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Abstract: Pisum sativum L. ssp. arvense, is colloquially called tirabeque or mangetout because it is
eaten whole; its pods are recognized as a delicatessen in cooking due to its crunch on the palate
and high sweetness. Furthermore, this legume is an important source of protein and antioxidant
compounds. Quality control in this species requires the analysis of a large number of samples using
costly and laborious conventional methods. For this reason, a non-chemical and rapid technique
as near-infrared reflectance spectroscopy (NIRS) was explored to determine its physicochemical
quality (color, firmness, total soluble solids, pH, total polyphenols, ascorbic acid and protein content).
Pod samples from different cultivars and grown under different fertigation treatments were added
to the NIRS analysis to increase spectral and chemical variability in the calibration set. Modified
partial least squares regression was used for obtaining the calibration models of these parameters.
The coefficients of determination in the external validation ranged from 0.50 to 0.88. The RPD
(standard deviation to standard error of prediction ratio) and RER (standard deviation to range) were
variable for quality parameters and showed values that were characteristic of equations suitable for
quantitative prediction and screening purposes, except for the total soluble solid calibration model.

Keywords: mangetout; pea pod; near-infrared reflectance spectroscopy; quality parameters

1. Introduction

Vegetable proteins are appearing as a sustainable source for human consumption [1].
Demand for protein is likely to increase significantly over the next few decades to keep pace
with a growing population, which is projected to reach nearly ten billion by 2050 [2]. The
trend of animal protein consumption is increasing in recent decades [3,4], with production
of animal source foods responsible for a significant proportion of global greenhouse gas
(GHG) emissions, water consumption and land use [5]. However, the proportion of protein
consumption that the World Health Organization recommends is 75% vegetable and 25%
animal [6]. In this context, legumes, including soybeans, peanuts, beans, peas, fava beans
and lentils, among others, have a higher protein content than most plant foods and about
twice the protein content of cereals [7]. The high protein content of legumes may be related
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to their association with nitrogen-fixing bacteria in their roots, which converts the unusable
nitrogen into ammonium that is used for protein synthesis [8].

At present, the consumer demands new products on the supermarket shelves and
is also attracted by local markets and products. A segment of the population considers
itself a green consumer [9], in its different variants, and values healthy and quality foods.
Legumes, for all the above exposed, satisfy the current market trends [10].

Several species have been the subject of research for the diversification of vegetables
in the agricultural system of the province of Almería (Southeast Spain), with more than
32,000 hectares of greenhouses [11], more than 60% of cultivated vegetables belonging to
the Solanaceae family. The species tested to diversify these horticultural crops are sweet
cucumber, berries, pitahaya, passion fruit, fig tree and a wide range of legumes, among
some of them Pisum sativum L. ssp. arvense, colloquially called tirabeque or mangetout [12].
This species is recognized as a delicatessen in cooking due to its crocanti on the palate
and high sweetness. Whole mangetout pods are cooked and eaten, this being possible by
the absence of “parchment” in the pod walls, hence its pod is indehiscent. The external
appearance of pods, particularly their color, is also of great importance when considering
the fruits destined for fresh products.

Previous studies have also revealed the nutritional potential of mangetout, not only for
its protein content but also for its content of total soluble solids and antioxidant compounds
such as polyphenols, ascorbic acid, fiber, phytoprostanes and phytofurans [12–14].

Overall, the methodology used for the determination of phenolic compounds and
ascorbic acid content is based on spectrophotometric and chromatographic techniques;
however, these techniques require expensive equipment and usually use hazardous and
pollutant reagents [15,16]. Another relevant method includes colorimetric and titration
measurements, since it represents a relatively simple method for measuring total phenolic
compounds and ascorbic acid content, respectively.

The need to carry out screening in breeding programs, quality controls, traceability
studies and/or obtaining rapid information for labelling in a large number of samples using
conventional methods, leads to high costs, labour input and delays in the rapid decision
making. For this reason a non-chemical (producing no chemical waste) and rapid technique,
near-infrared reflectance spectroscopy (NIRS), which has been successfully applied in vari-
ous fields from life sciences to environmental issues, is explored here to screen quality in
mangetout pods [17]. Near-infrared spectroscopy is a technique that uses the radiation
absorbed by a set of samples in the region from 780 to 2500 nm (near-infrared region-
NIR spectroscopy in combination with chemometric analyses can be used for analysis of
numerous components (protein, carbohydrates, carotenoid, minerals, glucosinolates, phe-
nolics) and parameters of the sample (firmness, Brix, acidity, color) to be analyzed [18–23].
NIRS depends on the number and type of C-H, N-H and O-H bonds in the material being
analyzed, then spectral features are combined with reliable compositional or functional
analyses of the material in a predictive statistical model. This model is then used to predict
the composition of new or unknown samples [24].

