
RESEARCH Open Access

Interobserver variability between
experienced and inexperienced observers
in the histopathological analysis of Wilms
tumors: a pilot study for future algorithmic
approach
Jikke J. Rutgers1, Tessa Bánki1,2, Ananda van der Kamp1,3, Tomas J. Waterlander1,2, Marijn A. Scheijde-Vermeulen1,
Marry M. van den Heuvel-Eibrink1, Jeroen A. W. M. van der Laak4, Marta Fiocco1,5,6,
Annelies M. C. Mavinkurve-Groothuis1 and Ronald R. de Krijger1,7*

Abstract

Background: Histopathological classification of Wilms tumors determines treatment regimen. Machine learning has
been shown to contribute to histopathological classification in various malignancies but requires large numbers of
manually annotated images and thus specific pathological knowledge. This study aimed to assess whether trained,
inexperienced observers could contribute to reliable annotation of Wilms tumor components for classification
performed by machine learning.

Methods: Four inexperienced observers (medical students) were trained in histopathology of normal kidneys and
Wilms tumors by an experienced observer (pediatric pathologist). Twenty randomly selected scanned Wilms tumor-
slides (from n = 1472 slides) were annotated, and annotations were independently classified by both the
inexperienced observers and two experienced pediatric pathologists. Agreement between the six observers and for
each tissue element was measured using kappa statistics (κ).
Results: Pairwise interobserver agreement between all inexperienced and experienced observers was high (range:
0.845–0.950). The interobserver variability for the different histological elements, including all vital tumor
components and therapy-related effects, showed high values for all κ-coefficients (> 0.827).

Conclusions: Inexperienced observers can be trained to recognize specific histopathological tumor and tissue
elements with high interobserver agreement with experienced observers. Nevertheless, supervision by experienced
pathologists remains necessary. Results of this study can be used to facilitate more rapid progress for supervised
machine learning-based algorithm development in pediatric pathology and beyond.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: r.r.dekrijger-2@prinsesmaximacentrum.nl
1Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS
Utrecht, The Netherlands
7Department of Pathology, University Medical Center Utrecht, Utrecht, The
Netherlands
Full list of author information is available at the end of the article

Rutgers et al. Diagnostic Pathology           (2021) 16:77 
https://doi.org/10.1186/s13000-021-01136-w

http://crossmark.crossref.org/dialog/?doi=10.1186/s13000-021-01136-w&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:r.r.dekrijger-2@prinsesmaximacentrum.nl


Keywords: Wilms tumor, Interobserver variability, Machine learning, Histopathology, Classification, AI (artificial
intelligence)

Introduction
Wilms tumors (WTs) account for approximately 90% of
all pediatric renal tumors. Since renal tumors account
for only 6% of all pediatric malignancies, these tumors
are rare [1]. The overall survival of WT patients has in-
creased to 90% in the last four decades [2–4]. Yet, there
are significant differences in survival within this group of
patients, indicating the need for risk stratification. Histo-
logical classification is the cornerstone of current risk
stratification in WTs, thereby defining individual treat-
ment regimens [5]. However, there is a known interob-
server variability, also between experienced pathologists,
leading to discrepancies in stage and diagnosis, and thus
affecting treatment schedules [6].
Artificial Intelligence (AI) has gained rapidly increas-

ing interest over the past decade. In medicine, recent AI
developments show the use of diagnostic algorithms to
be contributory to histopathological classification in
various malignancies [7–9]. The use of AI techniques
(e.g. digital image analysis) might be of additional value
in the approach of many tumor types, including WTs,
however they rely on supervised machine learning (ML),
where computers are trained to recognize specific tissue
elements. Large numbers of manually annotated tumor
characteristics are required for ML-based classifications,
which can be a time-consuming process. Whereas these
digital image analysis procedures are emerging in path-
ology, they are more widely used in radiology [10]. The
scarce use in the field of pathology is mainly due to the
low level of digitization of the microscopic workflow in
many laboratories. With the advent of digital slide scan-
ners, which digitize glass slides into whole slide images
(WSIs), digital pathology has now become state-of-the-
art in an increasing number of pathology departments
[8, 11]. With the increase in digitalization in pathology,
we hypothesize that the use of AI in the histopatho-
logical classification of WT could find routine imple-
mentation and avoid interobserver variability, which
could possibly result in more accurate classification of
WTs in the future.
To date, no annotated datasets of WT are available

