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Abstract

We have designed a real-time computer vision system, the Multi-Worm Tracker (MWT), that can 

simultaneously quantify the behavior of dozens of Caenorhabditis elegans on a traditional petri 

plate at video rates. Three traditional behavioral paradigms are examined using this system: 

spontaneous movement on food, where the behavior changes over tens of minutes; chemotaxis, 

where turning events must be detected accurately to determine strategy; and habituation of 

response to tap, where the response is stochastic and changes over time. In each case, manual 

analysis or automated single-worm tracking would be tedious and time-consuming, but the MWT 

system allows rapid quantification of behavior with minimal human effort. Thus, this system will 

enablelarge scale forward and reverse genetic screens for complex behaviors.

Since Caenorhabditis elegans was introduced as a model organism, a large number of 

mutants in genes that modulate easily-scored behaviors have been isolated in genetic 

screens. However, it has been challenging to manually screen for behaviors that unfold over 

long periods of time, that are difficult to score quickly and accurately by eye, or that 

manifest stochastically. Thus, there is a need for high-throughput automated techniques that 

can be used on such behaviors.

Individual actions performed by worms, such as reversals and turns, are relatively easy to 

detect. The key computational difficulty is that to accurately monitor a long-lasting behavior 

consisting of many individual actions, a huge amount of image data needs to be acquired 

and processed: each animal needs to cover enough pixels to allow accurate quantification 

and frame rates need to behigh enough to maintain identity and resolve fast behaviors.
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A variety of computer vision systems have previously been applied to C. elegans behavior. 

Systems that use motorized stages to follow individual worms at high resolution allow 

precise quantification of behavior1–3, but screening for stochastic behaviors is still highly 

labor- and time-intensive. Systems that monitor many worms simultaneously on a single 

plate4–6 use a two-step process: first, an experiment is run and a video is stored; then, image 

analysis software extracts behavioral parameters from the animals in view. Unfortunately, 

since storing high-speed high-resolution video is impractical, these systems use resolutions 

(~75 μm/pixel) and frame rates (3–5 frames per second) that make it difficult to accurately 

analyze a wide range of behaviors.

We therefore designed and built a tracking system that analyzes image data in real time to 

monitor many worms on a single plate, using commodity computer hardware and a high-

speed high-resolution camera. This allows automated behavioral analysis of C. elegans on 

an unprecedented scale, and should enable genetic screening for defects in complex worm 

behaviors.

Results

Accuracy and speed of automated tracking

The Multi-Worm Tracker (MWT) package consists of real-time image analysis software, the 

MWT, and offline behavioral parameter measurement software, Choreography, that together 

analyze the behavior of multiple worms on a single petri plate (Fig. 1a,b). The MWT 

provides low-level features including the position and outline of the animal. Choreography 

selects appropriate objects to analyze and computes additional features, such as direction of 

motion, that benefit from statistics that span the experimental session. Organism- or 

condition-specific behavioral parameters are computed using plugins for Choreography.

To test the ability of the system to perform image processing in real time, we recorded from 

a series of plates with increasing numbers of worms. Using a 3 GHz Core 2 Duo processor 

with a 4 megapixel, 30 Hz camera, essentially all frames were processed when 5–120 worms 

were present; the processing load from greater numbers of worms caused frames to be 

dropped (Fig. 1c). Post-processing with Choreography is typically 10–30× faster than real 

time. Taken together, the MWT and Choreography process image data at approximately 110 

megapixels per second, which is ~50 times faster than existing tools4,5 (~2 MPix/s; data not 

shown and G. Tsechpenakis, personal communication).

Although the MWT is designed to be used in real-time mode, we recorded 10 minutes of 

high-speed high-resolution video to disk as a reference data set that could be both scored 

manually and analyzed using the MWT. We used a plate that might be typical for high-

throughput screening (imperfect staging, some small worms present, imperfect lighting at 

edges, etc.), such that not all worms were suitable for analysis. Manual scoring yielded an 

average of 76 visible worms per frame, of which 20 were at least partially obscured by 

shadows at the edge of the plate, four were touching another animal, and 52 were 

unobstructed. The MWT found and tracked worms in all categories as well as a small 

number of shadows and other non-worm artifacts. We used Choreography to select worms 

that were suitable for analysis; ideally, it would pick the unobstructed animals and reject all 
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others. We tested different combinations of time and distance thresholds with several 

selection strategies, and found parameters that accepted a majority of animals manually 

annotated as suited for analysis, while rejecting all non-worms, all touching worms, and 

almost all worms obscured by shadows (Fig. 1d). We selected a combination of parameters 

(Fig. 1d, and Online Methods) that yielded 97.5% of selected worms suitable for analysis 

and used these for all future experiments.

To estimate the pixel-level error remaining after this selection process, a human expert 

segmented 37 worms by hand and found the total error rate to be 2.8% (1.0% of in-worm 

pixels were classified as background, and 1.8% extra background pixels were added to the 

true worms). These parameters allowed nearly all animals to be quantified at low density; at 

100 worms per plate the system quantified approximately half of the animals (Fig. 1e). 

Larger numbers of animals also increased the number of collisions, causing animal identity 

to be lost more quickly (Fig. 1f).

