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Abstract

Interest in cell heterogeneity and differentiation has recently led to increased use of time-lapse microscopy. Previous studies
have shown that cell fate may be determined well in advance of the event. We used a mixture of automation and manual
review of time-lapse live cell imaging to track the positions, contours, divisions, deaths and lineage of 44 B-lymphocyte
founders and their 631 progeny in vitro over a period of 108 hours. Using this data to train a Support Vector Machine
classifier, we were retrospectively able to predict the fates of individual lymphocytes with more than 90% accuracy, using
only time-lapse imaging captured prior to mitosis or death of 90% of all cells. The motivation for this paper is to explore the
impact of labour-efficient assistive software tools that allow larger and more ambitious live-cell time-lapse microscopy
studies. After training on this data, we show that machine learning methods can be used for realtime prediction of
individual cell fates. These techniques could lead to realtime cell culture segregation for purposes such as phenotype
screening. We were able to produce a large volume of data with less effort than previously reported, due to the image
processing, computer vision, tracking and human-computer interaction tools used. We describe the workflow of the
software-assisted experiments and the graphical interfaces that were needed. To validate our results we used our methods
to reproduce a variety of published data about lymphocyte populations and behaviour. We also make all our data publicly
available, including a large quantity of lymphocyte spatio-temporal dynamics and related lineage information.
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Introduction

1.1 Motivation
The motivation for this paper was to explore the impact of semi-

autonomous (assistive) software interfaces on the productivity and

quality of live-cell imaging studies. With these questions in mind,

this paper describes our efforts to develop software tools for cell

tracking and lineage modelling (also known as genealogical

reconstruction), specifically in vitro analysis of B-lymphocytes. We

focus on the interfaces and human-computer interaction necessary

to bridge the gap between convenient but inaccurate automatic

tracking, and more accurate but time-consuming manual work.

To measure success against these objectives, we try to fulfil three

objectives: Efficiency, validity and utility. Efficiency captures the

objective that the software should produce results within a short

period of time using less effort than existing methods. Validity is an

attempt to measure whether the results produced are accurate

enough. Utility explores whether the type and qualities of data

produced using these methods is useful and interesting.

1.2 Contributions
To evaluate this software and these methods, we studied small

populations of lymphocytes in vitro over several generations. We

tracked a total of 675 cells for up to 7 generations, over 1296

frames and 108 hours.

Results from these experiments support our claims of accuracy

and efficiency, and in the process we have produced an

unprecedented quantity of new data about changes in lymphocyte

size and motility over generations. The tracking data has been

made available in raw form for further study, including details not

analysed here such as cell contours. We have made some novel

observations from these data, primarily because we provide a

combined model of lymphocyte lineage, generation, fate, frame-

by-frame segmentation, contours and tracking for a large quantity

of cells. The software we used to produce these data is called

TrackAssist. Full source code has been released under an open-

source licence.

A key contribution of this paper is to demonstrate the impact of

the rich data captured by these methods. As an example, we show

that it is possible to predict lymphocyte fates before they occur,
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with good accuracy, by segmenting and tracking cells in time-lapse

imaging. After training on the semi-automated cell tracking data, a

fully-automated machine learning method was able to predict

more than 90% of individual cell fates using only imaging data

captured during a window of time prior to 90% of cell fate

outcomes. This raises the possibility of realtime intervention to

segregate or treat cells according to phenotype or fate [1], or other

potential applications including high content screening [2–4].

With recent advances in cell segmentation, these methods could be

generalized to other cell types.

To demonstrate validity, we have used our methods to

reproduce all the graphical results given in [5], albeit with a

mouse genetically modified so that all cells produce GFP and with

different illumination conditions. We found that our results agreed

closely with existing data with the exception of some low frequency

events not previously observed. These were all investigated and

found to represent correct reports of observable phenomena,

discussed later in this paper. We do not believe that these

observations refute any previous results, rather they demonstrate

that this new approach can yield extra information compared to

lower-volume fully manual annotation processes.

To demonstrate efficiency, we present a greatly increased

volume of results compared to earlier work. This is especially true

of the spatio-temporal dynamics of lymphocytes, which was

limited to progeny of 9 founder cells in the original work. We also

report the human-hours of labour required to produce these

results, which we compare to anecdotal reports of effort required

to produce similar results with popular methods.

A primary contribution is insight into how interaction and

automation can be used effectively for in vitro time-lapse cell

tracking. This topic is of wider applicability than lymphocyte

analysis, but application of combined automation and manual

review methods has not been thoroughly described in cell biology.

In practice, the gap between automation and manual cell tracking

is commonly encountered but methods of bridging it are not well

documented. Many research groups develop, download or

purchase suites of tools for cell tracking, but rarely publish their

experiences using these tools.

1.3 Background
A short review of relevant methods and software is given below.

An alternative thorough review dated 2012 can be found in

Meijering et al [6]. Meijering et al discuss the recent proliferation

of publications about cell tracking, methods of cell detection and

tracking, a review of available software tools and (briefly), lineage

reconstruction, all topics of relevance to this paper.

1.3.1 Efficient and accurate image interpretation. Time-

lapse microscopy collects a great quantity of detailed information

but in a form that is not easy to draw inference from. To generate

statistics about cells and cell populations, the images must be

interpreted. Manual image interpretation is typically perceived as

time-consuming but a ‘‘gold standard’’ for accuracy. The effort

involved reduces the volume and hence statistical power of results.

Automated image interpretation is more consistent, but is still

prone to systematic bias. For example, a method of detecting cells

might systematically ignore smaller cells. This is a serious issue if

these biases can affect the hypotheses being considered. It is often

possible to automate image interpretation tasks with high

accuracy, but it is usually very difficult to approach human

performance under difficult conditions. Diminishing returns from

additional algorithm improvements can be expected as with any

complex system.

Experimental evidence shows that human image interpretation

is less accurate, more optimistic and more biased than commonly

believed. For example, Bruce et al showed that human face-

recognition performance is worse than expected [7], and that

humans often fail to recognise faces in typical CCTV images [8].

Although automated methods will also be biased, their bias is

consistent and therefore its impact can be minimized or excluded.

With a multitude of human interpreters, this may not be possible.

For example, Abraham et al [9] show some strong and unexpected

biases in clinical interpretation of cataract images. Reviewers differ

in their biases, with all reviewers having more bias than

automation for less severe cases. The thesis of Fendley [10] gives

a good overview of the types and causes of bias in human image

interpretation which may help researchers to develop mitigating

procedures. In particular, she discusses the impact of fatigue and

repetition which may affect in cell tracking research due to the

volume of cells involved. Radiology is another clinical image

interpretation purpose where bias must be minimized. Sica [11]

gives a thorough overview of sources and mitigating strategies in

Radiology. The issue of image interpretation bias has not been

thoroughly discussed in cell biology, but use of software tools that

minimize tedious and repetitive labour can be expected to reduce

human errors in this domain like any other.

When tracking cells, a number of factors demand very high

accuracy. It is relatively costly to perform experiments and capture

images, preventing us from using large data volumes to increase

confidence. Typically, several days are required to conduct a

lymphocyte lineage experiment. Since we wish to model cell

lineage, the events we must observe are not independent and not

instantaneous. It is necessary to track individual cells accurately for

generations (approximately 100 hours) to create models of lineage.

Although our lymphocytes have some varying observable features

(size and fluorescence intensity), these features are ambiguous and

not constant. If cells do not have visible characteristics that

uniquely identify them, we must exploit positional information

that is confounded unless we identify them regularly (e.g. every few

minutes in the case of highly mobile lymphocytes). This means that

to build lineage models, we must correctly associate every cell over

hundreds of observations to form tracks. This type of cell tracking

problem occurs frequently. Although our goal is tracking for

lineage reconstruction, other reasons for long term cell tracking

are modelling cell migration patterns [12,13], chemotaxis [14,15],

and understanding the behaviour of parasites, bacteria [16], and

other cells [17] where motility is critical to their function.

Researchers already use a variety of software tools to assist with

time-lapse microscopy image interpretation and cell tracking.

Most current tools fall into two categories, which we will name

‘‘automatic’’ and ‘‘manual’’. Although many tools have both

automatic and manual options, none have good support for use of

both options interchangeably.

