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In this study, we used transcriptome and proteome technology to analyze

molecular level changes in tissues of Coreius guichenoti cultured at high

temperature (HT) and low temperature (LT). We also screened for specific

anti-stress genes and proteins and evaluated the relationships between them.

We identified 201,803 unigenes and 10,623 proteins. Compared with the

normal temperature (NT), 408 genes and 1,204 proteins were up- or down-

regulated in brain tissues, respectively, at HT, and the numbers were 8 and

149 at LT. In gill tissues, the numbers were 101 and 1,745 at HT and 27 and 511 at

LT. In gill tissues at both temperatures, the degree of down-regulation (average,

HT 204.67-fold, LT 443.13-fold) was much greater than that of up-regulation

(average, HT 28.69-fold, LT 17.68-fold). The protein expression in brain

(average, up 52.67-fold, down 13.54-fold) and gill (average, up 73.02-fold,

down 12.92-fold) tissues increased more at HT than at LT. The protein

expression in brain (up 3.77-fold, down 4.79-fold) tissues decreased more at

LT than at HT, whereas the protein expression in gill (up 8.64-fold, down 4.35-

fold) tissues was up-regulated more at LT than at HT. At HT, brain tissues were

mainly enriched in pathways related to metabolism and DNA repair; at LT, they

were mainly enriched in cancer-related pathways. At both temperatures, gill

tissues weremainly enriched in pathways related to cell proliferation, apoptosis,

immunity, and inflammation. Additionally, Kyoto Encyclopedia of Genes and

Genomes pathway analysis showedmore differentially expressed proteins in gill

tissues than in brain tissues at HT and LT, and temperature stimulation led to the

strengthening of metabolic pathways in both tissues. Of the 96 genes we

identified as potentially being highly related to temperature stress (59 from

transcriptome and 38 from proteome data), we detected heat shock protein 70

in both the transcriptome and proteome. Our results improved our

understanding of the differential relationship between gene expression and

protein expression in C. guichenoti. Identifying important temperature stress
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genes will help lay a foundation for cultivatingC. guichenoti, and even other fish

species, that are resistant to HT or LT.
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Coreius guichenoti, transcriptome, proteome, differential expression, temperature
stimulation

1 Introduction

The cyprinid Coreius guichenoti is an economically

important fish species that is distributed in the main stream

and tributaries of the upper reaches of the Yangtze River, the

lower reaches of the Jinsha River, and in the Minjiang River,

Jialing River, Wujiang River, and other waterways (Fish

laboratory of Hubei institute of aquatic biology, 1976; Ding,

1994). The wild resources of C. guichenoti have decreased sharply

due to the development of hydropower plants in the Yangtze

River Basin (Liu et al., 1990; Yang et al., 2017; Li T. et al., 2020).

Its suitable growth water temperature is 20°C–25°C (Yang et al.,

2017), but the operation of power station dams greatly affects the

water temperature in the river, which in turn has negative effects

on fish growth and reproduction (Li T. et al., 2021). By

combining body weight and temperature data and the

conventional metabolic rate of C. guichenoti and establishing a

model, Luo and Wang (2012) found that the increased water

temperature caused by dam construction in the Yangtze River

may lead to a significant increase in the energy demand of this

species and have certain ecological consequences.

In 2013, C. guichenoti became an incidental species (Liu and

Zhou, 2018) and the wild population was listed as a national

secondary protected species. As early as 12 December 2007, C.

guichenoti was included in the list of economic aquatic animal

and plant resources under national key protection in China.

Compared with the survival of artificial domestication, the

artificial cultivation and maturation of parent fish of this

species is more difficult (Sun et al., 2020). Therefore, investing

in more scientific research is crucial to protecting the population

resources of C. guichenoti.

Due to the scarcity of natural population resources, studies of

C. guichenoti now mainly focus on artificial reproduction (Dong

et al., 2019; Liu et al., 2020; Liu X. et al., 2021; Hu et al., 2021),

domestication (Gao et al., 2012; Qu et al., 2017; Shu et al., 2020),

and genetic diversity (Cheng et al., 2015; Xiong et al., 2016; He

et al., 2019; Li X. et al., 2021). Studies of meat quality (Xia et al.,

2015; Dong et al., 2021), gene transcription (Li X. M. et al., 2020),

gene cloning (Li, 2012), and stress response (Zhang and Chen,

2005; Li et al., 2013, 2016; Long et al., 2020) have also been

reported.

