population B (fig. 1E). From this MRCA, we then
calculate the average genetic differences to the members of
population A, provided these differences are not shared with
individuals from population B (fig. 1E).

Beneficial mutations emerging within population A will
tend to rapidly spread across that population, sweeping
linked variants to moderate or high frequencies. Although
often reducing the genetic diversity within population A,
this process will also increase the number of genetic differ-
ences to population B. Looking backwards in time, if one allele
underlies a selective advantage, carriers will rapidly coalesce to
their MRCA. The branch leading from this MRCA, to the
MRCA of populations A and B, will be thus longer than
expected under neutrality, accumulating mutations that, on
average, will be exclusively shared by a high fraction of indi-
viduals within population A (fig. 1E). Additionally, LSD quan-
tifies whether genetic variants tend to be exclusive to one
population only, since alleles common to both populations
(e.g., following admixture or incomplete lineage sorting, ILS)
are unlikely to underlie local adaptations.
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LSD will be thus maximized for local gene trees where
alleles from population A conform a monophyletic clade,
harbor low levels of diversity, and are largely differentiated
from alleles sampled for sister population B. Conversely, LSD
will be minimized whenever alleles from population A exhibit
high diversity, and are scattered across the same phylogenetic
clade as individuals from population B.

Simulations
In order to evaluate the performance of LSD, we first simu-
lated 10-kb-long DNA sequences evolving under a trifurcating
population tree, with selection operating on the lineage lead-
ing to population A, as illustrated in figure 2A (0� s� 0.03).
Limiting such simulations to three populations enabled a
comparison of the performance of LSD and PBS methods
(see next section). From the simulated sequences, we sam-
pled 10, 50, or 100 chromosomes from populations A and B.
A single individual was sampled from the outgroup in order
to root local gene trees. We then calculated the normalized
LSD score (LSDnorm) for external branches A and B.

Results showed that LSDnorm(A) scaled with the selec-
tion coefficient, in line with the simulation of a selective
advantage within this specific lineage (Spearman correla-
tions; P¼ 0.0068, 0.0005, and 0.0005 for sample sizes 10, 50,
and 100, respectively). In contrast, LSDnorm(B) remained
steady (Spearman correlations; P> 0.05), as expected since
population B was simulated to evolve under neutrality,
solely subject to mutation and drift processes (fig. 2A).
This suggests that LSDnorm can detect selection within
the correct branch of the population tree with high sensi-
tivity and specificity.

Simulations under scenarios of convergent evolution,
where the same allele is independently selected in both pop-
ulations A and B, reduced the sensitivity of LSD (fig. 2B and C).
Nevertheless, selection was still detectable, as the LSDnorm
increased with selection coefficients. In particular, simulations
with selection operating only on population A, LSDnorm(A)
reached values around 0.10 for s¼ 0.03 (fig. 2A). Assuming
that the same beneficial mutation also appeared de novo in
population B, the maximum magnitude of LSDnorm(A) was
much lower, around 0.08 (fig. 2B). A similar result was

FIG. 1. Overview of methods for identifying lineage-specific adaptations. (A) PBS calculations for population A, applying the Gromov product on
pairs of FST indexes. (B) The time spanned from the MRCA to the split of populations A and B determines the total branch length on which
mutations could have been accumulated in the ancestral population, and thus its diversity. (C) Five population tree, with popA-popE representing
external populations, AB and CD internal balanced branches, and ABCD an internal unbalanced branch. (D) Collection of gene trees, each
summarizing local evolutionary forces operating on particular genomic regions, potentially including lineage-specific selection. (E) Local gene tree
highlighting the footprint of selection on the individuals belonging to population A. The right panel provides a zoom into the population A
undergoing selection at a particular locus, and its sister population B, altogether with the equations underlying the calculation of LSD(A). Note this
local gene tree exemplifies strong selection signatures, characterized by low intrapopulation diversity and high interpopulation divergence. LSD
can also be calculated from sister clades that are not reciprocally monophyletic.
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obtained by simulating convergent evolution from alleles that
were introduced in their ancestral population, but that only
became beneficial after the split of populations A and B
(fig. 2C). The relative reduction of LSDnorm values in cases

of convergent evolution illustrates how changes indepen-
dently experienced by populations A and B are partly inter-
preted as shared and erroneously attributed to the branch
that leads to the outgroup population.
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FIG. 2. Performance of LSDnorm in trifurcating population trees. Fifty chromosomes (25 diploid individuals) were sampled for populations A and B.
The initial frequency and dominance coefficient of beneficial mutations were assumed to be 0.05 and 0.5, respectively. (A) The left panel shows the
simulated scenario, where beneficial alleles were introduced in population A. The x–y scatterplot shows that only LSDnorm(A) scales with
increasing selection coefficients. (B) The same adaptive mutations appeared, independently, in populations A and B. LSDnorm(A) reached lower
values than in (A). (C) Convergent evolution from variants that were already segregating in the ancestral population, and became beneficial after
the split of populations A and B.
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Benchmarking LSDnorm and PBS
Overlapping confidence intervals might hamper the ability to
discriminate loci evolving under selection or neutrality, espe-
cially if selection is weak. In order to assess the sensitivity and
specificity of LSDnorm, we compared LSDnorm values esti-
mated from selective and neutral scenarios. Briefly, we ran-
domly sampled a LSDnorm value from a scenario assuming
s¼ 0.03, to which we subtracted another LSDnorm value
sampled from neutral simulations. This difference controls
for the underlying LSDnorm baseline under neutrality. In or-
der to obtain an empirical distribution that fully captures the
stochastic nature of the evolutionary process, we repeated
this sampling procedure 10,000 times with replacement.

This sampling procedure was applied to two sets of
local gene trees, first using phased chromosomes
(LSDnorm.phased), then unphased data (LSDnorm.
unphased). The same procedure was applied to estimate
the accuracy of the PBS statistics for comparison. Since
PBS relies on allele frequency changes, measured by pair-
wise FST indexes, we sampled 10, 50, or 100 chromosomes
also from the outgroup population.