1.3.2 Manual cell tracking software. We describe software

as ‘‘manual’’ if it features interfaces that allow the user to edit

detections and create or delete tracks. Examples include Fiji’s

manual tracking plugin [18], Tim’s Tracking Tool (TTT) [19–21]

and some tools within Metamorph [22]. In cell tracking, there are

two main tasks: Detection (segmentation in images), followed by

association. The association step is often implemented by requiring

the user to follow a cell lineage through an entire sequence,

clicking on the cell in each frame. This is repeated for other

lineages or individual cells within a lineage. The method is efficient

because it is usually easy to track a single cell, and because the

current lineage is implicit therefore only one interaction is needed

per frame (e.g. one click). Some tools, such as TTT, explicitly

handle cell divisions and are able to associate progeny with parent

cells. Moogk [23] describes a Matlab tool that was used to track

lymphocytes and build lineage trees, but does not extract cell
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contours. Tools focusing on tracking tend not to segment cells for

the user, but only record the position clicked. The ‘‘track objects’’

plugin for Metamorph does exactly this.

TTT and Moogk explicitly encode tracking loss and cell deaths

separately. This is a useful feature because lost tracks can be

excluded from results where necessary (avoiding censorship

effects), and the distinction can easily be made when manually

tracking cells. In immunology, correlations between related cells’

death times help to explain population changes [24,25]. However,

details of these relationships are more easily and accurately defined

as the number of observed cells increases.

Tracking tools based on image processing applications, such as

CellProfiler [26], Fiji and Metamorph, tend to provide good

facilities for automatic segmentation and allow the user to

associate cell detections between frames by clicking anywhere in

an automatically-segmented cell. Segmentation by itself is a useful

application, having a range of uses including cell counting in high

content experiments. CellTracker [27] has sophisticated cell

segmentation with smart tools for manual contour correction.

This improves spatial data output and is quicker because the user

can be less careful about definitions of cell position, which may be

poorly defined for irregularly shaped cells. The results from these

programs tend to include cell contours and good centroid metrics.

Both Fiji and Metamorph have plugins that allow the user to

follow individual cells throughout image sequences. Fiji and

metamorph also have smart ‘‘manual’’ tools for improving

automatic cell segmentation. These tools avoid the user having

the laborious task of manually drawing the contour by fixing over

and under-segmentation errors with ‘‘hints’’ from the user. For

example, the user can choose to merge selected contours, or

automatically cut cells falsely joined together using smart rules (e.g.

cut along the thinnest or darkest line).

1.3.3 Automated cell tracking software. Many tools

provide automatic cell tracking with reasonable success, despite

generally using only cell positional information and Brownian

motion models to associate detections. Critically, researchers are

experienced with the limitations of automatic segmentation and

tracking software and try to design their imaging experiments to

match the capabilities of the software. Volocity [28] Metamorph

[22], CellTrack [29], CellProfiler [26] and CellTracker [27] all

have flexible and powerful automatic tracking tools, mostly with

automatic segmentation methods as well. However, while these

tracking tools are all sufficient for some purposes none provides

good interfaces for manual track review and correction where very

high accuracy is needed.

Instead, tracks are typically exported as text files for manipu-

lation in third-party tools. Once exported, it is difficult to associate

amended track details with the original images and therefore

manual correction is very difficult. Even tools such as Metamorph

with both manual and automatic tracking features do not have the

ability to share data between manual and automatic tracking

systems. In Volocity, for example, automatic tracking results can

only be improved by repeating the automatic process with varying

parameters. The exception is Imaris [30], a commercial product

which does have a graphical user interface for track editing.

1.3.4 Lineage modelling software. As cell imaging methods

and tracking capabilities have improved, lineage modelling

software has become available. A synonym of lineage modelling

is genealogical reconstruction. LineageTracker [31] extends

ImageJ and FIJI adding manual lineage modelling. It was written

by the Warwick Systems Biology Centre. The example use of

LineageTracker is modelling populations of constantly fluorescing

mouse stem cells, in which initial segmentation is automatic,

tracking is automatic or manual (depending on plugin) and lineage

modelling is automatic. Manual editing or correction of lineages is

not supported by a graphical interface - instead track IDs are

entered into a table. Regarding the state of the art in lineage

reconstruction, Downey et al [32] comment: ‘‘Lineage tracking is

an emerging field and there is no commercial software

available’’… ‘‘fully automated reconstruction of cell lineages in

experiments with low temporal resolution are currently not within

reach’’. Kang Li [33] et al describe an attempt and results from

fully automatic lineage reconstruction without manual correction.

A group at CMU is trying to develop a fully-automatic web

based cell tracking system, allowing users to submit images and

later download frame-by-frame segmentation, tracking, and

lineage reconstructions [34]. They do have interfaces for

evaluating their automation, which are written in Matlab.

However, they have not yet reported good accuracy with fully

automated methods.

1.3.5 Alternatives to inter-generational tracking. There

are alternatives to long term live cell imaging and tracking, but

they are not feasible in all circumstances especially where

continuity of observation is needed. The most common are flow

cytometry [15,35] and high-content screening, that are effectively

taking random samples from various cell populations at time

intervals. If imaging is used, samples of cell properties such as

motility [6], size and contour can be measured. One benefit of

flow cytometry is that it also enables ex vivo experiments, meaning

that conditions are more realistic than the in vitro environments

used for continuous tracking. Another benefit is that results are

inherently more robust due to large sample sizes. These techniques

also allow sampled cells to be divided into categories, for example

by Fluorescence-activated cell sorting (FACS) [36] or by Dielec-

trophoresis (DEP). Some of the information gained from cell

tracking can be inferred from observable variations in sampled cell

populations, but other questions cannot be answered by popula-

tion sampling. For example, the relationships between sibling

lymphocytes discovered by [37] could not have been discovered by

population sampling, because e.g. division time correlations could

equally have been explained by other mechanisms. However, once

known, models derived from time-lapse microscopy can be applied

to the interpretation of population samples and verified ex vivo.

Besides immunology, pedigree or lineage is also important for

modelling stem cells [19]. In summary, time-lapse microscopy is

necessary when the development of cell morphology, motility,

time-dependent and familial correlations or any feature requiring

preservation of identity is of interest.

Zilman et al [25] give a good discussion of the application of

intracellular labelling and multi-channel flow cytometry to

measurement of population structure of proliferating and dying

lymphocytes over several generations. One of the topics covered is

whether correlations in division times between daughter and

mother cells can be inferred from the cytometry division data,

concluding ‘‘These results indicate that in some cases, even if data

have intrinsic correlations between generation times of mothers

and daughters, model without such correlations can describe the

data well. Furthermore, it might be difficult to obtain unambig-

uous inference based on the cell division data alone.’’ [25]

1.4 Our approach
1.4.1 Objectives. We hoped to demonstrate whether labour-

efficient, ‘‘assistive’’ software tools could produce new insights into

cell behaviour, by enabling the production of larger and more

detailed in vitro cell tracking data.

‘‘Assistive’’ means that some automation is used, but augmented

with good tools for manual review and correction. We are not the

first to consider the importance of good manual review and
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correction tools for cell tracking studies. Rapoport et al [38]

recently published a very large study of pancreatic stem cell

tracking using time-lapse microscopy. To improve accuracy over

fully autonomous methods they developed interfaces for manual

review, and automatic methods of detecting likely errors to be

reviewed. The automation and interfaces thereby support highly

efficient and accurate manual work. Our approach is very similar,

but with assistive tools and manual review of both segmentation

and tracking. Another example of interactive software developed

to support manual review of tracking is Scherf et al [39].

We expect the assistive approach would also work for other

image interpretation and tracking problems, where high accuracy

is demanded and automation is difficult.

1.4.2 Key design considerations. To evaluate our ap-

proach we developed and evaluated a combination of automatic

and manual cell segmentation and tracking tools in a common

graphical interface. We considered writing plugins for existing

software (such as ImageJ [40]), but decided this approach did not

provide enough freedom to configure graphical user interfaces.

Given our objectives, this was a serious concern.

Although we have released our software under an open-source

licence, we expect that others will benefit from our descriptions of

key software features, as much as from the software itself. Some of

the key features are described here, and full details are included in

the File S1.

Users of our software reported that a multi-view interface was

most crucial feature, whereby the same solution could simulta-

neously be viewed in lineage and imaging modes (see figure 1).