To estimate measurement noise, we assumed that worm behavior is predominantly slowly-

varying and thus high-order derivatives of parameters with respect to time are dominated by 

stochastic noise (Table 1). To see if reducing computational load was feasible, we 

subsampled our dataset in time and space to emulate slower and lower resolution cameras. 

Both pixel size and frame rate had major effects on apparent noise in the position and speed 

of animals (Fig. 1g,h). We therefore continued using our system at full speed and resolution.

Analysis of movement speed

C. elegans modulates its speed in response to a variety of stimuli including both acute 

insults and chronic environmental conditions such as presence of food. We first monitored 

basal movement rates of adult wild-type hermaphrodites on food. The process of putting a 

plate on the tracker involves temporarily removing the lid, and presumably changes 

temperature and humidity, induces mechanical vibration, and increases light levels. We 

observed, both by eye and with the MWT, that this process increased the worms’ movement 

speed, which then decended to a basal level after 10 minutes (Fig. 2a).

To assess the reproducibility of these results, we recorded from seven additional plates of 

wild-type worms (Fig. 2a) with an average of 27 worms tracked per timepoint per plate. 

Every plate showed approximately the same trend; monte carlo sampling of tracks suggested 

that plate-to-plate variability was approximately 60% larger than expected if all animals on a 

plate were independent, so we ran all experiments on several plates to average out this 

variability.

To explore which sensory modalities were responsible for the initial elevation in movement 

speed, we recorded from mec-4 mutants, which are defective in gentle touch response, and 

che-2 mutants which have defective sensory cilia and fail to chemotax. mec-4 responded 

similarly to wild-type; che-2 increased speed but returned to baseline much faster (Fig. 2b). 

Unexpectedly, a line of the wild-type strain (N2) recently obtained from the C. elegans 

Genomic Center also showed notable differences from the lab’s wild-type line (hereafter 

XJ1, to distinguish it). To determine whether the che-2 phenotype was a result of a 

chemosensory defect or was due to genetic drift in strains, we tested two additional 
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chemosensory mutants, osm-6 and tax-2. These phenocopied che-2 (Fig. 2b), indicating that 

a major portion of the initial increase in speed requires properly functioning ciliated sensory 

neurons. We also investigated whether the difference between wild-type strains was typical 

of variation found in the wild. We examined an extreme case by tracking other 

Caenorhabditis species, namely briggsae, remanei, and brenneri. All three species showed 

similarly elevated movement rates, but briggsae had a markedly slower return to baseline 

(Fig. 2c). Collectively, these tests demonstrate that the MWT is broadly suited for studying 

baseline locomotion in Caenorhabditis.

Quantification of body posture

The MWT captures postural information in addition to position. However, the accuracy of 

this information is limited by the small number of pixels per animal. To determine whether 

the available postural information is useful, we sought to replicate work demonstrating that 

principal component analysis (PCA) of the worm skeleton yields two major components, 

analogous to sine and cosine in circular motion, and that these components cycle as the 

worm moves7. We added a PCA plugin to Choreography and found that in our reference 

data set, the top two components explained over 75% of the variance in the worm’s posture 

and the top three explained 90%. During movement, posture followed a phase advance along 

a ring in the space of the first two principal components (Fig. 2d,e). When we observed 

worms on food after movement had returned to baseline, we found that the same principal 

components still explained a similar portion of the variance. However, the relationship 

between these components changed: the ring partially collapsed as movement returned to 

basal levels (Fig. 2f), suggesting that mechanisms that control worm posture during rapid 

locomotion are relaxed during grazing.

Manual annotation of C. elegans motion often uses body bends as an easily-quantified 

parameter; a body bend corresponds to an advance of π in phase. We compared distances 

and phase advance for ~1,300 short forward or backward motions detected by Choreography 

in our reference data set and found that wild-type worms needed 3.8 body bends to advance 

one body length (Fig. 2g). Omega turns (very deep bends) are also frequently quantified 

manually; we used postural information to obtain automatic detection with ~5% error rates. 

Omega turns occur prominently after reversals during taxis and escape behaviors, but the 

relationship on food is less well characterized. To detect reversals, we classified movement 

direction based on the propensity of worms to travel forwards; out of 6.2 worm-hours of 

tracks hand-annotated for movement direction, 1.7% was classified by Choreography as 

unknown and 0.20% was classified incorrectly. We then looked for omega turns that 

followed reversals and found a nearly linear dependence between reversal size and turn 

probability that was consistent across chemosensory and mechanosensory mutants (Fig. 2h). 

This suggests that the relationship may be generated by the animal’s motor program, not 

driven by sensory input.

Chemotaxis

C. elegans uses two strategies to navigate in chemical gradients: a random tumble strategy 

(klinokinesis), where worms pirouette (reorient) when a favorable chemical decreases8, and 

a weathervane strategy (klinotaxis) where worms traveling perpendicular to the gradient turn 
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up the gradient9. To assay chemotaxis, we seeded 1 μl of LB medium as a control and 1 μl of 

OP50 bacteria on either side of a plateand placed 5–10 worms in the center.

Within approximately three minutes, wild-type worms reliably reached the food spot (Fig. 