With recessive beneficial alleles, or with s< 0.02, both
LSDnorm and PBS statistics performed poorly, mainly be-
cause the impact of selection on intra- and interpopulation
diversity was limited (see supplementary fig. S1B–D,
Supplementary Material online). In scenarios where alleles
with s¼ 0.03 were introduced, LSDnorm and PBS substan-
tially increased, relative to the neutral expectations, in line
with their increasing power to pinpoint selected loci (fig. 3).
More specifically, such increments were found to be generally
higher for LSDnorm.phased, followed by LSDnorm.unphased,
and then PBS (fig. 3 and see supplementary table S1,
Supplementary Material online). Interestingly, LSDnorm.
phased and LSDnorm.unphased performed similarly with
small sample sizes, revealing the latter as a cost-effective al-
ternative if sampling and/or sequencing capabilities are
scarce, a restriction often experienced in ancient DNA and
conservation studies (fig. 3).

Confidence intervals were found to be larger for LSDnorm
than PBS estimates, for several reasons. LSDnorm can range
from �1 to 1, in contrast to PBS, which often has a mini-
mum boundary around zero. Phylogenetic inference of local
gene trees can also contribute to this elevated LSDnorm var-
iance, as discussed below. Finally, in the current experimental
design, PBS was allowed to use a substantially higher number
of chromosomes from the outgroup population, in compar-
ison to LSDnorm. Given the simulated conditions, including
large effective population sizes and short evolutionary distan-
ces, substantial amounts of incomplete lineage sorting are
expected between the outgroup and focal populations. This
implies that many local gene trees might be incorrectly
rooted, provided that the chromosome sampled from the
outgroup population is not truly external to populations A
and B. In order to accurately root local gene trees, LSD users
are advised to rely on a more distant outgroup, such as
chimpanzees for humans or even a more distant species.
Assuming that such distant outgroup is available, which is
often the case, LSDnorm could still incorporate multiple

samples from additional populations, including the one
that was here simulated to serve as outgroup. As reflected
by sampling more chromosomes from populations A and B,
larger sampling from additional populations would likely de-
crease confidence intervals (fig. 3). Since the calculation of the
PBS statistics relies on more outgroup samples than that of
LSDnorm in this experimental setup, our benchmarking
scheme was disadvantageous for LSDnorm and thus
conservative.

The increased accuracy of LSDnorm, in comparison to the
PBS statistics, was found regardless of the initial frequency of
the beneficial allele (iAF) and its dominance coefficient (see
supplementary material fig. S1, Supplementary Material on-
line). The only exception corresponded to selective episodes
starting from iAFs¼ 0.05, provided that n> 10. In these sce-
narios, PBS outperformed LSDnorm.unphased but not
LSDnorm.phased (fig. 3). For iAF¼ 0.10, this trend vanished,
and the accuracy of LSDnorm.unphased was greater than that
of PBS (see supplementary fig. S2A, Supplementary Material
online). Taken together, PBS might outperform
LSDnorm.unphased in intermediate situations, where high
iAFs promote multiple haplotype backgrounds to moderate
frequencies, increasing intrapopulation levels of diversity (e.g.,
soft sweeps). In such cases, LSDnorm.phased and especially
LSDnorm.unphased can become negative (see supplemen-
tary fig. S2B, Supplementary Material online).

Exploiting unphased data through genotype distances
assumes individuals with the same genotype are identical,
as no allele frequency changes (drift) occurred after their di-
vergence. This assumption does not hold if individuals show-
ing the same genotypes actually carry different haplotype
pairs, which could reveal recombination events, implying
that both individuals are not identical, but separated at least
by a few generations of divergence since their MRCA
(tMRCA). Genotype distances provide thus an underestima-
tion of tMRCAs, especially for small sample sizes (see supple-
mentary fig. S2C, Supplementary Material online). This
downward bias in tMRCA detection reduced the accuracy
of LSDnorm.unphased, in comparison with LSDnorm.phased.

The Wright–Fisher model predicts that the variance in
allele frequency increases with the number of generations,
by 1 � e�t/N, where t is the number of generations and N
the population size (Tataru et al. 2017). The variance of FST

values will then increment with longer distances to the out-
group (i.e., FST(A, outgroup) and FST(B, outgroup)). Wider
confidence intervals imply larger overlap between scenarios
simulated under selection and neutrality, which reduces PBS
ability to discriminate adaptive loci. Furthermore, the FST in-
dex contrasts between-population divergence to within-
population diversity. The latter is often calculated by averag-
ing over the nucleotide diversities of both populations
(Hudson et al. 1992). Averaging dilutes, however, the foot-
print of evolutionary processes that affect a single population,
including lineage-specific adaptations. By using the popula-
tion immediately ancestral to A and B, instead of an outgroup
(fig. 1A and B), LSDnorm overcomes both limitations. Indeed,
inferring the allele frequencies segregating within the ances-
tral population enables to directly track lineage-specific
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changes, without the uncertainty associated with a more dis-
tant outgroup.

In order to identify MRCAs, LSD leverages local gene trees
that jointly incorporate multiple populations. This approach
comes with two potential limitations. First, inferring local
gene trees raises computational costs, albeit running times
remained suitable for rapidly scanning whole genome panels
(see supplementary fig. S2D, Supplementary Material online).
Second, the accuracy of gene tree inference is limited if the
amount of genetic changes is small (e.g., within short time
scales). However, we note that LSD does not rely on the exact
topology of local gene trees, but mainly uses branch lengths as
estimates of genetic distances between pairs of phylogenetic
nodes. In fact, in the simulations above, accuracy was found
to be higher for LSDnorm than for PBS, despite LSDnorm was
based on suboptimal local gene trees, reconstructed using the
Neighbor-Joining (NJ) algorithm. Alternative approaches
might deserve future consideration, including UPGMA-
based local gene trees. Assuming strict molecular clock, which

is presumed at short times scales, this method directly infers
midpoint-rooted trees. Depending on the amount of data,
and its computational feasibility, more sophisticated methods
for phylogenetic inference, such a maximum likelihood algo-
rithms (Stamatakis 2014) or Bayesian approaches integrating
over the marginal probability of local gene trees (Yang and
Rannala 1997; Ronquist and Huelsenbeck 2003) might be
embedded to the calculation of LSDnorm, likely improving
its performance.