Edits in either view immediately updated both. Due to the

heritable qualities of lymphocyte division and death, the lineage

view was particularly useful for identifying incorrect track fork and

track end events, the most common types of error. The imaging

view was always needed to verify the correct sequence of events.

Note that the software allows different time points and image types

to be displayed simultaneously (for example, ‘‘display the

fluorescence channel 5 images in advance of the transmission

image and at double zoom’’).

The design of the user interface was a combination of video-

player and image-editor software conventions. We provided

typical Video-Cassette-Recorder controls for playback of image

sequences, with extra buttons to control speed and repeat short

loops. The interface gives the user the ability to annotate any pixel

in any image. The annotations appear as text-boxes in the images

(but are non-destructive to the underlying image), and as balloons

on the timeline, allowing them to be easily found; in practice we

found users made heavy use of annotations.

In the imaging views, the most critical features were: the ability

to apply a nonlinear enhancement to contrast; to superimpose

detections and tracks over a window of time (past and future); and

to composite channels (e.g. using a separate colour for each

different image shown).

Generating lineage has two precursor steps. First, detection of

cells in all images. Second, association of cell detections as tracks.

The key user interactions for detection were: An auto-detect tool

that finds all cells in a range of images, with preview of results; a

delete-detections tool that can remove ‘‘all selected detections’’ or,

‘‘all detections within a range of images’’; a detection-selection

tool; and some brush tools for adding or removing pixels from

detection contours. The vast majority of detection was done

automatically, with the other tools used to fix segmentation errors

where necessary. Automatic cell segmentation was achieved using

some basic image pre-processing followed by the Watershed

algorithm [41].

Tracking was also almost entirely automated, with manual tools

for fixing tracking errors. We provided tools for joining, forking,

and splitting tracks. The automated tracking method is a

combination of the Extended-Hungarian approach from Ka-

chuouie et al [42] and the concept of ‘‘object existence’’ from

LJIPDA [43].

Results

Three types of data are presented. First, we report the effort and

time required to produce this data. Second, we present evidence

that our results are valid by reproducing population statistics from

[5]. Third, we attempt to use our data to generate some novel

results. To this end, we trained a classifier to predict cell fate and

present some new observations of lymphocyte size, speed and

lineage made possible by the large quantity of cells tracked.

2.1 Labour efficiency
The data produced in this paper was generated by three users of

the TrackAssist software over a period of two weeks. We selected

all microwells with initial populations of one or two cells and then

tracked all progeny until all cells died. For each microwell, we

recorded the time required to complete each stage of processing.

The workflow adopted is described in section 4.3 and figure 1.

Almost all effort was consumed in two stages: cell segmentation

and track correction. (Lineage is an implicit result of tracking in

our model). The factors influencing time required are the number

of images and the number of cells. We captured images of each

microwell at intervals of 5 minutes for a total period of 108 hours,

resulting in 1296 images per microwell.

The typical population of a microwell was 4–12 cells and the

maximum microwell population was 53 cells. In total 44 founder

cells were tracked resulting in 350 dead progeny, with a total of

675 distinct cells tracked. To clarify, if a microwell had an initial

population of one cell, that divided once, there would be a total of

2 dead progeny and 3 cells tracked. All cells were tracked

throughout their lifetimes with no tracking losses (automated

tracking failures were all manually corrected).

We found that using the semi-automated methods implemented

in the TrackAssist software it was possible to perform all

segmentation and tracking activities more quickly than existing

manual methods used in [5]. The methods reported in this paper

also scale better than earlier methods (see figure 1), making it

practical to study microwells with more than one founder cell and

final well populations of up to 32 cells. An approximate guide to

the effect of software automation was that labour for a complex

microwell with population more than 20 cells was reduced from

one week to three hours (see table 1). A more detailed analysis of

the labour efficiency results can be found in the section 3 of File

S1.

2.2 Validation: Reproduction of existing results
Although our approach to in vitro microwell lymphocyte tracking

is faster for non-trivial microwell populations, it is not useful unless

is it also accurate. Since we have produced tracks for a large

number of cells it is not feasible to check all these tracks manually.

Instead, we have reproduced the population and lineage statistics

from Hawkins et al [5]. Figures 2, S1, S2, S3 (in File S1) show

reproduction of Figures 2,1,4 and 5 in Hawkins et al respectively,

using our data. Although the experiments were conducted in

slightly different conditions, we found good agreement with the

original paper. Notably, we found similar parameters for fitted

distributions and similar correlations between related cells’ division

times. These correlations also agree with other existing studies e.g.
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[24]. Correlations are a sensitive and measurable proxy of tracking

accuracy. If our software produced more tracking errors than the

manual approach, we would expect that correlations between

sibling division times would decrease. In particular, erroneous

track-swaps would reduce sibling correlations.

Other types of error should also be evident in these population

statistics. If our software over-segmented the cells, we would

observe a greater number of divisions and deaths due to transient

false tracks. Under-segmentation would also produce a greater

number of deaths and divisions when cells are temporarily

combined as a single track, before appearing to split again (a false

division). We did find some discrepancies between our data and

Hawkins et al. These are discussed in the section 4 of File S1.

2.3 Utility: New lymphocyte spatial data
Our automated approach has produced a much greater

quantity of in vitro B-lymphocyte time-lapse tracking spatial data

than previously available. In particular, this has provided some

more subtle observations of lymphocyte motility and area while

controlling for lineage, fate and generation. This quantity of data

would not have been practical without labour-efficient, interactive

automation. We present these observations as examples of the

Figure 1. Workflow for the processing of a population of cells in a single microwell, resulting in a pedigree analysis. Data produced
includes contours, tracks and lineage for all cells in all images. The timeline on the left shows tasks in order and the average time required for the
results in this paper. The blue areas are automated tasks, with no user interaction required. Pink areas are manual operations. On the right side of the
figure are two screenshots of the user interface during the two time-consuming manual tasks. Top: Automatically segmented detections as shown
during the process of evaluating segmentation parameters, overlaid on the bright field channel (NB: Fluorescence channel is used for segmentation,
bright field allows user to validate). Below: track editing while simultaneously viewing the lineage context of each cell-detection. The selected track is
highlighted in both imaging and lineage views. Both views update simultaneously in response to edits. The lineage tree allows users to find and fix
suspicious division, death and track start events very quickly.
doi:10.1371/journal.pone.0083251.g001

Table 1. Comparison of labour required (in minutes) to track
all cells in a microwell and extract lineage, using either ad-hoc
manual methods (such as spreadsheets, Matlab etc.) or the
TrackAssist software.

Microwell max cells 1 to 4 5 to 8 9 to 16 17 to 32

Ad-Hoc manual methods 15 120 600 1440

TrackAssist (active time) 6 23 38 147

TrackAssist (total time) 27 45 61 180

Note that manual time does not include time spent generating visual aids such
as custom video files to support manual activities. The manual methods scale
poorly as the number of cells increases. When using the TrackAssist software, a
distinction is made between ‘‘active’’ time (when the user must interact with
the software) and total time (including time the user is simply waiting for the
computer). The user can perform other tasks while waiting. The total number of
images was 1296 per channel (transmission and fluorescence). TrackAssist time
values given are mean averages from 4 users over 675 cells and 42 microwells.
Ad-hoc times are consensus opinion of authors of [5] with reference to lab
notes.
doi:10.1371/journal.pone.0083251.t001
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types of cell population modelling made possible by the techniques

in this paper.

2.3.1 Lymphocyte fate prediction. The authors are not

aware of any successful use of phenotype to predict the fate of

individual cells. However, this is an interesting area of research

since there are a broad range of applications, including high

content screening [2–4] where the phenotypic classifiers used for

fate prediction might serve as an alternate readout of drug effect.

The importance of fate prediction in the case of neural progenitor

cells was discussed in Cohen et al [44]. The authors developed a

segmentation and tracking algorithm based on [45]. They call

their method AIPT and predict applications in a variety of fields.

One particularly interesting use is to isolate cells with particular

qualities, which could assist genetic analysis of the genes

responsible for those qualities. Timm Schroeder has written a

review of the potential value of cell fate prediction, not only death

or division but including ultimate cell type and function [1].

Schroeder describes the use of time-lapse live cell imaging for this

purpose.