Recently, the use of NIRS models for predicting the quality of vegetables has been
reported, several of which have addressed zucchini [19,20], pepper, rocket leaves, blackber-
ries [16,21,22] and Ethiopian mustard leaves [23], among others. The seed quality of various
legume species has also been analyzed using NIRS such as lentils [25], chickpeas [26] and
pea accessions from different germplasm collections [27,28]. Other studies have focused on
predicting the sensory quality and maturity of peas [29,30] using NIRS. To the best of our
knowledge, there is no research that predicted the quality in mangetout pods.

NIRS calibration models have been developed using a variety of linear regression
approaches, including modified partial least squares regression (MPLS). The modified
partial least squares (MPLS) is an improved version of traditional PLS that was developed
by Shenk and Westerhaus [31]. The MPLS procedure copes more effectively with non-
analyte interference in multicomponent determinations. This regression approach is a
soft-modeling method for generating predictive models when the factors are many and
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very collinear. It allows us to develop a model that is then evaluated on external samples to
estimate the predictive ability of the model. The mathematical procedure’s end goal is to
decrease the large amount of spectral data points (1050 data points from 400 to 2500 nm
wavelength range, every 2 nm) and remove the correlation presented by neighboring
wavelengths. As a result, the model developed only takes into account the most significant
factors, with the “noise” encapsulated in the less important factors, hence the accuracy of
NIRS analysis is improved.

At present, the purpose of the producers and the Andalusian Administrations involved
in the cultivation of mangetout is to apply for a “Protected Geographical Indication” (PGI)
for the Dalías Valley (Almería, Southeast Spain). This European Indication distinguishes
the quality attributes of the products grown in a certain region, and the NIRS technique
is a suitable tool that could contribute quickly and accurately to verify the quality of
the productions.

The objective of this paper was to investigate the feasibility for measuring physico-
chemical quality parameters (color, firmness, total soluble solids, pH, total polyphenols,
ascorbic acid and protein content) of mangetout pods by means of VIS-NIRS. For this
purpose, different cultivars of mangetout grown under organic cultivation and two fertiga-
tion regimes were tested to generate the highest variability for the development of NIRS
prediction models.

2. Material and Methods
2.1. Plant Material

The vegetal material consisted of a local landrace (germplasm maintained by local
growers in Almería Province, Southeast Spain) and 7 commercial cultivars of mangetout
(Figure 1, Table 1).
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Figure 1. Pea pods of the different cultivars of mangetout analyzed. From left to right: Local
landrace (a), AR-24007 (b), Capuchino (c), Tirabeque IS (d), Tirabí (e), Pea Zuccola (f), Pea Delikata (g)
and Bamby (h).

Table 1. Cultivars, companies and growth habit of mangetout used in this study.

Cultivars Companies Growth Habit

Local landrace Growers production Indeterminate climbing
AR-24007 Ramiro Arnedo Indeterminate climbing
Capuchino Batlle Indeterminate climbing
Tirabeque IS Intersemillas Indeterminate climbing
Tirabí Fitó Indeterminate climbing
Pea Zuccola Tozer Determinate climbing
Pea Delikata Tozer Determinate climbing
Bamby Gautier Deterninate postrate

Edible pods of Pisum sativum L. spp. arvense (tirabeque or mangetout) were grown
in an organic greenhouse of 800 m2, at Instituto de Investigacion y Formacion Agraria y
Pesquera (IFAPA) Center “La Mojonera” (36◦48′ N, 2◦41′ W; altitude 142 m). The crop
(Figure 2) was carried out according to European ecological regulations [32]. The crop cycle
took place between October 2020 and March 2021. Two treatments, T100 (100% fertigation
treatment) and T50 (50% of water and fertilizers applied), were arranged in a randomized
complete block design with 3 replicates, for each cultivar and fertigation treatment, being
the planting density of 4 plants per m2 [13]. T100 consisted of water and fertilizer provided
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according to fertigation management. The fertigation treatments allowed us to have a
larger number of samples with physicochemical variability (different qualities) to develop
NIRS predictive models.
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Figure 2. Detail of flower, leaves (left up) and pod (left down) of mangetout. Panoramic view of
field trial (right).

A random monitoring of disease and pest symptoms was conducted weekly. In T100,
the consumption of irrigation water was 100 L m−2, applying ecological fertilizers so that
the average nutrient solution reached 2.3 mS cm−1. Pods were harvested when reached
standard commercial sizes.

2.2. Physicochemical Parameters

The parameters considered to assess the physical quality in mangetout fruit were
firmness and skin color, whereas the parameters of chemical quality were total soluble
solids content, pH, total vitamin C, total polyphenol content and protein content. All these
characters were determined on the fruit of fresh mangetout except the protein content. For
each cultivar (8), treatment (2) and replicate (3), three samples were used. Each sample was
composed of 5 pods from 3 plants selected at random, which were then averaged (n = 144).

2.2.1. Firmness

Texturometer XTPlus (Texture Analyzer, Surrey, UK) was used to obtain pod firmness
(Figure 3). Shear force was measured by the Warner-Bratzler test. The pod was cut
perpendicular with a Warner-Bratzler blade at 1 mm s−1 during 5 s. The result was
expressed in Newton (N).
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2.2.2. Color

CM-700d Konica Minolta portable colorimeter was used. Chroma and Hue angle were
measured externally, in two different pod locations, in the central plane.