Inferring LSD from local gene trees conversely offers mul-
tiple advantages. First, incorporating multiple populations
enables partitioning the past in evolutionary time periods
delimited by the internal and external branches of the
population tree. This allows for the detection of positive se-
lection along the different branches of a population tree.
Furthermore, integrating substitution models, such as the
generalized time reversible (GTR), during gene tree inference
is straightforward, improving predictions especially when
comparing distant populations. Finally, local gene trees can
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racy, compared with LSDnorm.unphased, and this, in turn, to PBS. Wider confidence intervals for LSDnorm than for PBS were partly due to
different sample sizes from the outgroup population.
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be easily built from multiallelic data, including genetic
markers other than nucleotide polymorphisms, such as
copy-number variants (CNVs) or small insertion and dele-
tions, which opens for possible investigation of the adaptive
role of such genetic variants.

Extending LSD to More than Three Populations
In contrast to PBS, LSD is not limited to trifurcating popula-
tion trees, and is thus applicable to a wider range of scenarios.
Suppose now that samples from two additional populations,
namely C and D, are available, as well as a more distant

outgroup (fig. 4A). We follow the same simulation framework
as the previous section, where selection takes place within
population A (0� s� 0.03) during 500 generations. At s¼ 0,
differences in the LSDnorm baseline solely reflect population
divergence. For s> 0, LSDnorm(A) scaled with increasing se-
lection coefficients (fig. 4A), following a trend similar to that
found for trifurcating trees (fig. 2A). We note that LSDnorm
did not propagate the selection footprint to other branches,
which demonstrates the specificity of the method (fig. 4A).

We next introduced alleles conferring selective advantage
in the population ancestral to populations A, B, C, and D

FIG. 4. Performance of LSDnorm in five-population trees. Fifty chromosomes (25 diploid individuals) were sampled for all populations. The initial
frequency and dominance coefficient of beneficial mutations were assumed to be 0.05 and 0.5, respectively. (A) The left panel shows the simulated
scenario, where beneficial alleles are introduced in the unbalanced lineage ABCD. The x–y scatterplot shows that only LSDnorm(ABCD) scales with
increasing selection coefficients. (B) Beneficial alleles, associated with a range of selection coefficients, are introduced in population A, increasing
LSDnorm(A) scores. (C) The unbalanced lineage ABCD experiences introgression from its sister lineage, leading to population E. As the proportion
of migrants increases towards one, LSDnorm(ABCD) approaches to zero, which is indicative of the absence of genetic differentiation from its sister
lineage. (D) Population A experiences introgression from the distant population population E. LSDnorm(ABCD) values can eventually become
negative.
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(ABCD), right after the split from population E. If such alleles
were inherited by descending populations, they were then
simulated to be no longer advantageous, and to evolve under
neutrality. This ensured that the selective episode was con-
fined within population ABCD. In such scenarios, we found
that LSDnorm accurately identified selection within the
expected branch (fig. 4B). Since LSDnorm depends on the
duration of selection, in the form (1þ s)t (eqs. 12 and 13),
selection on the long ABCD branch resulted in high
LSDnorm(ABCD) scores (fig. 4B). Given that the average
time for sweep completion is 2ln(2Ns)/s (Hermisson and
Pennings 2005), many sweeps simulated for only 500 gen-
erations were expected to be still ongoing (incomplete),
producing a moderate impact on DNA variation, and
hence, on LSDnorm values (fig. 4A), in comparison to sit-
uations where selection was simulated within population
(ABCD) (fig. 4B).

As the signal left by a sweep is transient, the exact timing of
the selective episode within each lineage could potentially
affect LSDnorm. After a sweep, novel neutral mutations
slowly restore the levels of diversity (p), by a maximum rate
of Dp ¼ 2m(1 � 1/N)t. Using the same parameters as in the
above simulations, completely recovering from p¼ 0.0015 to
0.0020 would require over 185,000 generations. The time
elapsed since the end of the sweep (here, 3,000 generations
at best) is, therefore, expected to have negligible impact on
LSDnorm, provided the population remains stable during this
period, and does not experience a massive demographic col-
lapse or migration flux.

We finally assessed the impact of introgression from
population E into population ABCD. On the limit of
high migration rates, introgression from the branch lead-
ing to the sister population E effectively counteracted ge-
netic divergence, and the expected LSDnorm(ABCD) value
should have approached zero, as predicted by equation
(11) following the minimization of the (pCD � pE) and
(pAB � pE) terms. Nevertheless, LSDnorm values were
found to be slightly negative, likely reflecting the down-
ward bias in tMRCA estimation (see supplementary fig.
S2C, Supplementary Material online).

Beyond convergent evolution, only another scenario
caused LSDnorm to vary in several branches of the popu-
lation tree. This scenario involved introgression from the
branch leading to population E into a population descend-
ing from ABCD, such as population A (fig. 4D). The influx
of derived alleles into the incipient population A contrib-
uted to further differentiate population A from B, elevat-
ing LSDnorm(A). As exogenous alleles introgressing into
population A deepened the tMRCA of populations A and
B, LSDnorm(B) also showed an upward trend. Reciprocally,
introgression of derived alleles depleted the incipient pop-
ulation A from ancestral variants, defined as pA. As
expected from equation (11), LSDnorm(AB) declined
with lower pA values, eventually becoming negative. The
impact of this introgression was propagated to ABCD, in-
dicating that consistent negative LSDnorm values could
help, in the future, to unravel introgression events from
distant populations.