We found that the fate of most individual lymphocytes can be

predicted using tracking. We trained and tested a Support Vector

Machine (SVM) classifier to predict cell fate in each generation of

our lymphocyte data. Using 33% of the data for training and 66%
for testing, we were able to predict between 80–90% of individual

cell fates correctly prior to the actual fate of 90% of cells

(depending on generation, see figure 3). In other words, it was

possible to predict most fates before they happened. The

predictions were generated from a small moving window of cell

area measurements prior to the majority of cell divisions (i.e. fate

was predicted for almost all cells before fate was observed). Our

results show that in all generations more than 90 percent of

lymphocyte fates can be predicted in advance using cell area-

gradient, and training on a large dataset. Since we did not provide

generation as an input to the classifier, our results apply to

experiments where generation is not available. Using generation

(as a prior), higher accuracy could be expected.

The method of computing area-gradient da(t) for a single cell at

time t is given in equation 1. The gradient is taken as the

difference in automatically segmented area between the current

time t and a prior time t{P. To smooth the measured areas, cell

area measurements a(t) are summed over a window of radius W :

da(t)~
XtzW

t1~t{W

a(t1)

0
@

1
A{

Xt{PzW

t2~t{P{W

a(t2)

0
@

1
A ð1Þ

Our method of fate prediction was entirely automatic, but was

trained on data that had been manually corrected using

TrackAssist. The quantity and quality of tracking data resulting

from our semi-automated approach is necessary for training cell

behaviour prediction. Using a realtime tracking system with fully

automatic cell fate prediction could allow in vitro segregation or

other intervention prior to cell division, death or expression of a

phenotype characteristic. The methods described in this paper are

fast and accurate enough to allow automatic realtime intervention.

Some caution should be applied to interpretation of these results

for the following reasons. First, the data was heavily skewed in

some generations towards a particular fate. Accuracies of

approximately 85%, 60%, 60% and 90% are possible in

generations 2,3,4 and 5 simply based on the prior probability of

one fate. However, our classifier performance was able to exceed

this prior probability in all generations, substantially in generations

3 and 4 where both fates occurred with high frequency. The

second reason for caution is that we tested our classifier accuracy

at each time point, producing a series of classification accuracy

values (figure 3). In novel experiments under different conditions,

the optimum time to apply the classifier might not be known.

Earlier classification results in lower accuracy because cells haven’t

yet grown; later classification loses value because many cells’ fates

have already occurred. We have described here the optimum

classification performance prior to the determination of more than

Figure 2. This figure is a reproduction of figure 2 in Hawkins et al [5]. However, we have selected two abnormal profiles (A) and (B). Each
panel shows cell area over time, across several generations, for a single lineage. High frequency variation in cell area is due to changes in illumination,
morphology and measurement noise. Cell growth causes a gradual increase in area. Each time a division occurs, cell area drops suddenly and one of
the daughters is used to continue the series. (A) shows the area profile of a lineage that is believed to have undergone a failed division event at
approximately 38 hours. Two lineages are plotted, in red and black. They share the same ancestors for 2 generations, and have a similar growth
profile in the third generation until our postulated ‘‘failed division’’. Thereafter, one lineage (red) shows a further division giving a daughter that does
not grow or divide. The other lineage (black) fails to divide at the same time and continues to grow, albeit more slowly. (B) shows a lineage in which
fluorescence increased dramatically prior to death (from about 63 hours) without a corresponding increase in transmission image cell area.
Automatic segmentation falsely dilated the cell area. One possible explanation is that GFP production continues (possibly with less regulation) in
some cells even after the division machinery ceases to operate.
doi:10.1371/journal.pone.0083251.g002
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90% of cells’ fates. In all generations we were able to achieve

classification accuracy in excess of 90%, but in some generations

only after more than 10% of fates had occurred.

Improvement of fate prediction using cell area was hampered by

small and heavily skewed training data in some generations. In

generations 2 and 5 the majority of cells have a common fate. The

proportion of cells that will die in a given generation could be

provided to the classifier as a prior and would likely increase

prediction accuracy. However, in this paper we wished to show

that we can predict more accurately than is possible using only the

prior probability of a given fate in each generation. Therefore, we

show the accuracy possible by constantly predicting either fate as a

reference, and are able to predict much more accurately than this

in generations 3 and 4 (figure 3). In generations 2 and 5 it was not

possible to significantly improve on constant-fate classification,

because very few cells in training and testing data had the

alternative fate. More measurements could improve prediction: in

[44], cell centroid, area, eccentricity, major axis length, and

orientation were considered. Although in our experiments

lymphocyte proliferation is sufficiently delayed for us to observe

every division, in other protocols cell generation data may not be

available.

2.3.2 Lymphocyte area, generation, and fate.

1. Lymphocyte area is smaller and less variable with successive generations,

for cells fated to divide.

Figure 4 (panels A and C) shows histograms of cell area by

generation. Separately plotting cells of differing fates reveals some

interesting observations. For cells fated to divide, as expected,

Figure 3. Predicting the fate of tracked cells by measuring growth. We used a simple SVM classifier to predict the fates of lymphocytes given
the gradient of their observed area over time. Gradients were calculated from a rolling window of area measurements. In some generations we were
able to predict cell fate with more than 90% accuracy shortly prior to the majority of divisions and before almost all deaths. The fate of every cell was
independently predicted (series shown in red) at the time of capture of every image given data about its observed area produced by tracking. Since
in many generations or after most division events the majority of cells have the same fate, we also show the prediction accuracy possible by
predicting all cells die (blue series) or divide (pink series). We expect the SVM predictor to perform better than either constant-fate prediction. To be
useful, the classifier must correctly predict fates before they occur. A period of observation is required to measure growth accurately, but these results
show that for the majority of cells enough measurements are available prior to most division events. In many generations (including those not
shown) there was insufficient training data, or the samples were highly skewed to a specific fate. These factors reduced classifier accuracy; with more
data, it is likely that better classification could be achieved. We have included less successful results such as generation 5 to illustrate the effects of
highly skewed training data. Since we used only 33% of data for training, the classifier in generation 5 had only 6 training samples for the dividing
fate.
doi:10.1371/journal.pone.0083251.g003
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modal cell size decreases with each generation. Variance in cell

size also decreases with successive generations.

2. Bimodal distributions of cell area for Lymphocytes fated to die

For cells fated to die, the data are less clear (figure 4 panel C).

There is no strong ordering of the means or variances by

generation. In generations 1, 2 and 3, histograms of dying cells’

areas do not show unimodal distributions. Instead, bimodal

histograms are observed. A substantial part of the dying cell

population (up to 40%) is in the smaller mode in some generations.

By contrast, for cells fated to divide, the area histograms are

unimodal. The distributions of cell area for cells fated to die are

dissimilar to cells fated to divide, in all generations except 4 and 5.

The bimodal distributions cannot be explained by cell segmenta-

tion bias due to varying fluorescence (see section 2.4), because

these artefacts were only found in a tiny fraction of the total

population. Further, we identified the segmentation bias by

looking at cells with growth before death. The histograms of

dying cell area-gradients for these generations are unimodal, not

bimodal. It is not simply that some dying cells grow - or are

measured as growing - prior to death. A number of large cells from

early generations are fated to die despite their size. These cells are

abnormally large, compared to the mean size of cells from either

fate, in generation 2. These mixed results suggest there may be

multiple causes of cell death, whose relative prevalence varies by

generation.

2.3.3 Lymphocyte motility, generation, and fate. We

found some interesting and consistent variations in lymphocyte

motility when grouped by generation and fate. While recognizing

that in vivo motility will likely be different due to surfaces that aid

movement, fluid medium and intercellular influences, the internal

characteristics of lymphocytes are the most likely cause of

phenomena observed. More importantly, in vitro motility could

still be useful as a proxy or predictor for in vivo behaviour or

phenotype. In the following results, motility is assumed to be the

distance between cell centroids between successive images.

Centroids are computed as the centre-of-mass of the automatically

Figure 4. Histograms of cell area, and speed, for each fate and generation. Cell areas and speeds are computed as mean values over the
lifetime of each cell. Since the total number of cells in each category varies, values shown are proportions of category total. Figures A and C show
histograms of area, and figures B and D show histograms of speed (motility). These results suggest that cells fated to divide tend to move more
slowly with each successive generation, and that cells fated to die tend to move more quickly than cells fated to divide. As expected, cells fated to
divide tend to be smaller with each generation of division, but the relationship between area and fate is less clear for cells fated to die. In some
generations dying cells’ size follows an unexpected bimodal distribution. It is possible that the bimodal results are a consequence of systematic
segmentation bias caused by intensely fluorescing dying cells (see section 2.4).
doi:10.1371/journal.pone.0083251.g004
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segmented, connected pixels (further details is in the section 4.1).