2.2.3. Total Soluble Solids and pH

The soluble solid content (TSS) of the pods was obtained through measurement with
a Smart-1 digital refractometer (Atago, Japan) (Figure 3), and the previous sample was
homogenized for 30 s at 700 Braun CombiMax. The result was expressed in Brix. The pH
was obtained by automatic Metrohm 862 Titrosampler (Metrohm, Riverview, Florida, USA)
(Figure 3)

2.2.4. Total Polyphenol Content

In total, 10 g of the pods was homogenized with 10 mL of ethanol in PT3100 Polytron
(Littau, Switzerland) and then centrifuged for 10 min at 4 ◦C in J2-21M/E Beckman (Fuller-
ton, CA, USA). The pellet was resuspended in 10 mL 70% methanol in water (v/v) and
centrifuged again. Finally, the supernatant was diluted with 25 mL of 70% methanol. This
extract was used to determine the TPC according to the Folin–Ciocalteu procedure [33].
In total, 200 µL of the extract, 1 mL of Folin–Ciocalteu solution (diluted 1:10 in water)
and 800 µL of Na2CO3 (7.5%) were mixed vigorously, then the mixture was incubated
in the dark at room temperature. After 1 h, absorbance at 765 nm was determined on
ThermoSpectronic (Thermo Fisher Scientific, Waltham, MA, USA. The quantification of
TPC was expressed in Gallic acid equivalents (mg GAE kg−1 Fw).

2.2.5. Vitamin C

The reference values for ascorbic acid content (AAC) were obtained using the iodine
titration method by means of an automatic Metrohm 862 Titrosampler [34]. In total, 5 g of
sample juice was mixed with distilled deionized water until reaching 50 g of final weight,
mixing with 2 mL of glyoxal solution (40%). We proceeded to a brief stirring briefly and
5 min of rest. Once 5 mL of sulfuric acid (25%) was added, it was titrated with iodine
(0.01 mol L−1) to the end point (EP1). Pure ascorbic acid (AA) was used as an external
standard to determine the linearity of the method. For each standard solution, valuations
were performed in triplicate. The values of the regression equation and the regression
coefficient (r2 = 0.9998) were obtained. The ascorbic acid content was expressed as mg
100 g−1 fresh weight (fw).
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2.2.6. Protein Content

The nitrogen (N) content of the dried and ground pod samples was determined by the
Kjeldahl method using a distillation apparatus (k314, Büchi Labortechnik GmbH, Essen,
Germany) and then converted to protein content by multiplying it by 6.25. The protein
content was expressed as g 100 g−1 dry weight (dw).

2.3. Statistical Analysis

Analysis of variance (ANOVA) was used to compare differences among treatments for
total marketable yield. Previously, normality and homoscedasticity were tested using the
Shapiro–Wilk and Levenne tests, respectively. For these analyses, Fisher’s least significant
difference (LSD) test was used to compare the treatments, using the 5% level of significance.
Data were analyzed using the Statistical Package for the Social Sciences (SPSS) 24.0 software
package (LEAD Technologies, Inc., Chicago, IL, USA).

2.4. VIS-NIRS Analysis

Six replicate spectra were recorded for each sample (n = 144) and the average of the
spectra was calculated. The samples were lyophilized using freeze-drying equipment
(Telstar LyoQuest, Terrassa, Spain), then ground in a mill (Janke & Kunkel, model A10,
IKA®-Labortechnik) for about 20 s to pass through a 0.5 mm screen and stored at −80 ◦C
until analysis. The samples were freeze-dried to eliminate the strong absorbance of water in
the infrared spectral region, which overlaps with important bands of nutritional compounds
that are present in low concentration. Samples were placed in the NIRS sample holder
(3 cm diameter) until it was 3

4 full (weight∼= 3.50 g) and were scanned (Spectrometer Model
6500 Foss-NIRSystems, Inc., Silver Spring, MD, USA). Their NIR spectra were acquired
over a wavelength range from 400 to 2500 nm (VIS + NIR regions) at 2 nm intervals.

Principal component analysis (PCA) was used to detect and remove possible spectral
outliers (spectra with a standardized Mahalanobis distance (H) from the mean spectrum of
the population greater than 3) [35].

Then, laboratory values were added to the spectra files. The reference values were
plotted as the dependent variable and the predicted NIRS values plotted as the indepen-
dent variable. The raw optical data (as log 1/R, being R = reflectance) or first or second
derivatives of the log 1/R data, with several combinations of derivative (gap) sizes and
segment (smoothing) were used to develop calibration equations [36,37]. Modified partial
least squares was used as regression method to correlate the spectral information (raw
optical and the different spectral treatments) of the samples and the quality components.
The applied pre-treatments to correct baseline offset due to spectral dispersion effects
(differences in particle size between samples) were standard normal variate and detrending
(SNV-DT) transformations.