3a); without food, no spatial preference was observed (data not shown). Chemosensory 

mutants were also able to preferentially aggregate on food, perhaps because they, like wild-

type, are able to slow down when they reach food (10 and data not shown). We quantified 

pirouettes and found that wild-type and mechanosensory mutants regulated reversals as a 

function of direction while chemosensory mutants che-2 and osm-6 did not (Fig. 3b). tax-2 

was omitted from this assay because it retains considerable sensitivity to a subset of volatile 

odorants11.

We also conducted a salt chemotaxis assay with NaCl at the center of the plate. As 

previously reported9, wild-type animals traveling perpendicular to the attractant followed a 

path that curved with a bias towards the attractant, while chemotaxis mutants did not 

regulate their turning (Fig. 3c). Animals also clustered less tightly at the end of longer 

recordings. Consistent with this, we found that curving bias decreases over time (Fig. 3d). 

Together, these results indicate that the MWT is suited for analysis of chemotaxis behavior.

Tap habituation

Worms respond to non-localized vibration by executing an escape response (reversal), and 

habituate to repeated stimuli by lowering the magnitude and probability of response12,13. To 

deliver tap stimuli automatically, we constructed a solenoid tapper that drove a metal rod 

into the side of the plate at intervals specified within the MWT, and wrote a reversal-

detection plugin. Careful manual annotation disagreed with the plugin in 5% of cases where 

reversals were small; since the manual annotator had to revisit the data several times to catch 

their own errors, we concluded that automatic annotation is likely more reliable than routine 

manual annotation.

When we applied taps with a 10 s inter-stimulus interval, initially nearly all worms 

responded with large reversals, but with repeated taps the probability and size of responses 

decreased (Fig. 4a,b); these results were consistent across six independent wild-type plates 

(strain XJ1). As expected, the mechanosensory mutant mec-4 had low reversal probabilities 

(Fig. 4c) and small reversal sizes (Fig. 4d) that were not significantly different from 

reversals in the absence of tap. In contrast, all chemosensory mutants responded to tap (Fig. 

4c,d) and showed a surprising range of phenotypes. che-2 worms showed a dramatically 

increased habituation rate, and none of the chemosensory mutants matched wild-type 

reversal distances; tax-2 had larger responses, while osm-6 responses were as small as basal 

reversals shown by mec-4. Sensory deprivation is reported to cause a smaller response to 

tap14. Consistent with this, osm-6 lacks functional sensory cilia15 and che-2 encodes a gene 

expressed in many ciliated sensory neurons but not in touch neurons16. However, this does 

not explain the wide diversity of phenotypes in the chemosensory mutants; further work is 

required to understand this.

We then used the MWT to conduct a pilot screen for novel tap habituation mutants. 33 

strains were chosen with mutations in genes with a diversity of predicted functions (Table 
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2). Although we quantified a variety of parameters, to simplify analysis we focused on only 

the probability of reversal on initial and final taps. We recorded from 3–4 plates of each 

strain, averaging 136 animals per tap, plus 6–8 plates of wild-type each day as a control. Of 

the 33 strains, four had movement defects that were too severe to allow proper scoring of 

response to tap, 20 were not significantly different from wild-type, six had defects in initial 

(non-habituated) response (Fig. 4e), and three were identified as specifically tap habituation 

defective (Fig. 4f). adp-1 was isolated during a screen for chemosensory and salt 

adaptation17; in our assay it showed a loss of tap habituation (Fig. 4g). MT8943 (bas-1; 

cat-4) showed unusually strong habituation; it is deficient in dopamine and serotonin, and 

other dopamine mutants have been shown to be strong habituators18,19. Finally, the tomosyn 

ortholog tom-1 had a striking phenotype: only its first response was normal; all following 

responses were at fully habituated levels (Fig. 4h). Interestingly, tom-1 mutants have excess 

neurotransmitter release20. How this relates to the habituation phenotype we observed is 

unclear. The MWT will be valuable in elucidating the roles of these and other genes in tap 

habituation as well as in other behaviors.

Discussion

Within the restrictions we have imposed to enable real-time tracking, the MWT has been 

designed to be as general as possible. It can record animals with either bright- or dark-field 

illumination, provides triggers to activate up to four different stimulators at defined times, 

and we have verified that the system robustly tracks swimming worms and Drosophila 

larvae in addition to crawling worms (data not shown). Since the MWT is intended for high 

throughput use, we have opted to reliably detect problematic cases and omit that data, rather 

than track reliably but slowly in those cases; if there is any doubt about the quality of image 

processing, the experiment can be replicated.

Other methods for recording many worms simultaneously have recently been developed, 

both straighforward and with sophisticated techniques to handle noise and adjacent 

worms4–6,21,22. However, these all require stored video, and thus have yet to demonstrate 

the throughput and accuracy achieved by the MWT. Commercial software supports real-

time tracking (for example, Noldus EthoVision), but it is targeted mostly towards tracking 

small numbers of rodents, and thus uses relatively low-resolution cameras and does not 

provide shape information. Efforts at high-throughput behavioral screening in C. elegans 

have focused on worms in 96 well plates with no23 or very minimal24 image processing. 

These methods can achieve much higher throughput than can the MWT, but are only able to 

measure aggregate motion of all animals in a well. In contrast, the strength of the MWT is 

its applicability to a wide range of behaviors.