Empirical Data Set

Adaptations in Modern Europeans
The peopling of Europe has been a major research focus,
and is characterized by initial admixture with
Neanderthals (Green et al. 2010; Fu et al. 2014; Seguin-
Orlando et al. 2014; Fu et al. 2015; Sikora et al. 2017),
demographic changes, and multiple waves of population
replacement (Lazaridis et al. 2014; Haak et al. 2015).
Multiple studies have also started to decipher the genetic
basis of human adaptations to their new environments,
reporting selection signatures for alleles most notably as-
sociated with skin color and eye pigmentation (Marciniak
and Perry 2017; Nielsen et al. 2017). In the following sec-
tion, we used LSDnorm to scan for genomic adaptations
in modern Europeans, as represented by the CEU popu-
lation (fig. 5A), in order to assess whether LSD can retrieve
selection targets, already identified in previous selection
scans based on other statistical methods.

The distribution of LSDnorm values within 10-kb ge-
nomic windows was bell shaped, and centered at 0.032
(fig. 5B). That the mode of the distribution is positive
indicates that the CEU population harbors exclusively
shared variants in the majority of genomic regions. We
also identified an excess of regions showing the maximum
score of one. These windows can correspond to loci
driven to fixation by positive selection, but could also
result from neutral processes. For instance, allelic surfing
at the front wave of successive range expansions through-
out Europe can lead neutral alleles to fixation and can
spread these variants over vast geographic regions,
thereby mimicking the signature of local adaptation
(Edmonds et al. 2004; Hofer et al. 2009). Haplotypes
that increased their frequency due to allelic surfing are
relatively old (surfing occurs at the initial stage of coloni-
zation) and are thus more likely to have been shortened
by recombination. Conditioning our analyses on long-
enough regions (e.g., showing at least three consecutive
10-kb windows ranking amongst the top 1000 LSDnorm
scores) is expected to minimize the impact of allelic surf-
ing. Following this strategy, we delineated 72 LSDnorm
outlier regions, in which the exons of 31 genes coding for
proteins could be found (see supplementary table S2,
Supplementary Material online). Of note, five such genes
overlapped with selection candidates previously detected
using 3P-CLR (GMLC1, TEKT2, CLSPN, ADPRHL2 and
PSMB2; Racimo 2016). LSDnorm also recapitulates other
well-known examples of adaptation, such as at MYO5A
and SLC45A2 (Voight et al. 2006; Sabeti et al. 2007;
Barreiro et al. 2008), which underpin adaptation for ligh-
ter skin color. We also confirmed the overrepresentation
of some functional categories described previously, such
as melanin biosynthesis (Fisher exact test; adjusted P-val-
ue< 0.0189), albinism (0.0217), and pigmentation disor-
ders (0.0251) (see supplementary table S3, Supplementary
Material online). Together with the RP1 and TTC21B
genes, MYO5A and SLC45A2 contributed to the signifi-
cant enrichment of two functional categories, namely
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the photoreceptor outer segment (0.0163) and strabismus
(0.0227). Loss-of-function RP1 mutations, for example, are
associated with retinitis pigmentosa, a disease characterized
by limited night vision (Blanton et al. 1991; Pierce et al. 1999),

and thus potentially related to reduced sunlight exposure at
northern latitudes.

The selective pressures underlying the remaining selection
candidates are more speculative. The PIK3CB gene,

FIG. 5. LSDnorm applied to the 1000 human genome project (phase III). (A) Human population tree assumed to investigate selection along the
lineage ancestral to Europeans (CEU) and Asians (PJB and CHB) (red arrow), and the European population (green arrow). (B) Histogram showing
the empirical LSDnorm distribution for the CEU population. The black arrow highlights the excess of 10-kb windows with a maximum score of one.
(C) LSDnorm scores along the SH2B3-ATXN2 locus, altogether with the local gene tree at chr12: 111,440,001–111,450,000, which shows widely
spread derived alleles amongst CEU (green), PJL (dark yellow) and CHB (dark brown) populations.
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participating in insulin resistance (Cl�ement et al. 2009), has
been recently found as a selection candidate in Europe in
an independent study (Vatsiou et al. 2016). Selection at
this gene might support the “carnivory connection” hy-
pothesis, which posits that recent shift toward starch-rich
diets shaped the levels of insulin resistance (Colagiuri and
Brand Miller 2002). Likewise, the LMLN gene encodes for
leishmanolysin, a glycoprotein acting against Leishmania
protozoans. Such pathogens can cause a range of diseases
in humans and dogs and are often transmitted by blood-
sucking insects that are nearly absent in North European
latitudes (Pace 2014).

Despite representing one of strongest signals of recent
adaptation within European populations (Bersaglieri et al.
2004), the locus responsible for lactase persistence (LP)
was not among the selection candidates detected by
LSDnorm. Yet, the locus is embedded within a>2 Mb
tract that shows LSDnorm values ranking amongst the
top 2% of the genome-wide distribution (see supplemen-
tary fig. S3, Supplementary Material online). Beyond
Europeans, LP is present in other populations, including
the Punjabi (Abbas et al. 1983), often due to evolutionary
convergence at the genetic level. For example, the
�13910C/T (rs4988235) SNP, responsible for LP in
Europe, also contributes to LP in Central Asia (Heyer
et al. 2011). As illustrated in figure 2B and C, such cases
of convergent evolution limit the sensitivity of LSDnorm
to detect lineage-specific signatures of selection.

Adaptations in the Human Lineage That Left Africa
We next investigated phenotypic adaptations that accompa-
nied another major transition in human history, namely the
expansion out of Africa. This expansion started possibly as
early as �100 kya ago (Grün et al. 2005, but see also
Hershkovitz et al. 2018), when a reduced group of AMH
left Africa for the first time, expanded throughout the Old
World, and were exposed to novel environmental conditions
and pathogens (fig. 4A).