The impact of cell shape changes on measured motility has not

been considered.

1. Lymphocytes fated to divide tend to move more slowly in later generations

Figure 4 (panels B and D) shows histograms of cell speed by

generation. Although the distributions are not grossly different by

fate or generation, there are some interesting observations. Cells

fated to divide tend to move more slowly in later generations.

There is a gradual shift in mass from the high-speed tail of the

distribution to the slower mode. Each successive generation shows

an incremental shift towards slower motion. Again these observa-

tions could be used to assist classifiers or predictors of cell fate or

phenotype and were not previously reported due to the difficulty

involved in generating enough data. Even a weak signal can be

incorporated in a multivariate prediction algorithm.

2. Lymphocytes fated to die tend to move faster than those fated to divide

In all generations cells fated to die tend to move faster than cells

fated to divide. This was unexpected as greater lymphocyte

motility is associated with an increased immune response [14].

2.4 No evidence of genuine cell growth in final
generation

Figure 5 shows histograms of cell area-gradient and relative area

at division and death. The area-gradient represents the rate of

growth; relative area gives scale of net change. Measurements at

the start and end of cells’ lifecycles are computed over a window of

36 frames (approx. 3 hours) to reduce noise. Panels A and C show

that, as expected, cells fated to divide tend to grow, and are larger

at division (typically 1.256 their original area according to panel

B). Cells fated to die do not grow, with most shrinking. However, a

small number of cells fated to die appear to show substantial

growth prior to death. This was not reported by Hawkins et al

[5,46] who noted that in the clones where cell size was measured

over time no growth occurred after a cell had ‘‘decided’’ to die. On

this basis they reached the conclusion that cell fate was decided

early in the cell cycle.

With any distribution of values, some values greater than the

mean would be expected even if only due to measurement noise.

The relatively high proportion of cells showing small positive

gradients or slightly larger relative areas may be simply

measurement noise. However, 3.75% of cells fated to die were

measured as having substantial growth that is unlikely to be

measurement noise. For the purpose of this discussion substantial

growth is defined as a relative cell area at death of 1.4 or greater,

this threshold being 2 standard deviations above the mean relative

area of 0.9. In panel D it can be seen that a small mode of cells

were measured as growing to nearly twice their original size before

death.

Our results were generated by segmenting the cells in the

fluorescence channel. We investigated the 3.75% outliers by

visually comparing their segmented contours in with their

appearance in both fluorescence and transmission image channels.

Some dying cells did grow, but we believe these cells were really

‘‘failed divisions’’ because they showed a pattern of rapid growth,

followed by a period of slower growth (see figure 2). In these cases,

the change from rapid to slow growth also coincided with division

of the sibling cell.

Other dying and growing cells had segmented contours that

were not corroborated by the transmission image (see figure 6).

The growth in these cells was therefore a systematic error of our

segmentation algorithm. This is a good example of the ways that

automated methods can produce misleading statistics. We found

that some dying cells start to fluoresce more strongly than normal.

In addition to any blurring caused by the point-spread function of

the microscope optics, the intensity of the fluorescence is partly a

function of the thickness of the slice of the cell in the focal plane. In

consequence, fluorescence is greatest nearer the centre of the cell

and least near the edges of the cell. If the cytoplasm is uniformly

brighter, a greater fraction of the cell area passes the threshold test

causing the contour of the segmented cell to dilate.

After a thorough manual review of all cells showing significant

growth we could not find any cell that convincingly showed any

growth in the final generation, therefore our results strongly

support an early determination of cell fate within the cell cycle.

The evidence is particularly strong due to the quantity of cells that

we tracked over several generations. Unlike genuine growth

leading to cell division, the onset of increased fluorescence in dying

cells is late in the life of the cell. This meant it did not significantly

impact on our ability to predict fate.

2.5 Sibling growth correlations
This data is provided because it has not previously been shown

(for example, in previous publications).

1. Rate of growth in siblings both fated to divide strongly correlated

Figure 7 shows correlations between the area-gradients of

siblings. The area-gradient is the rate of change in cell area over

time. Ignoring fate, there is a weak positive correlation between

growth rates of siblings (panel D). However, when different fate

combinations are shown separately a more informative picture

emerges. Panel A shows a strong positive correlation between

siblings who both divide.

2. Rate of growth in siblings not correlated for other combinations of fates

In the case that one or both siblings do not divide, their rates of

growth are not correlated (see figure 7 panels B (one dies, one

divides) and C (both die)).

Discussion

The software used for these experiments has been released

under the GPL2 open source licence and is available at:

github.com/NICTA/TrackAssist.

Installation instructions can be found at: github.com/NICTA/

TrackAssist/wiki/Install/wiki/Install.

Raw data from these experiments (excluding images) are

available at: github.com/NICTA/TrackAssist/tree/downloads/

tree/downloads.

The data includes the contours and other properties of all

detections and tracks.

The most striking result from our data was that we were able to

predict individual lymphocyte fates with useful accuracy using only

observations prior to the division or death of almost all cells. We

also observed that in vitro, lymphocytes tend to slow down in later

generations and that lymphocytes fated to die tend to move more

rapidly than lymphocytes fated to divide.

These results would not be possible without the quantity of

tracking and lineage data that can be produced using semi-

automated methods. Although we predicted fate, it is likely that

other phenotype characteristics could be predicted with the same

technique - first, semi-automated segmentation and tracking of a

large number of cells to construct a database of cell behaviour, and

second, training a classifier on this data for automatic prediction of

cell fate or phenotype in subsequent experiments. A system of this

type would have significant applications in high content screening,

or to execute experiments that require intervention based on

phenotype, such as segregation of some cells for treatment or

analysis.

For the first time we have published quantitative information

about the effort, time and methods required to produce this type of
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data from time-lapse in vitro live cell imaging experiments.

Although many researchers have extensive experience of these

issues, it is rare for them to be documented sufficiently to allow

other researchers to accurately estimate the impact of potential

problems. We intensively tracked a greater volume of lymphocytes

than previously reported, which was only possible due to efficiency

improvements.

Compared to the strategies adopted previously, considerable

time was saved. As found by Rapoport et al [38] and Scherf et al

[39], the quantity and ‘‘quality’’ of our results was improved by the

interactive and semi-automated approach we took: We have a

richer set of data that includes contours, tracks and lineage for

every cell. By reproducing published population statistics, we have

provided evidence that our results are not only of greater volume

and quality, but are also very accurate. As already discussed, this

data can be mined for features that identify new phenotypes or to

train classifiers or predictors of cell behaviour. We see no reason

why this approach cannot be generalized to other experiments.

The automation methods, graphical tools, and workflow we

describe all contributed to the practicality of the data analysis we

have reported. We argue that to generate this type of data

efficiently and accurately, all these factors must be considered and

appropriate tools should incorporate these features. Currently,

Imaris [30] is the only commercial tool offering good graphical

track interaction tools, but even that product does not allow

simultaneous editing in both lineage and imaging perspectives.

We identified a systematic bias affecting the size of cells fated to

die. The bias was due to a minority of cells fluorescing more

Figure 5. Histograms of lymphocyte area-gradients and relative areas between birth and death or division. Area-gradients were
computed as the difference between cell areas in two windows, each of duration 3 hours. The windows were fixed at cell birth and cell death or
division. A median filter of size 13 was used to remove outliers. Relative area was computed similarly, using median-filtered windows of duration
3 hours at either end of the cell’s lifetime. Relative area was computed as the ratio of the two windows’ median values i.e. a relative area of 2 means
that area doubled. ‘‘Area gradient’’ quantifies the rate of growth and ‘‘relative area’’ gives a measure of total growth achieved. Previous pedigree
studies of lymphocytes have not tracked a large quantity of cells making distributions less informative. Although, as expected, dividing cells tend to
grow and dying cells tend to shrink, approximately 8% of cells fated to die evidence some growth (defined as a relative area at death in excess of the
mean plus one standard deviation). Measurement noise explains the majority of these; others showed some growth followed by a period of zero
growth. 3.75% of cells were measured as growing substantially (relative area in excess of mean plus two S.D.), producing a second mode centred on a
relative area of 1.9 (see D). Verification in the bright field revealed that these cells did not actually grow but instead fluoresced more intensely,
resulting in a systematic segmentation bias.
doi:10.1371/journal.pone.0083251.g005

Efficient In Vitro Lymphocyte Population Modelling

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e83251



Figure 6. Systematic cell segmentation errors caused by increased fluorescence intensity in some dying cells. This data is generated
from images of one cell measured having substantial growth but which eventually died rather than divide. Plotting image intensity along cell cross-
sections allows more precise localization of cell boundaries. While in the transmission images growth cannot be substantiated, it is interesting that
the fluorescence image shows significant increase in intensity and fluorescing area, that appears to extend beyond the boundary of the cell. The red
contours were generated by TrackAssist based on difference to normalized background intensity. The dilation of the segmented area appears to be a
genuine feature of the cell, but no longer representative of cell area.
doi:10.1371/journal.pone.0083251.g006
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intensely while dying. This is a good example of the type of error

that can be expected when using automation, and shows why

automatic results should be manually verified using effective

interaction tools. The existence of a relationship between

fluorescence intensity and measured cell area may not always be

obvious, but will likely occur in many experiments if pixel intensity

thresholds are used to segment cells.