High throughput behavioral analysis has many advantages. One can run many controls along 

with experiments and test many conditions instead of being restricted to one carefully-

defined protocol without knowing which aspects are important and which are irrelevant. One 

can test large numbers of strains or screen for new mutants instead of relying upon previous 

research and intuition to select a small number of candidate genes for analysis. As an 

example, our pilot tap habituation screen examined 33 strains with only 44 hours of 

tracking, including numerous wild-type controls. In contrast, only 26 strains covering 17 
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genes have been reported in the literature (spanning the previous 11 years). As tools like the 

MWT become available, studies of C. elegans behavior will increasingly benefit from this 

data-rich regime.

Methods

Computer vision hardware

A Dalsa Falcon 4M30 camera (8 bits; 2352 × 1728 pixels, 31 Hz) was used with a 

Rodenstock 60 mm f/4.0 Rodagon lens to image a 5 cm plate of worms (resulting in an 

image with 24.3 μm per pixel) under brightfield illumination (backlit with 4″ × 4.9″ light 

plate, Schott A08925 with ACE I illuminator). All tracking was performed on computers 

with 3 GHz Intel Core 2 Duo processors and 4 GB of RAM. Images were captured using 

National Instruments’ PCIe-1427 CameraLink capture card.

Online image processing

Custom software written in LabView (National Instruments) presents an interface to set up 

image processing and experimental parameters; once tracking is started, the software 

captures frames from the camera via CameraLink. (The software also supports GigE, 

Firewire, and USB input, and can read saved video from AVIs.) Captured frames are passed, 

on-line, to a custom image analysis library written in C++. Collectively, this software is 

called the MWT (Multi-Worm Tracker) and is available under an open-source license. The 

version used in this study is available as Supplementary Software 1 and the most recent 

version can be found at http://sourceforge.net/projects/mwt. LabView is required to modify 

the MWT code but not to run it. However, a runtime license for the LabView Vision 

package is required in all cases.

To identify moving objects, the MWT searches for portions of the image that are darker 

(optionally, lighter) than background by some threshold T. Objects are segmented using 

flood-fill from dark pixels. To avoid segmenting single pixels due to camera noise, T is set 

stringently but objects are filled out to a less stringent threshold βTT (typical βT ≈ 0.8).

Objects that fall within user-specified size thresholds (with more stringent thresholds S−, S+ 

for initial capture and less stringent ones βSS− and βT
−1S+ thereafter) are presumed to be 

worms, and are followed by rectangular subregions 10 pixels (by default) larger on each side 

than the bounding box of the object. In the next frame, the object is sought only in this 

subregion. Thus, only a small portion of each frame needs to be analyzed. In addition, new 

objects are sought in a moving band covering 1/16 (by default) of the full image.

The background estimate is updated with a decaying average: B(t + 1) = (1 − α)B(t) + αI(t) 

where B is the estimate of the background, I is the measured intensity of a certain pixel at a 

given time, and by default α = 2−5. This estimate is only used to update pixels within the 

band used to search for new objects, and it only updates those pixels that are not in any 

animal’s subregion. Permanently motionless animals are treated as part of the background.

Objects are considered to persist from one frame to the next if four criteria are satisfied: (1) 

the new object is within the (less stringent) size threshold; (2) the new object overlaps an old 
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object with at least 50% of its pixels; (3) only one old object overlaps the new object; and 

(4) only one new object overlaps that old object. Objects failing the first two criteria are 

discarded. Objects failing the third criteria (plus several others) are considered “collided” 

and are tracked as a new joint object; objects failing (4) are considered “split” and are 

tracked as two new objects. Due to rules (3) and (4), collisions can be robustly detected and 

isolated from analysis; when animals separate they can be immediately tracked again 

(original identities are lost, as robust maintenance of object identity is too computationally 

intensive to solve in real time).

The centroid position, area, best-fit line (least squares), and exterior contour of each object is 

computed from the binary segmentation. A spine (branchless skeleton) is computed using a 

fast algorithm that assumes that the objects have two pointed ends. One end isthe sharpest 

angle:

where n is the number of points in the contour, c is a vector between contour points, ci,k = 

xi+k − xi, and xi is the ith contour point. The other end is the sharpest weighted by distance 

from the first:

where i is the index of the selected end and j is the index being tested. Eleven spine points 

are then placed at the midpoint of equal divisions along the outline from the endpoints.

All quantities are computed at each timepoint for each object and accumulated in memory. 

When an object is lost, all of its data is written to disk. On-line estimates of speed are 

computed and can be displayed during tracking as a diagnostic tool.

The image processing and analysis are single-threaded (although largely parallelizable in 

principle), and are not strictly real-time. In particular, if a heavy workload or operating 

system call causes enough delay so that several images arrive while the previous one is 

being processed, only the latest image is used while older ones are skipped.

By default, only the first image of an experiment is saved to disk as a reference, since disk 

I/O would be a limiting factor unless specialized hardware was used. Timelapse images can 

optionally be saved to disk; on our system, aframe every two or three seconds is tolerated 

well.