2.5. Cross-Validation

Cross-validation is an internal validation method [38] and is useful because all samples
can be used to perform the calibration equation without the need to maintain separate
calibration sets and validation [39]. The method involves dividing the calibration set into M
segments (six) and calibrating M times, each time assessing a different part of the set of cal-
ibration (1/M) [40]. This number was proposed by WinISI software (Infrasoft International,
Port Matilda, PA, USA), five groups being used as the calibration set and then tested on the
remaining samples, performing a validation. This process continued until each group of
the six was used as a validation group. WinISI software uses principal component analysis
as a tool for selecting samples (spectra) to establish the calibration and validation groups.
Thus, both groups comprised samples representative of the whole spectral variability of
the population with similar mean and standard deviations for each trait.

Thus, cross-validation was conducted on the calibration set to establish the optimum
number of terms to be used in building the calibration equations and to identify spectral (H)
or chemical (T) outliers. “T” outliers are samples with high residuals when predicted by the



Sensors 2022, 22, 4113 7 of 19

model build in the cross-validation. T values of greater than 2.5 are considered significant
and those NIR analyses which have large T values may possibly be outliers. The H outlier
identifies a sample that is spectrally different from other samples in the population and has
a standardized H value of greater than 3.0. The outlier elimination pass was set to allow
the software to remove outliers twice before completing the final calibration [41].

The performances of the different calibration equations obtained were determined
from cross-validation. Thus, the prediction ability of the equations obtained for each
quality component was determined on the basis of two mathematical relationships, which
are the standard error of cross-validation (SECV) [42] to standard deviation (SD) ratio
(RPD = relative percent difference).

2.6. External Validation

To evaluate the precision and accuracy of the equations obtained in the calibration
models, an external validation procedure in 30 independent samples was completed. Thus,
having ordered the sample set by spectral distance using the CENTER algorithm (Winisi),
the 30 samples forming the validation set were selected by taking approximately 1 of every
5 samples in the final 144 sample set. The calibration set thus comprised the remaining
114 samples.

The statistical methods applied in this study included the coefficient of determination
calculated in cross-validation (R2 CV) and external validation (R2 V), the root mean square
error of calibration (RMSEC), the root mean square error of cross-validation (RMSECV)
and the root mean square error of prediction (RMSEP). Moreover, the ratio of prediction
to deviation (RPD), which indicated the correlations between the SD of the standard wet
chemical analyzed data and prediction data by NIRS model (RMSECV or RMSEP) [42],
was applied to estimate the prediction ability of the model.

NIR models can be classified depending on the R2 value from the external valida-
tion [43] as: models (0.26 < R2 v < 0.49) with a low correlation; models (0.50 < R2 v
< 0.64) that can be used to discriminate between low and high values of the samples;
models (0.65 < R2 v < 0.81) that can be used for rough predictions of samples; models
(0.82 < R2 v < 0.90) with good correlations; and models (R2 v > 0.90) with excellent precision.

The RPD statistic demonstrates how well the calibration model predicts data. The RPD
value >3 is desirable for excellent calibration equations, while equations with an RPD <1.5
are unsuitable, according to the guideline used for defining performance calibrations [43].
With regard to the range error ratio (RER), values in the 4 to 8 range indicate the ability
to discriminate between high and low values, and RER values from 8 to 12 establish the
ability to predict quantitative data [44,45].

The mathematical expressions of these statistics are as follows:

RPD = SD

〈[(
n

∑
i=1

(yi − ŷi)
2

)
(N − K− 1)−1

]1/2〉−1

where yi = lab reference value for the ith sample; ŷ = NIR measured value; N = number of
samples; K = number of wavelengths used in an equation; and SD = standard deviation.

The coefficient of determination in the cross-validation (R2):

R2 =

(
n

∑
i=1

(ŷ− y)2

)(
n

∑
i=1

(yi − y)2

)−1

where ŷ = NIR measured value; y= mean “y” value for all samples; yi = lab reference value
for the ith sample.

RER = range

〈[(
n

∑
i=1

(yi − ŷi)
2

)
(N − K− 1)−1

]1/2〉−1
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where yi = lab reference value for the ith sample; ŷ = NIR measured value; N = number of
samples; and K = number of wavelengths used in an equation.

3. Results and Discussion
3.1. Marketable Yield

Figure 4 shows the total marketable yield of the diverse varieties in response to different
fertigation treatments which ranged from 0.54 to 2.49 kg m−2. Significant differences were
found between the different cultivars of mangetout, the most productive being the varietal
types of the indeterminate climbing growth plant, corresponding to the local Landrace (T50
2.49 kg m−2, T100 2.44 kg m−2), AR-24009 (T50 2.22 kg m−2, T100 2.05 kg m−2) and Tirabeque
IS (T50 1.76 kg m−2, T100 2.05 kg m−2), followed by the varieties Tirabí (T50 1.57 kg m−2, T100
1.58 kg m−2), Pea Zuccola (T50 1.42 kg m−2, T100 1.34 kg m−2), Capuchino (T50 1.37 kg m−2,
T100 1.60 kg m−2), Pea Delikata (T50 1.37 kg m−2, T100 1.34 kg m−2) and lastly the Bamby
variety which shows the prostrate growth (T50 0.57 kg m−2, T100 0.54 kg m−2).
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The production data obtained in the field trial for most of cultivars were higher than
those described previously in mangetout by García-García [46] (0.55–0.65 kg m−2), and
similar to those indicated by Estrada and Ibáñez [47] (1.5–2 kg m−2) in Mediterranean
greenhouse conditions.