3.1 Further work
Although we have focused on cell area, growth and motility

there are a number of other characteristics that could be used to

inform tracking and achieve higher automation accuracy. For

example, lymphocytes can be treated to fluoresce in different

wavelengths (colours) indicating the onset of particular internal

events. While cell area and the intensity of fluorescence are not

constants, they change relatively slowly and so these measurements

can inform association of cells between frames.

In our software there is limited interaction between the

automation and the user. Currently, we allow the user to configure

the automation but not otherwise interact with it. A better strategy

might be to allow users to place constraints on the model and

repeatedly apply the automation to unconstrained parts. For

example, the user could ‘‘lock’’ partial or complete tracks

regardless of whether they were produced manually or by

automation. The automation would then improve the remaining

tracks given this knowledge. Allowing users to explicitly limit

automation objectives is also promising, such as ‘‘blacklisting’’ of

repeated automation errors. Suitable problem-specific representa-

tions and user interactions would be the focus of research in this

topic, because implementation of tracking constraints has been

thoroughly studied. Tracking could even become a background

Figure 7. Correlations between area-gradients of sibling cells. The area gradient is computed by applying a median filter (size 12
measurements) over each track’s size measurements, to reduce noise. A line was then fitted to the resultant points and the gradient of the line is
reported. This measures the rate of growth rather than overall size attained. Regardless of generation, there are strong positive correlations between
siblings when both siblings divide (A). When one sibling dies and another divides (B), the rates of growth are only weakly correlated. Since the
gradient is computed throughout the life of the cell, this suggests that fate determines cell growth early in the life of the cell reducing growth of the
dying cell compared to its sibling. In the case of both siblings dying (C), both siblings rates of growth are clustered around zero with a slight positive
correlation, although as discussed in section 2.4 any apparent growth in the final generation may be an artefact of increased fluorescence intensity
and automatic segmentation. Panel (D) shows correlations for all fate combinations, an intermediate correlation as expected because the division
correlation is diluted.
doi:10.1371/journal.pone.0083251.g007
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task triggered automatically after every user intervention. This

could lead to an effect similar to the spell-check function in many

word-processing packages, where issues are immediately high-

lighted for user review.

Segmentation could also be improved by more intelligent tools

that exploit users’ intelligence in an efficient way. Graphical tools

can be designed to facilitate ‘‘knowledge transfer’’ from the user to

the computer, by providing hints that software learns to associate

or interpret in terms of image data. For example, existing imaging-

based cell segmentation tools ask the user to click inside the cell

and then try to infer the boundaries from image data. This

approach has worked well in a number of image interpretation

domains, such as segmenting roads or counting trees in aerial

imaging (Zhou et al [47,48]). Their assistive semi-automated

methods were found to reduce user time required by 40–76%.

The authors are optimistic that some of the assistive, interactive

software methods given above might help to boost researcher

productivity, potentially leading to richer results and more

complex insights into cell biology and population dynamics. In

many cases, all necessary technical solutions are available and lack

only suitable interface development to enable application to

specific problem domains.

Materials and Methods

The data reported in this paper was produced by culturing

lymphocytes in microwells. Microwells are physical partitions that

prevent small groups of cells from mixing. Each microwell is

effectively a separate tracking problem. For easy segmentation,

lymphocytes were sourced from transgenic mice whose cells

continuously express GFP (a Green Fluorescing Protein). Two

images (transmission and fluorescence channels) were captured

every 5 minutes over a period of 108 hours resulting in 2

sequences of 1296 images of each microwell. Full details of the

raw data that was produced can be found in the section 1 in File

S1.

Processing of this data was undertaken using a piece of software

developed expressly for this task, named TrackAssist. Instructions

for downloading, building and running this software can be found

at: github.com/NICTA/TrackAssist/wiki/Install.

In this software, cells were automatically segmented using the

GFP channel, due to the high intensity of cells against an otherwise

dark background. Automatic segmentation was followed by

automatic tracking (and implicitly, lineage recovery). Finally, user

interaction with the software was used to correct tracks (and if

necessary, segmentation) until an accurate result was obtained. A

thorough description of the segmentation, tracking and user

interaction features of the software can be found in File S1.

4.1 Automation: Cell segmentation
Cells were automatically segmented using the GFP channel, due

to the high intensity of cells against an otherwise dark background.

Figure 8 shows the process used to segment constantly fluorescing

cells. Each image was processed independently. Each input was a

16-bit greyscale image I . (a) Images were independently normal-

ized to give pixels a mean intensity of 0 and a standard deviation of

D~1, resulting in image N. (b) Images were smoothed by 2-d

convolution with a Gaussian kernel with sigma S~6. The kernel

sigma was determined by cell resolution and size in pixels.

The range of intensity values were then scaled to the interval

½0,255�, giving image S. (c) A clipped intensity image C was

produced from S by thresholding with a user-specified parameter

T ; pixels with intensity less than T were assigned a value of 0

(denoting background). Ideally, cells will have an intensity value

Figure 8. Process for automatic detection and segmentation of GFP cells that constantly fluoresce. This figure is provided to give the
reader a more detailed understanding of the steps involved. The image labelled ‘‘START’’ shows 5 cells in a single microwell, with the user-defined
Region Of Interest (ROI) shown as a green box. The images are normalized (a), smoothed (b) and thresholded (c) at a fixed intensity level. Intensity
levels above the threshold are preserved, allowing the Watershed algorithm and connected-component analysis to label pixels associated with each
individual cell (labels shown in image (e)). The Watershed step is necessary to segment cells that are touching. The remaining steps (f–g) try to control
over or under-segmentation. The sanity check (i) exists to detect bad images due to acquisition faults. Bad (white noise) images produce an
implausible number of detections and are then skipped. The final segmented contours are shown in (‘‘FINISH’’), with one cell selected.
doi:10.1371/journal.pone.0083251.g008

Efficient In Vitro Lymphocyte Population Modelling

PLOS ONE | www.plosone.org 13 January 2014 | Volume 9 | Issue 1 | e83251



other than zero, whereas non-cell areas will have a value of zero.

Note that due to the method of normalization, a single intensity

threshold can be used throughout an image sequence assuming

that the intensity histograms of the images do not change

significantly.

The remaining steps are designed to separate lymphocytes that

are touching each other (i.e. ‘‘de-clumping’’). The method is based

on the assumption that fluorescence intensity is greatest in the

centre of each lymphocyte and decreases towards the perimeter.

First, (d) the clipped image C is inverted, such that the brightest

parts of cells have the lowest values. This image is then passed as

input to the Watershed transform (e) [41], which associates each

foreground pixel with the nearest minima (i.e. nearest cell-centre).

The association is performed by producing a labelled image (see

figure 8) in which each pixel’s value is the label of the connected

component (i.e. cell) it belongs to. In the event that minima (cell

centres) are much closer than minimum cell size, they cannot be

separate cells. Therefore, we merge connected components where

the minima are less than 3 pixels apart (f). We also remove

components with a total area less than another threshold A~25
pixels (g). Finally, the contours of the remaining components are

walked using the Moore Neighbourhood algorithm [49] (h).