Offline analysis

To refine the data saved by the MWT and to quantify specific behavioral parameters, we 

created a second software package, Choreography. Choreography is written in Java and is 

available under an open source license as part of the MWT package at http://sourceforge.net/

projects/mwt.
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A variety of conditions can be set to select which animals are suitable for analysis; the 

primary selection criteria are a minimum duration of tracking (typically 20 seconds) and a 

minimum movement (here, three times the animal’s length).

Choreography computes a variety of metrics and can provide population-averaged or 

animal-by-animal output, as appropriate. Metrics include area covered by the animal, 

bearing of the animal as defined by a least-squares line fit to the segmented pixels, speed 

and angular speed computed using boxcar averaging with user-defined width, length 

measured along the spine, average curvature along the spine, changes in direction, and—

assuming that the animal’s dominant movement direction is forward—direction of motion. 

Note that the resolution used does not permit direction of motion to be inferred from shape 

analysis; head and tail are largely indistinguishable.

For noise estimates, we assumed that high-order derivatives of behavioral parameters should 

tend towards zero and therefore any residual is caused by measurement noise. Specifically, 

we assumed Gaussian noise and thus

as n → ∞. In most cases, the estimate converges by n = 2 (second derivative). The estimate 

is conservative for stochastic camera noise alone since behavior probably contributes 

somewhat to high-order derivatives. However, it is imperfect: it does not take into account 

rare large changes due to aliasing along pixel boundaries.

Metrics that rely upon the spine, such as length and curvature, are typically computed by 

first low-pass filtering the outline using an exponentially decaying kernel (2−1/2 decrease per 

pixel) before applying a spine-finding algorithm similar to that used in the MWT. If the 

plate is particularly messy and the outlines are therefore not smooth, a heuristic is applied to 

the outline to detect T-shapes and remove the stem of the T (presumed to be a spurious 

projection).

Metrics that rely upon the geometry of the animal’s path are not computed from raw 

centroid positions. Instead, we perform a greedy geometric decomposition of the path 

defined by the centroid positions. First, we classify those portions statistically 

indistinguishable from random jitter. Since our noise-measurement routines do not test for 

normality, we view the tests not as a guarantee of statistical relevance, but rather as a 

principled heuristic to obtain a decomposition of the animal’s path that is sufficient for 

robust behavioral analysis. Remaining points are fit by straight lines that are extended until 

new points are statistically distinguishable. Straight lines are converted to circular arcs 

where doing so provides statistically significant improvement (in mean squared 

displacement of points from the line). To speed computation, circular arcs are fit using the 

“HyperFit” method with zero essential bias25. This method requires finding the eigenvalues 

of a 4 × 4 fitting matrix, which we compute byusing an analytic solution of the quartic 

equation.
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A change of direction is considered to be either two adjacent line segments that meet with a 

negative dot product, or motion along a single line that backtracks a statistically significant 

distance (P < 0.05 over the entire track, assuming Gaussian noise). Movement direction is 

scored by first splitting the path into segments where ends can be unambiguously 

followed---by rejecting segments whose perimeter to area ratio is statistically consistent with 

an animal folded back on itself along at least 1/3 of the body---and then scoring direction 

changes and assuming that any sufficiently long path (by default, three times body length) is 

predominantly forward.

Averages of computed metrics can be saved to disk or viewed as graphs within 

Choreography. In addition, metrics can be saved on an animal-by-animal basis or can be 

viewed as a color-coding of the tracks of the animal on a 2D map. Along with the tracks, the 

animals’ body postures can be replayed at various zoom levels and speeds to allow manual 

validation of the results. The replay feature also allows the creation of multiple minimaps 

that provide an overview of different regions on the plate; by switching between these, one 

can rapidly move the main viewback and forth between different locations and scales.

Organism- and experiment-specific functionality is implemented as plugins for 

Choreography. Plugins are tightly integrated in that they have access to all internal data used 

by the software, and can intervene at various stages of analysis. Although Choreography is 

open source and therefore can be modified directly, users are encouraged to write plugins 

when extending the software to reduce the difficulty of moving to new versions.

Strains

All assays were conducted with the wild-type Bristol isolate of Caenorhabditis elegans (N2) 

unless otherwise stated. The mutant strains CB1033 (che-2), PR811 (osm-6), RB2464 

(tax-2), and CB1611 (mec-4), as well as the strains of wild-type Caenorhabditis species N2 

(C. elegans, Bristol isolate) HK104 (C. briggsae), PB4641 (C. remanei), and PB2801 (C. 

brenneri), were obtained from the Caenorhabditis Genomic Center (CGC). These strains 

were maintained unfrozen for less than 30 generations before testing. The strain XJ1 is 

descended from N2 but was maintained unfrozen for at least several years (hundreds of 

generations). The 33 strains tested for tap habituation defects (Table 2) were also obtained 

from the CGC.

Movement experiments

Baseline recordings on food were performed on 5 cm NGM plates seeded 24 hours earlier 

with 50 μl of OP50 bacteria. Worms were transferred to the plate at 80–90 hours of age and 

allowed to acclimate for 4 hours before being tracked for 60 minutes. Unless otherwise 

specified, all analysis was performed with the Choreography options --shadowless -M 3 -t 

20 -S --plugin Reoutline::exp --plugin Respine (see MTW User Guide in Supplementary 

Software 1 or at http://sourceforge.net/projects/mwt).