Applying the same significance threshold as above, to
the branch ancestral to Punjabi (PJB), Han Chinese (CHB),
and European (CEU) populations (labeled as Eurasia in
fig. 4A), we identified 41 genomic regions overlapping
with the exons of only 28 genes coding for proteins (see
supplementary table S4, Supplementary Material online).
This relatively limited number of selection candidates was
enriched for functional categories such as for cardiovas-
cular alterations (Fisher exact test; adjusted P-val-
ue< 0.0327), movement disorders such as Parkinson
(0.0399), celiac disease (0.0399), regulation of actin cyto-
skeleton (<0.0489), and disorders of the penis (0.0327)
(see supplementary table S5, Supplementary Material on-
line). These functional categories mirror traits commonly
associated with populations of African ancestry, including
high hypertension prevalence (adjusted P-value¼ 0.0327)
(Wong et al. 2002; Agyemang and Bhopal 2003). We, how-
ever, note that the statistical significance of these catego-
ries is driven by a few pleiotropic genes, most often as
combinations of SH2B3, ATXN2, and SEPT4.

The SH2B3–ATXN2 locus, for example, is associated with a
vast range of autoimmune disorders, including diabetes type I,
celiac disease, or systolic blood pressure (Orr�u et al. 2013;
Auburger et al. 2014; Kullo et al. 2014). Interestingly, this locus
has been previously reported as a selection candidate, mostly
in Europe (Zhang et al. 2013; Brinkworth and Barreiro 2014;
Mathieson et al. 2015). Inspection of local gene trees over-
lapping SH2B3–ATXN2 confirmed that some derived variants
are widely spread in Europe (CEU), but also amongst Han
Chinese (CHB) and Punjabi populations (PJB), a pattern com-
patible with selection acting prior to the Europeans–Asians
split (fig. 4C).

The SEPT4 gene encodes a cytoskeletal regulator that, like
ATXN2, has been associated with the Parkinson disease (Ihara
et al. 2007). Using 3P-CLR with archaic hominins as outgroup,
SEPT4 was also recently reported as a selection candidate,
however, in the branch leading to AMH (Racimo 2016).
Local gene trees from the SEPT4 region reveal that all
Eurasians (CEU, PJB, and CHB) share an almost identical hap-
lotype, whereas evident substructure emerges within Yoruba
(YRI), and within Luhya (LWK) African populations (see sup-
plementary fig. S4, Supplementary Material online). Although
compatible with an incomplete sweep in the branch ancestral
to AMH, this pattern of population divergence also supports
positive selection associated with the out-of-Africa expansion.

Incongruences between LSDnorm and 3P-CLR analyses
can result from distinct significance cut-offs, and/or differ-
ences in the analyzed data sets. Alternatively, as 3P-CLR is
limited to two populations and an outgroup, the study relying
on this method investigated the branch ancestral to AMH by
pooling individuals from multiple European and Asian
groups, as a single homogeneous proxy for the Eurasian pop-
ulation. The presence of population structure within
Eurasians, however, violates the assumptions underlying
binomial allele sampling, by preventing alleles to spread
over the Eurasian metapopulation. This reduces the power
to detect true selective episodes, unless hierarchical structure
within Eurasia is explicitly accounted for. This cannot be done
in current implementations of the 3P-CLR test but can easily
be carried out using LSDnorm, which is not limited to three
populations.

Conclusions
We present a new framework, based on the LSD between
predefined phylogenetic clades to accurately identify loci
undergoing selection across a population tree. Through
simulations and the analysis of real genome-scale data
sets, we demonstrate the sensibility and specificity of
our method in assigning the episode of positive selection
to the correct branch of the population tree. We also
identify population histories inevitably misleading when
characterizing diversifying selection, including conver-
gence and gene flow. Future work exploiting phased
data to detect recombination breakpoints and subse-
quently partition the genome into independently evolv-
ing regions can increase the resolution to precisely
identify the selected haplotypes.
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Materials and Methods

LSD in Practice
Assume A and B are sister populations that represent external
lineages in the population tree (fig. 1C). LSD can be computed
as

LSD Að Þ ¼

D MRCA; Að Þ � d Að Þ
2

h i
þ k A; Bð Þ � d Að Þ

2 �
d Bð Þ

2

h i
� D MRCA; Bð Þ � d Bð Þ

2

h i
2

¼ D MRCA; Að Þ þ k A; Bð Þ � D MRCA; Bð Þ � d Að Þ
2

;

(1)

where D(MRCA, A) represents the average distance from the
MRCA of A and B to each individual belonging to population
A, as estimated from the branch lengths in the local gene tree.
Distance units are typically expressed in substitutions per site.
d(A) corresponds to the average pairwise distance between
individuals belonging to population A, and k(A, B) is the av-
erage pairwise distance between all pairs of individuals con-
sisting of one individual from each population.

Figure 1E provides a visual interpretation of the mathe-
matical terms, and illustrates that D(MRCA, A) � d(A)/2

accounts for the amount of differences shared between indi-
viduals belonging to population A. The fraction of these
mutations that are exclusive to population A is quantified
by k(A, B) � d(A)/2 � d(B)/2. Allele sharing between pop-
ulations A and B, due to ILS or gene flow, will reduce k(A, B)�
d(A)/2� d(B)/2, thereby reducing LSD(A). The last operation
consists in subtracting the amount of genetic differences ac-
cumulated along the branch leading to population B (fig. 1E),
as provided by the term D(MRCA, B) � d(B)/2. This ensures
that selective episodes occurring in population B are not at-
tributed to LSD(A), making LSD independent for each branch
in the population tree. We can thus write LSD(B) as

LSD Bð Þ ¼ D MRCA; Bð Þ þ k A; Bð Þ � DðMRCA; AÞ � d Bð Þ
2

:

(2)

We classify branches in the population tree as unbalanced
or balanced, depending on whether their sister clade is an
external or an internal lineage. Branches labeled as A and B
are, for example, both external and balanced (fig. 1C). Branch
E, instead, is external but unbalanced, because its sister lineage
is the internal branch ABCD. Internal branches can be simi-
larly classified as balanced, such as ABCD, or unbalanced, such
as AB. The LSD calculation slightly varies according to this, as