Increasingly, the use of organic production regulations [48] as well as appropriate
fertigation management play an important role in enhancing crop quality and economizing
water [13] according to the Sustainable Development Goals (SDGs) by 2030. In this regard,
previous studies have showed that yield and quality of snap pods can be significantly
affected by different compositions of fertilization [49,50] and by different doses of water
in the fertigation solution [13,51]. In order to obtain the highest possible physicochemical
variability to develop NIRS predictive models, two fertigation treatments and different
mangetout cultivars were used.

3.2. Physicochemical Profiles

The samples analyzed varied in all variables as shown by the range and coefficient of
variation (CV) of the calibration set (Table 2). The highest values for the CV were observed
for C* chromatic value, firmness, ascorbic acid content and total polyphenol content (>20%),
possibly due to the different fertigation treatments and varieties used.



Sensors 2022, 22, 4113 9 of 19

Table 2. Mean, range and standard deviation (n = 144) for quality parameters of the mangetout
samples used in this study.

Parameters Mean Range SD

C* 27.87 15.20–35.58 6.15
h* 109.46 105.13–112.91 1.49
Firmness (N) 43.62 20.59–67.52 12.74
TSS (Brix) 7.53 6.08–8.85 0.65
pH 6.80 5.99–7.28 0.27
Protein (g 100 g−1 dw) 23.48 11.50–29.75 3.02
AAC (mg 100 g−1 fw) 43.82 19.75–68.86 10.82
TPC (mg GAE kg−1 fw) 389.09 202.30–685.05 111.52

Based on the results of this study, the chromatic parameters (C* and h*) varied from
15.20 to 35.58 and 105.13 to 112.91, respectively. The h* values correspond to the color green.
Green color of fresh pods is one the key factors for deciding the commercial acceptance of
snap bean as a fresh vegetable. Similar results have been previously found in snap pods
with values ranged from 107 to 111 for h* parameter, but a narrow variation range (27 to
33) for C* chromatic parameter [13,52,53].

Texture is a quality attribute in mangetout fruits very important for consumers since its
singular quality of edible crunchy pod is highly appreciated. From our study, the firmness
values in mangetout pods ranged from 20.59 to 67.52 N. Although information is lacking
for the comparison of firmness with other mangetout cultivars from the literature, our
previous research results showed that mangetout “Tirabí” showed values included in the
range mentioned above [13].

Vitamin C is essential in both plants and animals. The main suppliers of this vitamin
in the diet are fruits and vegetables [54]. Legumes are considered an important source of
vitamins, especially rich in ascorbic acid content in the pods [55]. Considerable variation
was found for AAC which ranged from 19.75 to 68.86 mg AA 100 g−1 fw in mangetout
pods. Previous studies revealed AA content within the range of AAC showed in this work
for three pea varieties (26 to 31 mg AA 100 g−1) [56]. Our findings are also in agreement
with those of Rickman et al. [57] and Avilés and Cruz [58], who described AA values of
40 and 27 mg 100 g−1 fw in peas and pea pods, respectively. Mangetout pods can be
considered a rich source of vitamin C, since orange and lemon contain 30–50 mg of ascorbic
acid 100 g−1 fw [54].

The pH of foods is an important parameter related to the taste perceived by consumers.
In our study, the pH ranged from 5.99 to 8.85. The values obtained agree with previous
studies on legumes [59–61], but lower than those obtained in French bean pods (5.84–5.96)
by Segura et al. [62].

TSS is another taste quality determinant [63], and cultivars with higher TSS have
higher taste quality. Mangetout pods are rich in TSS content (6.29–8.83 Brix) in comparison
with other legume pods; thus, cowpea accessions from different Mediterranean countries
showed lower sweetness (range 5.07–7.57 Brix) [55] in relation to our results.

On the other hand, the fresh mangetout pod TSS content in our study was lower
compared to those previously reported in the scientific literature [12]. This previous work
revealed that the TSS of fresh pods ranged from 9.1 to 11.3 under specific fertigation
treatments demonstrating that the environmental factors such as available water had a
highly significant effect on this quality parameter. According to the Brix reference values of
the main greenhouse vegetables, the mangetout pods analyzed showed a higher sweetness
than California green pepper fruits (4.03–6.31 Brix) and similar to red California pepper
fruits (7.37–8.85 Brix) [64].