To assess whether plate-to-plate differences in movement rates were a result of the statistics 

of behavior of individual worms, we pooled all worms from eight plates and randomly 

sampled (with replacement) to generate data for 1,000 virtual plates. The observed 
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differences between real plates and their mean was 60% larger than the difference between 

virtual plates and their mean (20.7 μm s−1 vs. 12.9 μm s−1); five of eight real plates had 

difference scores that were statistical outliers (P < 0.01) of the virtual plates’ distribution. 

Thus, the observed variability between plates was not solely due to statistical sampling. 

Other likely causes include different environmental conditions on the plates, subtle 

perturbations during recording, or behavioral states that last longer than identity is 

maintained (205 s on average here). Fortunately, plate-to-plate variability does not obscure 

the advantage of multi-worm tracking: monte carlo generation of virtual plates with 10 

tracked worms produced a data set with slightly larger plate-to-plate variability than was 

observed for real plates.

Omega turns were detected with a combination of three factors. A spine-length-to-perimeter 

metric flagged regions where the worm had folded back to touch itself. To detect tight turns 

without self-contact, we used both the third principal component of the spine shape (which 

correlates with turns), and a folding score

where vb,a is the vector from spine point a to b. Intuitively, this last metric is small when the 

worm’s spine is folded exactly in half (all dot products will be close to −1); constants are 

chosen so that one gets a minimum of 0.5 for each pair of spine points folded onto each 

other. Thresholds for these metrics were set by hand; a wide range of parameters gave 

results that agreed with human judgment in obvious cases. This method detected 74 of 76 

hand-annotated omega turns in our reference data set (3% false negatives), and 98 of 100 

automatically-scored omega turns were confirmed by hand in wild-type movement data on 

relatively clean plates (2% false positives, though the error rate is higher on a sub-optimal 

plate such as our reference data set). Thus, the overall error rate is ~5%.

Chemotaxis experiments

Food chemotaxis plates were prepared by placing a 50 μl drop of OP50 bacteria at x,y 

coordinates (r/2,0) where (0,0) represents the center of a plate of radius r. In practice, on the 

50 mm inner diameter plates we used, the actual coordinates (measured by hand) were 

(12.4,0.2) mm with standard deviation (±0.5,±0.9); the diameter of the spot of food was 3.7 

± 0.3 mm. A control spot of LB growth medium was placed at (−r/2,0). The OP50 was 

grown for 48 hours. For testing, 6–12 worms were picked from food to an empty plate to 

reduce the amount of stray food, and then picked again from the empty plate to coordinate 

(0,0). Tracking was started within 60 s of placement and left to run for 20 minutes.

To quantify food chemotaxis, we counted crossings of the animals’ centroids along a ring 1 

mm outside of the spot of food or the control spot. We computed Bayesian preference 

estimates P(t) and the associated standard error σP(t) for each spot size, based on a binomial 

distribution with uniform prior26:
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where F(t) is the cumulative number of (signed) crossings into the food spot at time t and 

C(t) is the same for the control spot.

To quantify pirouettes, we monitored the animal at 0.5 s intervals and calculated the angle 

between the direction of movement and the direction to the food. We then pooled the 

quadrant heading towards the food (angles from −π/4 to π/4) and the quadrant heading 

away, and counted reversal frequency (probability per unit time of executing a reversal). We 

compared the behavior of worms in a 1 cm radius circle about the center of the food spot to 

those in a 1 cm radius circle about the center of the control spot. Within-strain statistical 

comparisons were performed using a χ2 test; P-values for hypotheses about the similarity of 

strains were computed using monte carlo sampling.

Salt chemotaxis plates were prepared following previous work9. In brief, we placed a 5 μl 

drop of 500 mM NaCl at the center of a low salt plate (1 mM CaCl2, 1 mM MgSO4, 5 mM 

potassium phosphate, pH 6, 2% agar) three hours before tracking. Worms were washed 30 

minutes before tracking in low salt buffer (as plate, less agar) and rinsed in low salt buffer 

plus 0.05% glycerol. 8–12 worms were transferred from the rinse bath to a < 0.5 μl droplet 

held in a glass loop, which was then dotted onto the plate 12.5 mm from the center. The 

droplet dried within 60 s; tracking was started within 120 s. To quantify weathervane 

turning, we segmented the path into one-movement-cycle chunks (two body bends), 

calculated the angle between the animal’s movement and the direction to the food 

(“bearing”), and how that angle changed over one cycle (“curve”). We considered only 

animals between 2.5 mm and 12.5 mm from the location of the NaCl drop, as this was 

predicted to be where the gradient was steepest (using the method of 8) and provided some 

robustness to inaccurate placement of the drop.