The final part of image processing deals with some camera

malfunctions and and user preferences. Occasionally, the camera

will capture an image without illumination, resulting in white noise

and no signal. This causes image processing to produce a very

large number of small cell detections. We skip processing these

images by comparing the number of detections in the previous

image to the number of detections in the current image. If there

are more than 106 the number of detections in the second image,

it is assumed that a camera fault has occurred and all detections

are rejected (i). Finally, we allow the user to specify a Region of

Interest (ROI), typically one microwell, and discard cells detected

outside this area.

4.2 Automation: Cell tracking
Cells are detected in each frame independently. Detections of

the same cell over time are associated forming tracks, therefore a

track represents a sequence of cell detections over time. For cell

tracking, we wish to use tracks to infer lineage. We chose to

represent lineage implicitly, by allowing detections to be associated

with more than one track (see figure 9 A). This means that tracks

do not split or merge. Instead, some tracks share detections to

model lineage. For example, the final detection of a mother cell

track will also be the first detection in each of the two daughter cell

tracks.

To construct lineages of cell tracks, we first associate detections

into track fragments without allowing splits or merges (figure 9 B).

Track creation is allowed at any time point. We subsequently

prune tracks to remove any that are very short, or very sparse (see

figure 9 C,D). We also remove false-splits, where exactly two tracks

share a detection (figure 9 E).

After these steps, it is necessary to assemble track fragments into

lineages. We expect that orphan tracks are very unlikely to be

observed after the first few frames, because microwell walls

prevent cells from moving into view. Therefore, we try to find

sequential links between track-fragments and candidate cell

divisions to explain the set of tracks that are observed. These

merge operations may also generate false splits, short tracks and

Figure 9. Modelling of tracks and lineage. We represent lineage implicitly by allowing a detection to be included in more than one track (A).
Orphans are tracks without parents (B). Sparse tracks (C) have few detections over a long period of time. Short tracks (D) have few detections in total.
False splits (E) occur during automated and manual track editing, and can be converted into a single longer track.
doi:10.1371/journal.pone.0083251.g009

Figure 10. Flowchart illustrating process for automatically tracking cells, with lineage constraints.
doi:10.1371/journal.pone.0083251.g010
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sparse tracks that need to be pruned. The end result is the lineage.

An overview of the complete tracking process is shown in figure 10.

4.2.1 Detection and track association. A family of

algorithms based on Bayes’ theorem have been widely and

successfully applied to tracking problems [50]. These algorithms

iteratively update a probability density function of objects’ state

(position, velocity, area etc.) using measurements from each

successive image. In our case, objects are cells. Mathematically,

this posterior density is defined as p(xk DZ1:k), where xk is the state

at time t~k and Z1:k~fz1,z2, . . . ,zkg. zt is the detection collected

at time and t is the collection of all detections up to time t~k. The

posterior density can be obtained from predicted density and a

measurement likelihood function:

p(xk DZ1:k)!p(zk Dxk)p(xkDzk{1) ð2Þ

The two terms on the right hand side in (2) are likelihood and

predicted density respectively. The predicted density of the state

depends on the dynamic nature of the object (how the object

moves in each time interval). On the other hand, the likelihood

term captures the fidelity of the detector (how accurately has the

detector detected the object). Together, these two terms contribute

to the posterior state density.

More practically, the detector may miss the target and, in

addition, may detect false objects. The simple likehood, described

above, does not capture these types of sensor properties. In PDA,

[51] these properties were introduced by the probability of

detection PD (0vPDƒ1) and by modeling false detection density

respectively. These parameters affect the likelihood and thereby

the state density (from 2).

The tracking of cells is essentially a multiple-object tracking

problem. Hence, additional hypotheses are required to accom-

modate the presence of multiple objects and the reality that a

detection can originate from any of the objects in the vicinity (or

none in case of missed detection). This problem was elegantly

resolved in the Joint PDA (JPDA) algorithm [52].

JPDA weights the likelihood of a detection associated to an

object based on the likelihoods of the same detection to other

objects as well as to the event that the detection might just be

originating from none of the objects. Finally, JPDA provides an

weighted mixture of all hypotheses as the final posterior density of

the object state.

However, there are problems in using the JPDA algorithm for

tracking cells, [42]. Some of these problems include the way cells

stick together, and in the case of time-lapse microscopy, the large

sample interval. Therefore, in [42], the authors used the likelihood

of JPDA and introduced an optimal assignment algorithm to

associate detections to objects (instead of weighted mixture of all

detections) in order to calculate posterior state density. The

proposed algorithm, Extended-Hungarian-JPDA, was shown to

have improved performance.

However, the use of JPDA lacks in one important aspect. The

algorithm has no innate capacity to distinguish between a true

track (a track following a true object with defined dynamic model)

and a false track (a track that might have been initialized

incorrectly from a false detection). Therefore, it depends on

heuristics such as ‘‘N missed detections over M time samples’’ to

decide whether to retain or terminate a track. This is not a

systematic solution, i.e. for example it does not differentiate

between a long established track and a short spurious track.

The Joint Integrated PDA (JIPDA) ([53]) and its computation-

ally efficient version, Linear LJIPDA ([43]) introduce the concept

of ‘‘object existence’’ as a random event and proposed a systematic

way to calculate the probability of that event. The existence of an

object i at the time t is given by Ei
t~1 while its complementary

event is given by Ei
t~0 (the object does not exist). JIPDA or

LJIPDA calculates the likelihood as in standard JPDA discussed

above except that the likelihood values will be additionally

weighted by the probability of existence of each object (the long

established objects will get priority when a detection is to be

assigned to several objects in the vicinity). LJIPDA then iteratively

updates the probability of existence. This forms the basis of

automated ‘‘track management’’ namely, if p(Ei
t~1)vc, the track

gets terminated (c is a suitably chosen value between 0 and 1).

In our software, we combined the Extended-Hungarian

approach from [42] and the concept of ‘‘object existence’’ from

LJIPDA ([43]). This LJIPDA-Hungarian tracking algorithm

overcomes the common problems in cell-tracking applications

(low sampling rate, clustered cells etc.) and also provides flexible

track management capabilities through the existence probabilities

of each track, which allow us to model the population constraints

of microwell in vitro cell cultures.

We assumed a Brownian model for cell motion. The tracking

module receives the centroid of each detection (collected from the

segmentation process) and tries to associate each detection to one

of the existing tracks using the LJIPDA-Hungarian algorithm. It

then updates the probability of existence for each track and

decides whether to retain or terminate the track. We use c~0:001
as the threshold to terminate a track. Therefore, the software

resulted in high quality tracks and terminated spurious tracks very

early.

4.2.2 Lineage constraints. The tracking algorithm produces

a list of track segments where each track is a collection of one-to-

one correspondences between cells in adjacent frames. This

formulation of the problem allows us to leverage the target

tracking literature to obtain a robust tracking algorithm [50]. Cell

divisions and the construction of the lineage trees are inferred from

the track fragments. Due to the physical confinement of cells

within microwells all cells must be either a founder cell or a

descendant of a founder. Therefore the start of a new track

segmented in any frame other than the first implies a division. In a

typical cell division event, the mother and one daughter will

already be associated as a track fragment, with the other daughter

being represented as a new track. The orphaned daughter can be

re-associated with her mother by finding the most suitable cell

detection in the image immediately prior to orphan track

initiation.

A distance function is needed to compare potential mothers. An

obvious choice is pixel distance, but it is not robust to image scale

changes and does not model uncertainty in the locations of the

detected cells. We use the Mahalanobis distance between the

position of the first detection of the new track and the position

predicted by the motion model for each existing track:

d~DM (yt,x’t) ð3Þ

where DM is the Mahalanobis distance, yt is the location of the

first detection of the orphan track, x’t is a Gaussian distribution

representing the motion prior at time step t (i.e. the posterior at

time t{1 propagated through a Brownian motion model.) The

track with the smallest d that satisfies dvdT is chosen as the

mother track (i.e. under extreme circumstances orphans are

allowed).

Note that more accurate association of mother and daughter

cells could probably be achieved by consideration of cell size, and

conservation of total cell volume (the daughters’ volumes should be
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approximately equal to the mother’s volume prior to division).

However, allowing the cell size to influence lineage, which in turn

is used to produce statistics on cell size, risks biasing the results.

While nothing in the experiment can be modelled as completely

independent statistical processes, it is clear that cell position is

relatively independent of cell size.