LSD Eð Þ ¼
D MRCA; Eð Þ þ k CD; Eð Þ þ kðAB; EÞ

2
� D MRCA; CDð Þ þ DðMRCA; ABÞ

2
� d Eð Þ

2

LSD ABð Þ ¼

D MRCA; Að Þ þ DðMRCA; BÞ
2

þ k A; Cð Þ þ k A; Dð Þ þ k B; Cð Þ þ k B; Dð Þ
4

� D MRCA; Cð Þ þ DðMRCA; DÞ
2

� k A; Bð Þ
2

LSD ABCDð Þ ¼
D MRCA; CDð Þ þ DðMRCA; ABÞ

2
þ k CD; Eð Þ þ kðAB; EÞ

2
� D MRCA; Eð Þ � k CD; ABð Þ

2

:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(3)

In equation (3), the metapopulation CD represents the
merger of individuals from C and D, and AB the merger of
individuals from A and B. As our method can handle both
unbalanced and balanced lineages, it is generalizable to any
population tree of any given size, and is not limited to the
population tree provided as an illustration in figure 1C.

Normalized LSD Values Provide Proxies for Selection
Coefficients
The previous section presented the fundamental operations
underpinning the LSD calculations, given predefined (groups
of) population(s) in a given population tree. In the following,
we demonstrate analytically that LSD captures the impact of
natural selection on DNA variation. We first transform branch

lengths, measured in numbers of differences per site, in allele
frequency changes, according to

k A; Bð Þ ¼ pAð1 � pBÞ þ pBð1 � pAÞ

D MRCA;Að Þ ¼ pAð1 –1pMRCAÞ þ pMRCAð1 � pAÞ

d Að Þ ¼ 2npAð1� pAÞ
n� 1

� 2pA 1� pAð Þ

;

8>>><
>>>:

(4)

where pA, pB, and pMRCA stand for the allele frequencies in
populations A, B, and their immediate parental population.
The approximation in the last equality assumes large sample
sizes, so that n/(n� 1)� 1. Replacing equation (4) into equa-
tion (1), we have
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LSD Að Þ¼ pA 1� pMRCAð ÞþpMRCA 1� pAð Þ½ �þ pA 1� pBð ÞþpB 1� pAð Þ½ �þ pMRCA 1� pBð Þ þ pB 1� pMRCAð Þ½ � � 2pA 1� pAð Þ
2

¼ pA
2 � pApMRCA � pApB þ pBpMRCA ¼ pA � pMRCAð Þ pA � pBð Þ

(5)

The amount of differences accumulated since the ancestral population is quantified by (pA � pMRCA), whereas (pA � pB)
evaluates whether these differences are exclusive of population A or not. The combination of both terms represents then the
Levels of exclusively Shared Differences (LSD). It is noteworthy that this development reveals a particular configuration of the so-
called f3 statistics (Patterson et al. 2012), in the form f3(A; MRCA, B), which depends on pMRCA. Negative LSD(A) values can only be
explained by alleles introgressed into A, whereas positive values reflect derived changes accumulated in population A. Applying
the transformation shown in equation (4) to equation (3), we can now write LSD(E), LSD(AB), and LSD(ABCD) as

LSD Eð Þ ¼ pE � pMRCAð Þ pE �
pAB þ pCD

2

� �

LSD ABð Þ ¼
ðpB �

PC þ PD

2
ÞðpA � pMRCAÞ þ ðpB�pMRCAÞðpA �

PC þ PD

2
Þ

2

LSD ABCDð Þ ¼ ðpCD�pEÞðpAB � pMRCAÞ þ ðpCD�pMRCAÞðpAB�pEÞ
2

8>>>>>>>><
>>>>>>>>:

(6)

where pAB is the allele frequency in the metapopulation AB,
which considers all individuals from A and B jointly. Allele
frequency changes can be visualized as the overlap between
paths connecting the split nodes in a population tree
(Patterson et al. 2012). For LSD(ABCD), this corresponds to
the overlap between the paths connecting populations CD
and E (CD!E) on the one hand, and AB!MRCA on the
other hand, averaged with the overlap between CD!MRCA
and AB!E. This clearly coincides with the lineage represent-
ing the ancestral population labeled as ABCD (fig. 1C). This
can be extended to any other lineage, provided that the cor-
rect equation is applied depending on whether it is external
or internal, and balanced or unbalanced.

We have shown that LSD can be expressed in terms of allele
frequency changes, captured by terms that ultimately depend
on pMRCA. Isolating pMRCA in equation (5) allows us to calculate
the allele frequency in the parental node of population A

pMRCA Að Þ ¼ LSD Að Þ � pA
2 þ pApB

pB � pA
: (7)

Likewise,

pMRCA Eð Þ ¼
LSD Eð Þ � pE

2 þ pE
pAB þ pCD

2

h i
pAB þ pCD

2
� pA

pMRCA ABð Þ ¼
2LSD ABð Þ � 2pApB þ

PC þ PD

2

� �
pA þ pBð Þ

pC þ pD � pA � pB

pMRCA ABCDð Þ ¼2LSD ABCDð Þ � 2pCDpAB þ pEðpCD þ pABÞ
2pE � pCD � pAB

:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(8)

Assuming strong selection and large population sizes, ben-
eficial alleles arising at low frequencies (e.g., pMRCA¼ 1/N)
experience small fluctuations in their frequency right after
their emergence, usually escaping accidental extinction, and
following a quasi-deterministic allele trajectory. Such quasi-
deterministic trajectory is also applicable for weak selection
on standing variation (pMRCA� 1/N) (Smith and Haigh 1974;
Kaplan et al. 1988, 1989). In either case, the expected fre-
quency of an allele associated with an increase of s in fitness,
after t generations is given by

pt ¼
pMRCAð1þ sÞt

pMRCAð1þ sÞt þ ð1� pMRCAÞ
: (9)