Tap habituation experiments

Tap habituation assays were performed on food after a minimum of 6 hours’ recovery from 

transfer; animals were tracked for 10 minutes to allow them to approach steady-state 

behavior, and then were tapped 20 or 30 times (Fig. 4a–d and e–g respectively) at a 10 s 

inter-stimulus interval with a custom-built solenoid tapper that drives a small plunger into 

the side of the plate. A reversal was scored when a worm was still or moving forward at the 

time of the tap and moved backwards within one second of the impact; the reversal was 

considered to be complete when the worm began a pause or forward motion lasting for more 

than 0.2 s. Cases where the animal was already reversing were removed from analysis. For 

reversal probability computations, reversal distances of less than 30 μm were considered “no 

reversal”, and we converted counts of reversals and failures into probabilities using a 

Bayesian estimate of probability with uniform prior.
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Validation was performed by comparing with manually annotated reversals. Out of 148 

responses scored by hand as either yes, no, or already-reversing, the tracker disagreed with 

eight (5% error rate). All but one discrepancy was due to small disagreements over the 

timing or size of a response.

Putative tap habituation mutants were prepared using a higher-throughput method: five 

gravid adults were placed on a plate seeded with 50 μl E. coli 24 hours before. The adults 

were left to lay eggs and then removed from the plate 3 hours later, leaving approximately 

60–80 eggs. The plate was tracked once the animals reached adulthood (80 ± 3 hours later, 

at 20 °C). The recording protocol consisted of 100 s of baseline followed by 30 taps applied 

to the side of the plate at a 10 s inter-stimulus interval. The data was analyzed with 

Choreography’s reversal detection plugin: --plugin MeasureReversal::tap::dt=1::collect=0.5. 

For each mutant strain and wild-type replicate, three or four plates were tested (except 

CB1220: n = 2); on average, 34 worms per plate were suitable for analysis. A wild-type 

distribution for all wild-type plates tested on the same day was created for the initial and 

habituated (28th–30th) responses. All strains and wild-type replicates were standardized to 

the distribution for the day they were tested. Monte Carlo sampling was used to generate the 

null hypothesis distribution given this scheme, and the resulting P-values were re-interpreted 

as an effective Z-score for plotting. Values outside ±3.13 were considered to be significantly 

different than the wild-type distribution (two-tailed, P < 0.05, with Bonferroni correction for 

multiple comparisons). CX20 and NM1815 were confirmed using an unpaired two-tailed t-

test between the raw reversal probabilities of the last stimulus versus the wild-type replicate 

that was tested most closely chronologically.

Reference data

The reference data set used for most hand-annotation and for speed and accuracy tests was a 

tap habituation screen assay with two differences. First, the worms were given only 5 

minutes to recover before tapping instead of 10. Second, the worms were allowed to grow 

up for 100 hours. These conditions provided an extra challenge for the tracking algorithms, 

as there were a number of L1 progeny on the plate by that time. To improve the outlines in 

this more-difficult case, we used the::despike option of the Reoutline plugin.

Since the MWT cannot save video at the full rate (7.2 GB/minute), we used a custom 

LabView program to stream video to a solid state drive so we had a complete record of the 

experiment. We then ranthe MWT on the saved video.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Accuracy and performance of the Multi-Worm Tracker. (a) The major components of the 

Multi-Worm Tracker system. (b) Examples of full-field images, the regions selected for 

analysis by the MWT, and post-capture visualization in Choreography. (c) The plot shows 

the probability that a given number of frames will be dropped for each frame processed, 

with increasing number of worms. (d) Accuracy of detection and selection of worms for 

analysis. A false positive is either an object which is not a worm, or a worm scored by hand 

as partially obscured. Each dot corresponds to a different choice for time and distance 

threshold. Orange circle: no additional criteria. Red X: animals must be in a region of 

interest away from the edges of the plate. Magenta +: animals must move one body length 

before being quantified to avoid image processing artifacts. Black diamond: both additional 

criteria. Blue arrow: our typical choice of parameters. (e) Effect of crowding on fraction of 

animals detected (blue diamonds) or selected for analysis (green dots, using parameters 

chosen in d). (f) Effect of crowding on duration one worm can be followed (identity is lost 

upon collision). (g, h) Effect of pixel size and frame rate on estimate of animal position (g; 

the orange X indicates typical parameters for a non-real-time tracker, Parallel Worm 

Tracker) and of animal speed (h; movement averaged over 0.5 s).
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Figure 2. 
Worm movement on food. (a) The plot shows worm speeds for selected individual plates 

(red or yellow diamonds) or as a mean for all plates (orange dots) over time (n ≈ 30 tracked 

animals per plate). (b, c) The plots show the return to steady-state speeds in the indicated 

strains after being placed on the tracker (b; mean of four plates, n ≥ 15 worms per plate) and 

in different Caenorhabditis species (c; mean of four plates, n ≥ 20 worms per plate). (d) 

Intensity map of first two principal components of worm shape computed from the reference 

data set; darker colors indicate more observations. The ring shape of the map corresponds to 

the worm’s sinusoidal movement cycle; the blue arrow indicates forward movement or an 

increase in phase. (e) Example of phase progression. Snapshots correspond to sine-like and 

cosine-like postures; rainbow line is the animal’s path colored by phase. (f) Intensity map as 

in d at the indicated time points after worms are placed on the tracker. n ≈ 20 tracked 

worms on one plate, strain XJ1. (g) Worm centroid movement (in body lengths) is plotted 

against estimated number of body bends (phase advance). Individual movements (orange 

dots) and best linear fit (magenta line) are shown. (h) The probability of omega turn 
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initiation is plotted against reversal distance(number of body bends) for the indicated strains. 