and current development of diagnostic algorithms is re-
stricted by the time-consuming process of manual anno-
tations by pathologists. Assistance of specifically trained
inexperienced but professional observers in the annota-
tion process for one specific tumor type could poten-
tially aid in the development of diagnostic algorithms.
WTs would be suitable as test case, as the tumor has
clearly defined triphasic (stromal, blastemal and

epithelial) vital tumor components and various
chemotherapy-induced changes following preoperative
chemotherapy in the setting of the current International
Society for Pediatric Oncology (SIOP) treatment proto-
col [5]. In this study, we aim to assess the interobserver
variability of histopathological annotation of WT be-
tween two experienced pediatric pathologists (experi-
enced observers) and four trained medical students
(inexperienced observers). We hypothesize that medical
students can be trained to contribute to the reliable clas-
sification of tumor and non-tumor components for fur-
ther use in the development of ML algorithms for the
classification of WT.

Materials and methods
Study design and population
This study was performed in a Dutch cohort of 105 WT
patients, comprised of all patients < 18 years old with
WT in the Netherlands, referred to the Princess Máxima
Center for Pediatric Oncology between 2015 and 2019.
Diagnosis and classification of WT were done according
to the SIOP 2001 and Umbrella SIOP-RTSG 2016 treat-
ment guidelines [5, 12]. All WT patients who gave in-
formed consent for biobanking participation were
included. Available Hematoxylin and Eosin (HE) stained
slides of this cohort (n = 1472) were retrieved from the
pathology archives and digitized. The need for ethical
approval has been waived by the Medical Ethical Com-
mittee (METC 19-314/C). Twenty tumor slides from 20
unique patients were randomly selected for this study.
Patient characteristics and tumor classifications of the
whole cohort were collected from the nationwide net-
work and registry of histo- and cytopathology in the
Netherlands (PALGA).

Whole Slide Image (WSI) dataset
All 1472 HE slides were digitized at the Radboud Uni-
versity Medical Center (RUMC) using a Pannoramic
1000 digital slide scanner (3DHistech ltd., Budapest,
Hungary) at a resolution of 0.24 μm/pixel. Scans were
pseudonimized by the RUMC and researchers remained
blinded throughout the annotation- and validation
process.

Component selection and annotation
Nineteen predefined tissue elements, including vital
tumor components, therapy effects and normal tissue el-
ements, were annotated (Table 1; Fig. 1). Element selec-
tion was based on expert opinion in consultation with
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the computational pathology team from the RUMC, as
there is no available literature regarding algorithmic ap-
proach of WT classification. The annotations and valid-
ation were performed using open-source software
Automated Slide Analysis Platform (ASAP), version 1.8
[13].

Training
To train the four inexperienced observers, a 2-h hist-
ology training by an experienced pediatric pathologist
was pursued to recognize each of the selected tissue ele-
ments. Following this first training session, the inexperi-
enced observers annotated a test set of ten slides for
training. All slides were evaluated extensively and scored
in multiple sessions with direct feedback from an experi-
enced pathologist.

Slide scoring
One of the inexperienced observers annotated approxi-
mately 100 annotations in all 20 selected slides. These
annotations were encrypted and subsequently labelled to
one of the 19 categories by the other observers. All ob-
servers remained blinded throughout the process.

Statistical analysis
Pairwise agreement between the six observers was deter-
mined by calculating kappa (κ) statistics. In total 15
values for kappa were estimated, since this is the number
of all possible combinations of two individuals in a
group of six subjects. In addition, the kappa coefficient
of agreement for multiple observers (six) for each cat-
egory was computed. Here a total of 18 values for kappa
were computed. Details about the methodology can be
found in Fleiss and Davies [14, 15]. A κ -value greater
than 0.8 is considered almost perfect agreement [16].

Table 1 Annotated tissue elements

Vital tumor elements

1. Blastema

2. Stroma

3. Epithelium

4. Anaplasia

Chemotherapy-induced changes

5. Necrosis

6. Bleeding

7. Regression

Normal renal tissue

8. Glomeruli

9. Tubules

Extra renal tissue

10. Fat

11. Mesenchyme

12. Vessels

13. Nerves

14. Lymph nodes

Adrenal gland

15. Adrenal cortex

16. Adrenal medulla

Other

17. Urothelium

18. Nephrogenic rests

19. Background

Fig. 1 Annotated histopathological features of WT a.
a HE stained slide scanned at a 41x equivalent magnification (resolution 0.24 μm/pixel)
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The statistical analysis was performed in R environment
[17].