In the simplest case, if selection acts on a single pop-
ulation, with no introgression, the expected values for
equations (5) and (6) simplify to (pt � pMRCA)2.
Replacing pt by equation (9) reveals the relation between
LSD and t, pMRCA and s

LSD ¼
pMRCA 1� pMRCAð Þ 1þ sð Þt � 1

� �
pMRCA 1þ sð Þt � 1

� �
þ 1

" #2

: (10)

This function draws a sigmoid curve, with its maximum
boundary depending on the levels of standing variation, as
defined by max(LSD)¼ (1 � pMRCA)2. Since variations in the
upper limit preclude comparisons along the genome, we nor-
malize LSD following an approach similar to the calculation of
FST indices. More specifically, and following our notation for
LSD(A), FST can be defined as FST¼ 1� (d(A)þ d(B))/2k(A, B)
(Hudson et al. 1992). In contrast to the FST index, based on a
population pair, LSD focalizes on a single population.
Consequently, LSD is not normalized by k(A, B), but by the

Detecting Selection along the Branches of a Population Tree . doi:10.1093/molbev/msy053 MBE

1531

Deleted Text: <italic>&mdash;</italic>
Deleted Text: while 
Deleted Text: <italic>&mdash;</italic>
Deleted Text: Fig
Deleted Text: <italic>-</italic>
Deleted Text: <italic>-</italic>
Deleted Text: <italic>&ndash;</italic>


total variability exclusively accumulated in population A (i.e.,
D(MRCA, A)þ k(A, B) � D(MRCA, B))

LSDnorm Að Þ ¼ 1� d Að Þ
D MRCA;Að Þ þ k A; Bð Þ � D MRCA; Bð Þ ¼ 1� 2pA 1� pAð Þ

2 pA � pMRCAð Þ pA � pBð Þ þ 2pA 1� pAð Þ

¼ 1� pA 1� pAð Þ
pA � pMRCAð Þ pA � pBð Þ þ pA 1� pAð Þ

LSDnorm Eð Þ ¼ 1� pE 1 – pEð Þ

pE � pMRCAð Þ pE �
pAB þ pCD

2

� �
þ pE 1 – pEð Þ

LSDnorm ABð Þ ¼ 1� pA 1 – pBð Þ þ pB 1 – pAð Þ

ðpB �
PC þ PD

2
ÞðpA � pMRCAÞ þ ðpB � pMRCAÞðpA �

PC þ PD

2
Þ þ pA 1 – pBð Þ þ pB 1 – pAð Þ

LSDnorm ABCDð Þ ¼ 1� pAB 1 – pCDð Þ þ pCD 1 – pABð Þ
ðpCD � pEÞðpAB � pMRCAÞ þ ðpCD � pMRCAÞðpAB � pEÞ þ pAB 1 – pCDð Þ þ pCD 1 – pABð Þ

:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(11)

Following equation (10), the relation between LSDnorm
and t, pMRCA and s is given by

LSDnorm ¼

1� 1þ sð Þt

pMRCA 1� pMRCAð Þ½ 1þ sð Þt � 1�2 þ 1þ sð Þt

¼ pMRCA 1� pMRCAð Þ½ 1þ sð Þt � 1�2

pMRCA 1� pMRCAð Þ½ 1þ sð Þt � 1�2 þ 1þ sð Þt
:

(12)

For moderate to large (1þ s)t values, so that [(1þ s)t� 1]2

� (1þ s)2t, this simplifies to the following function

LSDnorm � pMRCA 1� pMRCAð Þ 1þ sð Þt

pMRCA 1� pMRCAð Þ 1þ sð Þt þ 1
; (13)

where the initial variability is distorted by natural selection at
a (1þ s) rate each generation. With increasing (1þ s)t,
LSDnorm asymptotically reaches a plateau with a maximum
boundary of one, corresponding to hard sweep scenarios.
Negative selection (s< 0) can also yield a similar allele trajec-
tory, just because if an allele starts to be heavily purged from
the genetic pool, the other variant segregating in the popu-
lation will symmetrically increase in frequency, equally result-
ing in a diversification from the sister population.

Forward Simulations
To evaluate the accuracy of the method, we carried out for-
ward simulations using SLiM 2.1 under a range of population
histories (Messer 2013). We simulated 10-kb DNA sequences
evolving under the symmetric five-population tree provided
in figure 1C. We fixed the effective population sizes at
N¼ 20,000, as well as mutation and recombination rates of
2.36� 10�8 mutations and 1 � 10�8 recombination events
per generation per site. In order to simulate different types of

sweeps, we introduced beneficial alleles at different initial
frequencies (iAF), ranging from 1% to 5%. Their dominance
coefficient was simulated to be recessive, dominant, or inter-
mediate. According to these parameters, we let beneficial
alleles to evolve conferring an advantage s, ranging from
0.001 to 0.01 into the ancient population ABCD (i.e., ancestral
to populations A to D), or from s¼ 0.005 to 0.03 into the
external branch leading to population A. Additionally, we
evaluated how the impact of an increasing fraction of
migrants per generation, m, from a distant population E
into any of the two branches subject to selection, namely A
or ABCD.

From the simulated scenarios, we sampled 10, 50, and 100
chromosomes for each population, corresponding to 5, 25,
and 50 diploid individuals, respectively. Two approaches were
applied for local gene tree inference. The first approach con-
sisted in constructing NJ trees from phased chromosomes,
with FastTree 2 (Price et al. 2010). The second pertained to an
estimation of genotype distances, with a script implemented
in-house to quantify allele frequency changes between pairs
of diploid individuals, that is, null distances were assigned to
sites with the same genotype, distances of one to sites with
alternative homozygous genotypes, and half otherwise.
Pairwise genotype distances were then used as input to re-
construct a NJ tree with FastME 2.1.4 (Lefort et al. 2015). Local
gene trees based on genotype distances, and thus on
unphased information, were only used in the section com-
paring LSDnorm to the PBS statistics. The remaining simu-
lated scenarios are based on local gene trees build from
phased chromosomes.