n ≈ 400 omega turns per strain.
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Figure 3. 
Analysis of chemotaxis. (a) Chemotaxis effectiveness of wild type worms. Preference score 

is the Bayesian estimate of the probability that an animal will travel into the food spot 

instead of the control spot. n = 8 plates, ~8 worms tracked per plate. (b) Pirouette 

frequencyof the indicated strains near food. Reversal bias is fT/(fT+fA), where f is the 

frequency of reversals when moving towards (fT) or away (fA) from food (blue) or control 

spot (green). Error bars, s.e.m. from monte carlo simulation. Red asterisks: P < 0.05 that 

reversals are equally common when traveling towards vs. away from food (χ2 test). (c) 

Weathervane chemotaxis to NaCl in the absence of food. The mean curve of the animal’s 

path is plotted against its bearing relative to the gradient (see Online Methods for more 

detail); signs are chosen so that positive curve at positive bearing is a turn up the gradient. 

Black is wild-type (N2, 30 plates of ten worms each). Orange shows chemotaxis mutants 

(che-2, osm-6, and tax-2; five plates of ten worms of each, mutant data are pooled since we 

found no significant differences between the strains). Error bars, s.e.m.. (d) Decrease in 

strength of weathervane chemotaxis with time. Positive curve is up the gradient and results 

are averaged over quadrants around ±90° bearing. P < 0.001 (t-test) that the first 10 minutes 

and the next 20 are the same.
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Figure 4. 
Analysis of tap habituation. (a, b) Probability of reversing (a, Bayesian estimate) or reversal 

distance (b) after a tap are plotted against the number of tap stimuli. Six plates of wild-type 

(XJ1) animals are plotted in different shades of gray. n ≈ 30 animals per plate. (c, d) 

Reversal probability (c) and distance (d) for mechanosensory and chemosensory mutants are 

plotted against the number of tap stimuli. n = 3 plates for mutants and N2, 6 plates for XJ1, ≥ 

10 animals per plate; error bars are s.e.m. (e) Probability of response to first tap of various 

mutants (diamonds) and wild-type controls (circles); Z-score is normalized by wild-type 

distribution. (f) Habituated response probabilities (at stimuli 28–30). X denotes mutants with 
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abnormal initial response. (g, h) Probability of reversal after tap is plotted for the loss-of-

habituation mutant adp-1 (g) and the hyper-habituation mutant tom-1 (h).

Swierczek et al. Page 21

Nat Methods. Author manuscript; available in PMC 2012 January 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

Swierczek et al. Page 22

Table 1

Estimates of measurement noise in selected behavioral parameters.

Quantity Mean Noise

Area 0.145 mm2 1.7%

Bearing --- 4.1°

Position --- 1.2 μm

headposition --- 23 μm

spine length 1.11 mm 2.5%

spine curvature 260° mm−1 8.0%

speed (over 0.5 s) 0.186 mm s−1 0.55%

angular speed (over 0.5 s) 5.8° s−1 2.4%
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Table 2

Tap habituation phenotypes.

Strain Gene Description Phenotype

Init Hab

CX20 adp-1 Unknown locus wt high

MT8943 bas-1; cat-4 Monoamine biosynthesis enzymes wt low

JD21 cca-1 T-type Ca2+ channel α subunit wt wt

OS122 cfi-1 DNA-binding protein wt wt

VC855 cle-1 Type XV/XVIII collagen homolog wt wt

CB3241 clr-1 Receptor tyrosine phosphatase wt wt

RB812 fax-1 Nuclear hormone receptor low low

RB1816 gpa-16 G protein α subunit wt wt

VC2138 kcnl-2 Ca2+ activated K+ channel wt wt

VC2209 lgc-46 Ligand-gated ion channel n/a n/a

RB1593 klp-15 Kinesin-like protein high high

RB1416 nhr-83 Nuclear hormone receptor family wt wt

RB921 nhr-84 Nuclear hormone receptor family wt wt

VB674 nnt-1 Nicotinamide nucleotide transhydrogenase wt wt

RB2462 oct-1 Organic cation transporter wt wt

RB2164 pde-1 cGMP phosphodiesterase wt wt

RB1231 pde-4 cAMP phosphodiesterase low wt

VC282 pdl-1 cGMP phosphodiesterase low wt

RB809 ptl-1 Microtubule-associated protein wt wt

RB1638 rab-18 small GTPase high wt

RB1537 rab-19 small GTPase wt wt

VC14 rap-2 RAS-like GTPase wt wt

RB699 rgs-9 Regulator of G protein signalling wt wt

RB976 rhgf-1 Rho-like GTPase wt wt

RB2027 src-1 Tyrosine kinase n/a n/a

VC380 tag-68 TGFβ receptor signalling family wt wt

RB1182 tba-1 α tubulin n/a n/a

NM1815 tom-1 Tomosyn ortholog wt low

LY130 twk-20 TWiK K+ channel wt wt

CB246 unc-64 Syntaxin n/a n/a

CB1220 unc-82 Serine/threonine kinase wt wt

VC1392 zip-5 bZip transcription factor low wt

LY140 -- Voltage-gated K+ channel wt wt
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