4.3 Workflow
We will describe the workflow we used to generate our results in

the times reported. The unit of work is considered to be building a

complete description of all lymphocytes in one microwell. This

includes detecting the contours of all cells in the microwell in every

frame, and association between all these detections generating a

complete lineage.

Figure 1 outlines the tasks involved in processing one microwell.

The first stage is automatic segmentation. Although the process is

automatic, on a new dataset it can take a few minutes to test a

variety of parameters until good segmentation is achieved. The

software supports parameter evaluation by allowing tests on one or

more images before application to the entire sequence. Addition-

ally, the results of each stage of image processing can be previewed

for the current image. The steps involved in automatic segmen-

tation are described in figure 8.

We found that a 50-frame test window was suitable to

determine good parameters for automatic segmentation, because

illumination, microwell population and cell sizes change during

imaging and affect thresholds. In practice, this task takes between

5 and 10 minutes, though it could probably be automated [54].

Once good parameters are found, they can be applied to the entire

sequence. The resultant detections were reviewed by scanning

quickly through the sequence to look for an unusually high or low

number of detections, or detections that looked too large. Rarely, a

second round of parameter tuning would be required. No manual

correction of detections was performed; instead, bad detections

were simply excised from tracks. Individual detections not part of

any track had no impact on our results as they were ignored.

The second stage is automatic tracking. The default parameters

were used in every case. The third and final stage is manual track

review & editing. After automatic tracking, the lineage window

was used to determine where to edit tracks (see figure 11). Rather

than review every track from end to end, we only looked at

divisions and terminations. Every division and termination was

reviewed by replaying those events over a window of approx-

imately 5–10 images with tracking overlays. Where errors were

found, they were typically mis-associations due to division or death

events - most commonly, assigning the children resulting from a

division to the wrong parent. (A better software would consider cell

size when assigning division products to parents.) Errors were fixed

by separating tracks into parts at the moment of mis-association,

then joining the track halves correctly. Once all division and death

events have been reviewed, the microwell is complete.

4.4 Interaction
This section will describe the tools we provided for users to

interact with the detection, track and lineage models necessary for

the type of spatial and temporal analyses given in this paper. To

Figure 11. Graphical user interface of the TrackAssist software. This figure shows one imaging window on the left (many can be shown at
once) and one lineage window (right). The lineage window has a vertical green line indicating the currently viewed time point and a thick horizontal
green bar indicating a single selected track. The selected track is visible on in the imaging window. Tracks are currently shown as a ‘‘window’’ of 4
detections, 1 future (yellow), and 3 past (purple). The current detection has a dot in the centre. Green circles indicate the size of each detection. The
past and future time window is controlled by moving the green circles in the time control (bottom). The tracking tools are also visible. In row-major
order from top left, these are: Annotated tracking; associate tracks & detections; de-select all tracks & detections; delete selected track; automatic
tracking; delete all tracks; fork tracks; tracking legend; select tracks & detections; separate selected tracks & detections.
doi:10.1371/journal.pone.0083251.g011
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avoid the common issue of having a near-perfect automatic

solution and no tools to fix the last few errors, we decided that all

data produced by the software must have full options for manual

editing and review, so that any error can be fixed if the user

decides it is worth the effort. We provide these descriptions to

describe the minimum set of features we needed to allow efficient

manual review and correction of cell tracks & lineage in time-lapse

microscopy. A thorough description of the tools is also necessary to

understand the workflow we adopted, which is detailed below.

4.4.1 Detection editing tools. Using tracking terminology, a

detection is one observation of a cell in a specific image.

TrackAssist displays detections as a translucent area bounded by

an 8-way connected contour. This is natural for small objects

where rasterization effects are significant and the accuracy of

segmentation can be measured to a resolution of one pixel. By

colouring the contours in an unnatural way (figure 12), they are

clearly visible regardless of the zoom level of the image.

We provide a detection selection tool, that toggles the selection

status of detections when they are clicked. Therefore, an arbitrary

set of detections can be simultaneously selected. A de-select-all tool is

provided for convenience. New detections can be created with a

special tool, based on a circular brush (since most cells are

approximately circular). The contours of detections can be

improved using brush-add and brush erase tools, which add or

subtract a variably sized circular area from a selected cell. We

originally intended to add other brush shapes but found this

unnecessary in practice.

A merge tool allows a set of selected detections to be combined

into a single contour. This is useful for improving over-segmented

results. A move tool allows detections to be moved intact although

we found this less useful. Often, while experimenting with

automatic detection of cells, bad parameters cause a large number

of detections that must be deleted. A delete-all tool allows the

removal of all detections in a range of images (by default, the

current image). Another option is to delete all selected detections.

We provide two tools for automatically detecting cells. One, not

covered in this paper, used cell motion to segment lymphocytes

from background microwell appearance. The other automatic

detector assumes that lymphocytes constantly fluoresce, and is

described in figure 8. Note that even given 95% accurate

automatic cell detection, the automated method is only a small

part of the software functionality required to efficiently segment

cells. A small set of interactive tools is more complex to implement.

4.4.2 Track editing tools. We provided an annotated tracking

tool as an alternative to automatic tracking. This tool is useful for

quickly recovering lineage information without reconstructing

tracks in detail. The tool is similar to the Metamorph tracking tool

[22] used in Hawkins et al [5] and tools described in [23] and [21].

The approach involves manually tagging cells at the start of

imaging, and at all division and death events. We require that each

cell is tagged at least at start and end (and as often between as

desired). Each tag of a cell must give the cell a unique ID. At least

once, each cell must have a tag giving the cell’s parent’s ID. If the

mother tag is absent, the cell is assumed to have no known parent.

Using these tags, complete lineage and sparse tracking models can

be computed directly.

Since tracks are the association of detections over time, it is very

useful to be able to see past and future detections overlaid on the

Figure 12. Graphical user interface of the TrackAssist software. The bright field is shown here, with histogram based manual contrast
enhancement for viewing purposes. Five segmented cells are shown, two of which are selected. Other objects in the well are debris. The detection
editing tools are shown in a panel on the left. In row-major order from top-left, these are: De-select all tracks and detections; merge selected
detections; automatically create detections (by background modelling and motion detection); create detection; delete selected detections; cut brush
from selected detection contour; select detections; move detection; automatically create detections (based on thresholded constant fluorescence);
add brush area to selected detection contour; delete all detections in range of images.
doi:10.1371/journal.pone.0083251.g012
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current image and current detections (see figure 11). We provide a

time-window control to allow the range of past and future

detections displayed to be adjusted independently. Detections

shown are selectable regardless of whether they are in the current

image or not. This allows a set of detections to be selected and

associated as a track with the associate tool. Similarly, a separate tool

allows a set of selected detections to be dis-associated. Existing

tracks can be associated with additional detections as long as there

are no overlaps in time.

Tracks are represented by circles centred at each detection, with

straight lines between the centres (see figure 11). Track starts,

terminations and divisions all have differently coloured dots on the

relevant detections. The number of detections in a track that are

visible is determined by the time window control. Tracks can be

selected by clicking inside the circles of any detections belonging to

the track.

We also provide a lineage view (figure 11). This perspective

shows all tracks but not orphan detections. Tracks’ selection status

can be toggled by double-clicking on the relevant rows in the

lineage view. Note that track selection applies to both lineage and

image views, allowing the lineage context of tracks to be associated

with their appearance. Since there are many ways to manipulate

both track and detection selection status, a de-select all tracks and

detections tool is provided for convenience.

Tracks can be deleted with a dedicated tool. All selected, or all

tracks can be deleted.

We represent lineage implicitly by having tracks’ detections

overlap (explained in figure 9). However, the software normally

forbids detections being associated with multiple tracks. Therefore

it is necessary to provide a special tool to join tracks to define their

lineage. The fork tool requires the user to select 3 tracks. One track

must terminate before the others begin and is designated the

mother track. The last detection of the mother track is added to

the other two tracks. To undo a fork, the separate tracks tool can be

used to remove the linking detection from all 3 tracks, before re-

associating it with the mother.

Finally, an automatic tracking tool is provided. Although some

parameters are adjustable, the tool is essentially automatic. The

methods used were described in section 4.2.

Supporting Information

File S1 Supporting text, figures and tables. The file

contains data acquisition methods, detail of different visualization

features of the software, labour efficiency result, tables and figures

to support various conclusions and observations.

(PDF)
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