The presence of polyphenols in plants is very varied, depending on the plant species,
variety, part of the plant, growing conditions, etc. More than 8000 phenolic compounds
with a very varied structure have been identified from simple molecules, such as phenolic
acids and complex polymers of high molecular mass such as tannins [65]. In our study,
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mangetout exhibited higher total polyphenol content (202.30 to 685.05 mg GAE kg−1 fw)
that those reported for other snap pods, such as the French bean with 300 mg GAE kg−1

fw [46]. Our results agree with those of Devi et al. [66] who found a wide variation range
(126.3–1286.3 mg GAE kg−1 fw) in pea pods from 22 different genotypes. On the other
hand, the consumer increasingly appreciates fruits with antioxidant properties due to
the health benefits. A source of phenolic compounds is identified as a chemopreventive
agent since it eliminates free radicals and has a preventive effect on degenerative diseases,
among others [67]. Mangetout pods have a high potential to be used in the development of
functional foods or nutraceutical products and unlike pea pods they would not require any
processing as the whole pod is edible.

Our results showed a wide variability for protein content (11.50–29.75 g 100 g−1 dw)
and our results agree with those of Hood-Niefer et al. [68] (24.4 to 27.5 g 100 g−1 dw), but
are higher than the results obtained by Mateos-Aparicio et al. [69] (10.8 ± 0.3 g 100 g−1 dw)
in pea pods. Overall, in the pea, both the seeds (20.5–22.6%) and pods (13.37%) are a rich
source of protein [70]. A diet rich in vegetable protein is increasingly important nowadays
due to its health benefits and thus it is recommended that people reduce their consumption
of animal protein. In addition, pea pods have protein-denaturing properties that show
anti-inflammatory effects and anti-cholinesterase activity because of the strong antidiabetic
properties of peas [71].

3.3. VIS-NIRS Analysis
3.3.1. Raw Spectra on Mangetout

Raw spectra of the calibration set samples are shown in Figure 5. A remarkable
variability in the VIS region (400–850 nm) absorbance spectra was observed because of pig-
ments. The peak around 640–700 nm illustrated the color transition of pea pods correlated
with the chlorophyll content that absorbs radiation in this region [72].
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Absorption bands in the region from 1300 to 2000 nm have been assigned to the third
overtones of C-N (amines); C=O (ketones, amino acids); and C-O (long-chain fatty acids,
phenols). From 2200 to 2400 nm, absorptions of C-N (primary amines) and C-O (alcohols)
have been assigned to the third overtones of these compounds, while in the same region,
C-H (asymmetrical deformation) and C-O (symmetrical vibrations) have been assigned to
the second overtones of these molecules. Finally, the second overtones of C-H deformation
and C-N (amides) have been reported in the 2400–2500 nm region [73].

3.3.2. Second Derivative Spectra of Mangetout

The second derivative and SNT-DT (standard normal variate and de-trending) algo-
rithms to the raw spectra led to a substantial correction (Figure 6) of the baseline shift
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produced by differences in path length and particle size. The increase in the complexity of
the derivative spectra resulted in a clear separation between peaks which overlap in the
raw spectra.
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Absorption maxima bands (λmax) were observed between 400 and 700 nm (at 444,
546 nm and 670 nm) in the spectra attributed to pod pigments that absorb in visible
region (Figure 6). From all pigments that can be found in plants, chlorophylls are used for
photosynthesis (“a” and “b”), which absorb preferentially violet-blue light (400–500 nm)
and red light (600–700 nm), respectively [74].

Pigment–protein complex molecules could be responsible for some of the traits that
determine the VIS region at longer wavelengths. Thus, binding proteins in chlorophyll a/b
absorb in the 498–568 nm range [74] and red absorbing pigments, particularly chlorophyll,
give the fruit its green color [75,76].

In the region NIRS of the spectra, peaks at 1208 nm (attributed to a CH second
overtone), 1726 nm and 1762 nm (assigned to CH first overtone), 2308 nm and 2348 nm
(attributed to CH stretch and deformation in a CH2 group) were detected which are
related to lipids [77,78]. Other peaks located at 1210 nm corresponded to absorption by
OH groups in carbohydrates [79,80]. Other peaks at 1512, 2056 and 2174 nm related to
protein, specifically to NH stretch, NH stretch and amide II, and amide I and amide III,
respectively [78]. The last significant peaks were observed at 1436 and 2270 nm, these
wavelengths corresponding to the deformation of the OH + CO cellulose groups [79].

3.3.3. Calibration Development

Tables 3 and 4 show the summary of the statistics obtained from calibration, cross-
validation and external validation models in mangetout samples, respectively. The full
available visible region and near-infrared region (400–2500 nm) were used.

The coefficients of determination (R2) achieved in calibration were higher than those
found in external validation models for mangetout, as expected. The coefficient of deter-
mination for cross-validation (R2 CV), oscillated between 0.55 for pH to 0.92 for protein
(Table 3), whereas RPDcv values ranges from 1.50 for pH to 3.45 for protein.

Based on the R2 values of the external validation, the models were as follows [39]:
models that can be used to discriminate between low and high values of the samples
(0.50 m< R2 < 0.64), in our work the models developed for AAC and TSS; models that can be
used for rough predictions of samples (0.65 < R2 < 0.81), in our case the calibrations achieved
for C* and h* color parameters, firmness and pH; and models with good correlations
(0.83 < R2 < 0.90), these values corresponding with models obtained for total polyphenol
content and protein.
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The SEP values of the validation were lower than their respective SD, which indicates
that NIRS is able to determine these traits in mangetout.