Results
Study population
Twenty WSIs were randomly selected from the total
scanned series of 1472 WSIs. These 20 slides were de-
rived from the resection specimens of 20 WT patients
with a total of 22 tumors classified according to the
SIOP-2001 and the Umbrella SIOP-RTSG 2016 histo-
logical classification [5]. The majority was diagnosed
with a mixed- or regressive type WT (7 cases each, total
of 63.6%) which approximates the histological distribu-
tion known from larger cohorts [18]. Table 2 shows an
overview of the patient characteristics and tumor types.
The mean age at the time of histological diagnosis was
47.5 months (SD 0.47). Contrary to larger cohorts, this
cohort shows a larger percentage of females (70.0%) and
no epithelial-type tumors, most likely due to the small
sample size and its resulting bias.

Interobserver variability
The pairwise interobserver agreement between all inex-
perienced and experienced observers ranged from 0.845
to 0.950, Table 3. The interobserver variability estimated

of each histological element separately showed all κ-
coefficients being > 0.827, Fig. 2. The tumor elements
relevant for classification (i.e. blastema, epithelium,
stroma and chemotherapy-induced changes) had an in-
terobserver agreement that ranged from 0.985 to 0.994.
Adrenal gland elements had a slightly lower agreement
with a κ statistic of respectively 0.827 and 0.879 for ad-
renal medulla and adrenal cortex.
We were not able to assess a κ statistic of the WT

component ‘anaplasia’, since no (diffuse) anaplasia was
identified in the selected WSIs by both the inexperi-
enced and experienced observers.

Discussion
The results suggest that trained, inexperienced ob-
servers, such as medical students, in the histopatho-
logical annotation of WT components and non-tumoral
elements may help in the classification of histological el-
ements. This information can be used for the develop-
ment of diagnostic algorithms. However, this does not
mean that experienced pathologists can be replaced by
inexperienced observers, even after training.
The initial selection (annotation) is a time-consuming

process, and trained students could potentially aid in the
development of large annotated datasets to train diag-
nostic algorithms for pediatric tumors. The vast majority
of annotations in this study showed a very good agree-
ment, however fine-tuning and corrections by an expert
pediatric pathologist remain essential to train the model.
The three vital tumor elements of WT; stroma, blas-

tema, and epithelium, are of great importance in the risk
stratification of WTs. Pathologists determine the per-
centage of each category by estimating the integrated
relative contribution to the total vital tumor area of all
slides. After pre-operative chemotherapy, the assessed
percentage of blastema in the remaining vital part of the
tumor, has a direct consequence for the treatment of the
patient. Central review has shown that the interobserver
variability, even among experienced pathologists, might
lead to moderately reproducible values, as analysis is
based on eyeballing and percentages are not formally
calculated. Hermsen et al. developed a deep-learning al-
gorithm for renal tissue which showed to be capable of
very precise segmentation of specific structures (e.g.
glomeruli, tubules) of whole nephrectomy specimens [7].
The good interobserver agreement in our study shows
that inexperienced observers are able to learn to identify
the different histological elements of WT.
The three elements representing therapy effect do also

influence risk stratification and treatment regimen, simi-
lar to vital tumor elements. This is especially the case in
(near) complete necrosis, where no postoperative
chemotherapy is required, or in tumors with 65–70% re-
gression and a dominant blastemal component in the

Table 2 Patient characteristics and tumor classification

Patient characteristics (n = 20)

Age in months at time of diagnosis, mean (SD) 47.5 (0.47)

Male gender, n (%) 6/20 (30.0)

Right-sided WT localization, n (%) 11/20 (55.0)

Primary resection, n (%) 2/20 (10.0)

Lymph node metastases, n (%) 2/19 (10.5)

Tumor classification (n = 22) n (%)

Tumor typea, b

Low Risk

Completely necrotic 2 (9.1)

Intermediate risk

Non-anaplastic variantsc 2 (9.1)

Epithelial type –

Stromal type 1 (4.5)

Mixed type 7 (31.8)

Focal anaplasia 1 (4.5)

Regressive type 7 (31.8)

High risk

Blastemal type 1 (4.5)