In order to calculate the PBS statistics, we followed the
equation in figure 1A. Pairs of FST values were estimated with
mstatspop v.0.1beta (20171109), an efficient C implementa-
tion to calculate statistics of variability, and that is freely avail-
able at https://bioinformatics.cragenomica.es/numgenomics/
people/sebas/software/software.html.
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Application to Empirical Data
We applied LSD to data from the 1000 Human Genome
Project (phase 3) (The 1000 Genomes Project Consortium
2015), restricting the analysis to 30 individuals from each of
the following populations: CEU (northern and western
European), CHB (Han Chinese), PJL (Punjabi), LWK (Luhya),
and YRI (Yoruba). These comprise a total of 150 individuals
spread across Africa, Europe, south and east Asia.

As the available VCF files encode haplotype phase infor-
mation for the 150 individuals (ftp://ftp.1000genomes.ebi.ac.
uk/Vol1/ftp/release/20130502/), we transformed their geno-
types into 300 haploid fasta sequences. This fasta file was
further split into 10-kb genomic windows, with a 5-kb step-
wise overlap. Each fasta file was used as input to build a
separate local gene tree, with FastTree 2 (with default param-
eters plus the GTR option) (Price et al. 2010). For each local
gene tree, we calculated LSDnorm in two lineages, namely the
external lineage leading to CEU, and the internal lineage in-
cluding the ancestral population that left Africa (hereafter,
referred to as Eurasians). Genes overlapping with outlier
LSDnorm regions were further analyzed for functional enrich-
ment, using WebGestalt (Zhang et al. 2005).

Implementation
The LSD framework is implemented in C, and available for
download under the GPL license at https://bitbucket.org/pli-
brado/LSD. The program requires two input files, one includ-
ing a collection of local gene trees (potentially multifurcating),
and a tabulated file summarizing the topology of the popu-
lation tree. As it leverages pairwise genetic distances, its com-
putational time scales quadratically with the number of
terminal lineages. In a standard CPU processor, LSD processes
thousands of genealogies in minutes.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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2014. 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2?
World J Diabetes 5(3):316–327.

Bae CJ, Douka K, Petraglia MD, Bae CJ, Petraglia MD. 2017. On the origin
of modern humans: Asian perspectives. Science 358(6368): eaai9067.

Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L. 2008. Natural
selection has driven population differentiation in modern humans.
Nat Genet. 40(3):340–345.

Berg JJ, Coop G. 2015. A coalescent model for a sweep of a unique
standing variant. Genetics 201(2):707–725.

Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake
JA, Rhodes M, Reich DE, Hirschhorn JN. 2004. Genetic signatures of
strong recent positive selection at the lactase gene. Am J Hum Genet.
74(6):1111–1120.

Blanton SH, Heckenlively JR, Cottingham AW, Friedman J, Sadler LA,
Wagner M, Friedman LH, Daiger SP. 1991. Linkage mapping of au-
tosomal dominant retinitis pigmentosa (RP1) to the pericentric re-
gion of human chromosome 8. Genomics 11(4):857–869.

Bonhomme M, Chevalet C, Servin B, Boitard S, Abdallah J, Blott S,
SanCristobal M. 2010. Detecting selection in population trees: The
Lewontin and Krakauer test extended. Genetics 186(1):241–262.

Brinkworth JF, Barreiro LB. 2014. The contribution of natural selection to
present-day susceptibility to chronic inflammatory and autoim-
mune disease. Curr Opin Immunol. 31:66–78.

Chen H, Patterson N, Reich D. 2010. Population differentiation as a test
for selective sweeps. Genome Res. 20(3):393–402.

Cl�ement K, Le Stunff C, Meirhaeghe A, Dechartres A, Ferrieres J,
Basdevant A, Boitard C, Amouyel P, Bougnères P. 2009. In obese
and non-obese adults, the cis-regulatory rs361072 promoter variant
of PIK3CB is associated with insulin resistance not with type 2 dia-
betes. Mol Genet Metab. 96(3):129–132.

Colagiuri S, Brand Miller J. 2002. The “carnivore connection”–
evolutionary aspects of insulin resistance. Eur J Clin Nutr.
56(S1):S30–S35.

DeGiorgio M, Huber CD, Hubisz MJ, Hellmann I, Nielsen R. 2016.
SweepFinder2: Increased sensitivity, robustness and flexibility.
Bioinformatics 32(12):1895–1897.

Edmonds CA, Lillie AS, Cavalli-Sforza LL. 2004. Mutations arising in the
wave front of an expanding population. Proc Natl Acad Sci U S A.
101(4):975–979.

Fan S, Hansen MEB, Lo Y, Tishkoff SA. 2016. Going global by adapting
local: A review of recent human adaptation. Science
354(6308):54–59.

Fariello MI, Boitard S, Naya H, SanCristobal M, Servin B. 2013.
Detecting signatures of selection through haplotype differenti-
ation among hierarchically structured populations. Genetics
193(3):929–941.

Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. 2014. On detect-
ing incomplete soft or hard selective sweeps using haplotype struc-
ture. Mol Biol Evol. 31(5):1275–1291.

Field Y, Boyle EA, Telis N, Gao Z, Gaulton KJ, Golan D, Yengo L,
Rocheleau G, Froguel P, McCarthy MI, et al. 2016. Detection of hu-
man adaptation during the past 2000 years. Science
354(6313):760–764.

Fu Q, Hajdinjak M, Moldovan OT, Constantin S, Mallick S, Skoglund P,
Patterson N, Rohland N, Lazaridis I, Nickel B, et al. 2015. An early
modern human from Romania with a recent Neanderthal ancestor.
Nature 524(7564):216.

Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM, Bondarev AA, Johnson PLF,
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