Table 3. Calibration and cross-validation statistics of quality compounds for mangetout.

Parameters Range 1 SD 2 R2 3 SEC 4 R2 CV 5 SECV 6 RPDcv 7 Treatment 8 Cv

C* 15.20–35.58 6.35 0.87 2.24 0.81 2.78 2.28 2,5,5,2 0.22
h* 106.41–112.10 1.41 0.80 0.62 0.71 0.75 1.88 1,4,4,1 0.01
Firmness (N) 21.75–67.52 10.09 0.71 5.46 0.71 5.93 1.70 1,4,4,1 0.21
9 TSS (Brix) 6.29–8.83 0.65 0.93 0.18 0.68 0.39 1.66 1,4,4,1 0.08
pH 6.01–7.28 0.27 0.60 0.17 0.55 0.18 1.50 1,4,4,1 0.04
Protein
(g 100 g−1 dw) 15.69–29.75 2.80 0.97 0.48 0.92 0.81 3.45 2,5,5,2 0.13
10 AAC
(mg 100 g−1 fw)

19.75–64.40 10.89 0.79 5.02 0.56 7.16 1.52 1,4,4,1 0.24

11 TPC
(mg GAE kg−1 fw)

239.28–670.30 101.91 0.93 27.01 0.86 39.08 2.61 1,4,4,1 0.28

1 SD: Standard deviation; 2 R2: Coefficient of determination in calibration; 3 SEC: Standard error in calibration;
4 R2: Coefficient of determination in cross-validation; 5 SECV: Standard error of cross-validation; 6 RPDcv: Ratio
of the standard deviation to standard error of cross-validation; 7 Mathematical treatment; 8 Coefficient of variation;
9 TSS: Total soluble solids; 10 AAC: Ascorbic acid content; 11 TPC: Total polyphenol content.

Table 4. Reference values and external validation statistics of the NIRS calibrations for quality
compounds in mangetout.

Reference Values (n = 30) External Validation

Parameters Range Mean 1 SD 2 Rv2 3 SEP 4 RPDp 5 RER

C* 15.20–34.89 25.50 7.33 0.78 3.34 2.19 5.89
H* 107.40–111.71 109.71 1.24 0.68 0.56 2.00 6.95
Firmness (N) 24.45–67.20 40.48 12.51 0.65 7.34 1.70 5.96
6 TSS (Brix) 6.29–8.76 7.54 0.69 0.52 0.51 1.35 4.84
pH 6.22–7.20 6.83 0.22 0.50 0.14 1.57 7.00
Protein (g 100 g−1 dw) 17.22–29.5 24.95 2.18 0.88 0.68 3.20 14.89
7AAC (mg 100 g−1 fw) 22.71–63.47 45.69 8.82 0.50 8.82 1.50 7.03
8 TPC (mg GAE kg−1 fw) 250.89–570.21 360.89 80.37 0.84 29.46 2.72 10.84

TSS: Total soluble solids; AAC: Ascorbic acid content; TPC: Total polyphenol content; 1 SD: Standard deviation;
2 Rv2: Coefficient of determination in external validation; 3 SEP: Standard error of prediction corrected for bias;
4 RPDp: Ratio of the standard deviation to standard error of prediction (performance); 5 RER: Ratio of the range
to standard error of prediction (performance); 6 TSS: Total soluble solids; 7 AAC: Ascorbic acid content; 8 TPC:
Total polyphenol content.

According to the guideline used for defining performance calibrations [43] when this
ratio is greater than 3, the calibration equation is very significant, and this was reached
in our study for protein content; if RPD values range between 2.5 < RPD < 3, predictive
models are considered very good, in our case corresponding to the TPC model; while RPD
range between 1.5 < RPD < 2.5 predictive models are appropriate for screening purposes,
which was achieved for AAC, pH, firmness and C* and h* color parameter models.

Figure 7 shows the relationship between the predicted reflectance spectroscopy in the
near infrared (NIRS) and reference values for all parameters (color parameters (chroma *
and hue angle), firmness, total soluble solids, pH, protein content, ascorbic acid and total
polyphenol content) in the mangetout validation set samples.

In reference to RER (ratio of the range to standard error of prediction) coefficients, this
dimensionless parameter is also used to evaluate the predictive ability of NIRS equations,
in this work ranged from 4.84–14.89.

Prediction models for C*, h*, firmness, TSS, pH, AAC showed RER values within the
range from 4 to 8, which suggest the possibility of discriminating between high and low
values; while RER values in the range of 8 to 12 represent the possibility of predicting
quantitative data [44,45] which was achieved for protein and TPC predictive models.
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Figure 7. Predicted versus reference values for calibration and external validation for all parameters:
c* (a); h* (b); firmness (c); total soluble solids (d); pH (e); protein content (f); ascorbic acid (g); total
polyphenol content in the mangetout (h).