Diffuse anaplasia 1 (4.5)
a WT stratification according to the Nephroblastoma Umbrella SIOP-RTSG 2016
pathology guidelines [5]. b N = 22 due to presence of multiple (two) tumors in
two cases, which are classified individually. c In primary nephrectomy
cases only
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vital tumor area, which may or may not end up in the
high-risk group [19]. All three therapy effect elements
showed satisfying interobserver agreement in our study.
The discrepancies between observers were mostly re-
lated to the distinction of vital stromal tissue from pau-
cicellular areas of regression. While cellularity and
relationship to other vital tumor components or to other
areas with regressive features may give clues to the cor-
rect classification; this distinction is difficult, even for ex-
perienced observers [6]. However, this did not lead to an
unsatisfactory interobserver variability, against the back-
ground of previous training sessions.Interestingly, the in-
terobserver variability of nephrogenic rests is, in line
with all other tissue components, remarkably good (κ
statistic 0.966). Nephrogenic rests are pre-malignant, ab-
normal residual clusters of embryonal cells of the devel-
oping kidney and can be located in the peripheral renal
cortex (perilobar nephrogenic rests) as well as within the
renal parenchyma (intralobar nephrogenic rests) [20].
These clusters can present similar architecture to vital
epithelial structures of WT and even, when hyperplastic,
show similarities to blastemal WT cells. These histo-
pathological similarities, together with the variable
localization of the nephrogenic rests, make recognition
even challenging for expert pathologists [21]. The
current high agreement might be explained by the fact
that in this study most areas that were classified as

nephrogenic rests by one of the experienced patholo-
gists, were classified as vital WT epithelium by the other
observers. This leads to low interobserver variability,
even while misclassifying this category with respect to
the opinion of the experienced observer, which is an in-
herent weakness of any interobserver variability study.
Additionally, nephrogenic rests were not present in all
slides, resulting in a low number of annotations. To
identify nephrogenic rests correctly, supervision by expe-
rienced pathologists is required. The data of the other
annotation categories were checked whether the high in-
terobserver agreement resulted from misclassification as
opposed to expert classification, but except for nephro-
genic rests, this phenomenon was not found for any of
the other tissue categories.
There are some limitations to this study. Firstly, only

20 slides have been used. However, as each slide approx-
imates 100 annotations, this does lead to a substantial
number (n = 1976) of annotations resulting in an inter-
observer agreement based on 1976 comparisons. Focal
nor diffuse anaplasia was present in the selected slides
and was therefore excluded from the analysis.
Another issue is the fact that annotations have initially

been set by one of the unexperienced observers, poten-
tially leading to selection bias. While this might have
been the case, the number of annotations and the equal
distribution over the various categories has ensured suf-
ficient representation of relevant images.

Conclusion
Inexperienced observers can be trained to recognize spe-
cific histopathological tumor and tissue elements with a
high interobserver agreement with expert pediatric pa-
thologists and among inexperienced observers. There-
fore, this study can serve as the basis for further
development of automated component analysis of pre-
treated WT by an ML-based algorithm, which may lead
to more accurate and reproducible risk group classifica-
tion of WT [7].

Abbreviations
WT: Wilms tumors; AI: Artificial Intelligence; ML: Machine learning;
WSIs: Whole slide images; SIOP: International Society for Pediatric Oncology;
HE-slides: Hematoxylin and Eosin stained slides; Κ: Kappa

Table 3 Pairwise agreement κ between observers (approximate significance) a

P1 P2 S1 S2 S3 S4

P1 .948 (0.005) .938 (0.006) .928 (0.006) .944 (0.005) .877 (0.008)

P2 .948 (0.005) .928 (0.006) .929 (0.006) .938 (0.006) .866 (0.008)

S1 .938 (0.006) .928 (0.006) .915 (0.007) .921 (0.006) .872 (0.008)

S2 .928 (0.006) .929 (0.006) .915 (0.007) .950 (0.005) .845 (0.009)

S3 .944 (0.005) .938 (0.006) .921 (0.006) .950 (0.005) .866 (0.008)

S4 .877 (0.008) .866 (0.008) .872 (0.008) .845 (0.009) .866 (0.008)
a P1 and P2: experienced observers (pathologists); S1, S2, S3 and S4: inexperienced observers (trained medical students)

Fig. 2 Interobserver agreement per annotated tissue element for all
six observers
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