Previous works have demonstrated the validity of the NIRS technique in evaluating
the accuracy of pea single seed protein with R2 = 0.94 and RPD = 3.7 in external valida-
tion [28], and also for predicting soybean single seed protein content with Rval2 = 0.84 and
RPDval = 2.28 values [81].

The estimation of protein and total polyphenol content in common beans (Phaseolus
vulgaris L.) by NIRS has also been previously assayed by several authors reaching signifi-
cantly good results in general. Thus, the high R2 obtained ranged from 0.91–0.94 and RPD
values above 3.5 [82–85]. Other authors supported the validity of the NIRS technique in
similar approaches, with R2 and RPD values for firmness of 0.61 and 1.7, respectively, in
soybean single seed [82]. Wang [86] used NIRS to predict the total polyphenol content in
ground faba bean (Vicia faba L.), with an R2 of 0.79, RMSECV of 0.40 and RPD of 2.20, and
also for the determination of protein in ground faba bean seed powder with an R2 of 0.94.

It should be noted that the prediction accuracies in all of the above-mentioned studies
were comparable to those reported for mangetout in this study. To our knowledge, this is
the first article dealing with the use of NIRS to predict pod quality traits in mangetout.

Modified PLS regression was employed to reduce the spectral information of the
mangetout samples by creating a much smaller number of new orthogonal variables
(factors) which retain the essential information needed to predict the composition of
the samples.
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3.3.4. Modified Partial Least Squares Loadings for Quality Equations

The scores of the best models for all quality parameters were plotted by their first
MPLS loadings (Figure 8) to identify those areas within the spectral range where variance
had influenced the model fitting, to a lesser or greater degree, as well as the direction
(negative or positive).
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The region of the spectrum which most influenced the fitting of the model was the
visible segment between 480 to 700 nm. Thus, the contribution of chlorophyll (672 nm)
showed the highest weight on first MPLS loading [75] (Figure 8). Other chromophores
absorbing at 496 and 512 nm also participated in the equations. With respect to NIR region,
previous studies have shown the contribution of this region to predict color parameters for
species such as fresh Ginkgo biloba leaves [87], green-leafy species [88] or Sassafras tzumu [89].
Some plant chemical compounds (e.g., phenolics and flavonoids) respond to the stress and
environmental changes and correlate in a secondary way with the color parameters. The
characteristic bands of phenolics and flavonoids can be detected in wavelength regions
from 1415 nm to 1512 nm, 1650 to 1750 nm and from 1955 to 2035 nm in the MPLS loadings
for the color parameters (Figure 8) [90]. Furthermore, the color is caused by the reflection
of helicoidally stacked cellulose microfibrils that form multilayers in the cell walls of the
epicarp [91]. Thus, the wavelengths at 1932 nm (O-H stretching plus O-H deformation)
could be related to the cellulose of the pod tissues which can be observed in the MPLS
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loadings of the optimal calibrations for the color parameters (Figure 8). Others main NIR
contributions were those at 2284 nm (C-H stretching plus C-H deformation), 2300 nm
(stretching–bending of CH—CH2 bonds and C—O bonds) and 2348 nm (C-H combination
of methylene groups) [77]. In addition, absorption bands in the NIR region that influenced
the fitting of the models were found at 1212, 1388, 1412 and 1990 nm (associated with
glucides and water absorptions), and the region around 2072 nm (N—H bonds) associated
with protein.

4. Conclusions

This work has showed that genetic variability exists for the quality parameters ana-
lyzed in mangetout cultivars. Many of the traits analyzed are of economic interest (color,
firmness, protein content and antioxidant compounds). These new understandings could
be useful in selecting parents for breeding programs aimed at enhancing physicochemical
parameters that respond to the new trends market.

Moreover, the result of the present investigation explores the potential of NIRS to
simultaneously determine eight quality traits in mangetout, as an alternative to reference
methods. The measurements with the reference methods of most of these parameters are
expensive, have laborious protocols and require a long analysis time. Utilizing NIRS, every
2 min, we can analyze all the quality parameters of a sample. The results reveal that the
models allow an accurate quantification of protein and TPC and a rough screening method
of the samples for color parameters (c* and h*), firmness, AAC and pH.

The inclusion future of mangetout cultivars from different geographical origins and
segregant populations in the calibration models will allow us to increase the robustness of
the equations for these parameters.

The performance of the calibration model for TSS was lower than that obtained for
the other quality parameters in this work. The low variability among mangetout cultivars
used in this work (6.29–8.76 Brix) could be based on the lower accuracy of the calibration
model for TSS. An increase in both the number of samples and trait variation can be crucial
factors for improving the accuracy of this calibration model.

It is interesting to focus attention on firmness (shear force). Pod firmness is an excellent
indicator of pod quality, but its quantification is time consuming and not easily measured.
Pods must be harvested before they become tough and develop poor culinary acceptance,
even if it means sacrificing maximum yield. From this point of view, the use of NIRS
instead of a texturometer could be clearly advantageous.

Spectral ranges associated with the absorbance of chromophores, carbohydrates, water
and protein were used by MPLS regression for the model fitting of quality equations
in mangetout.
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