Fish are affected by various environmental factors in the

processes of growth and reproduction. When these

environmental factors change, fish undergo various stress

reactions. Because of the important economic value of C.

guichenoti and the scarcity of wild populations, understanding

the stress response caused by environmental change has largely

attracted scholars’ attention. In the natural environment,

parasitic infections can result in erosion of skin and gills,

deformation or loss of fin rays, and reduction of relative

fatness of C. guichenoti (Ran et al., 2005), and the probability

of parasitic infection is higher in juveniles than in adults (Ran

et al., 2005; Zhang and Chen, 2005). Fu et al. (2019) analyzed the

stress response of C. guichenoti after infection with

Ichthyophthirius multifiliis from the aspect of gene expression.

Acute handling stress can lead to changes in blood indicators, gill

and kidney tissues, and even parasitic infection of C. guichenoti

(Zhao, 2014; Yuan et al., 2018). Li et al. (2013) reported that only

some biological functions in head kidney tissues gradually

recovered after 24 h. Using MS-222, reducing temperature, or

applying electrical anesthesia could reduce the stress response

caused by transportation (Zhao, 2014; Zhao et al., 2014; Zhu

et al., 2015; Dong et al., 2017).

Water temperature is an important factor that affects the

growth and reproduction of fish, and it has a great impact on fish

feeding (Bacheler and Shertzer, 2020; Volkoff and Rønnestad,

2020), growth (Islam et al., 2020; Jin et al., 2021), and

physiological metabolism (Sandersfeld et al., 2017; Wen et al.,

2017, 2021). In previous studies of the stress response of C.

guichenoti to temperature, researchers focused on its effect on

routine metabolism and its use as a means of physical anesthesia

(Luo and Wang, 2012; Zhao, 2014; Zhao et al., 2014). However,

with the progress of science and technology, better and more

advanced research methods have been developed. For example,

transcriptomics and proteomics have been used to study humans

(Fagerberg et al., 2014; Cavalli et al., 2020; Chen et al., 2020),

animals (Rokyta and Ward, 2017; Panda et al., 2020; Liu Y. et al.,

2021), plants (Ramsey et al., 2020; Guo et al., 2021; Xu et al.,

2021), and microorganism (Dubrulle et al., 2020; Bassey et al.,

2021).

In this study, we used C. guichenoti as the experimental

object and temperature as the stimulating factor. We applied

the combination of transcriptomics and proteomics for the

first time to explore the mechanism that underlies high

temperature and low temperature tolerance of this fish. Our

results highlighted a complex regulatory network of thermal

responses, which can be used to further analyze the molecular

mechanisms at work in high and low temperature resistance of

C. guichenoti. Our results also provided some basic data that

can be applied to genetic breeding and protect wild C.

guichenoti after encountering extreme temperature

stimulation in the future.
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3 Methods

3.1 Ethics statement

All methods involved in fish collection and treatment were

conducted strictly in accordance with the guidelines for animal

protection and use (20170226001A) issued by the Fisheries

Institute of Sichuan Academy of Agricultural Sciences

(Sichuan, China).

3.2 Experimental design and sampling

We collected the C. guichenoti used in this experiment from

the Fisheries Institute, Sichuan Academy of Agricultural Sciences

in Sichuan, China. Their body length and weight were 5.71 ±

0.44 g and 1.26 ± 0.27 cm, respectively. Before the start of the

formal experiment, the fish were temporarily kept in the

laboratory for 7 days, and a pre-experiment was conducted to

with 4°C (low temperature, LT), 22°C (normal temperature, NT),

and 30°C (high temperature, HT). According to the pre-

experimental results, we used LT, NT, and HT for 24 h in the

main experiment. Each treatment group contained 30 fish.

The fish were euthanized by a high dose of 3-Aminobenzoic

acid ethyl ester methanesulfonate (Sigma-Aldrich, St. Louis, MO,

United States) before dissection. We removed brain and gill

tissues using sterilized scalpels and scissors. Tissues were quickly

placed in liquid nitrogen for quick freezing and then stored in

a −80°C freezer until used for analysis.

3.3 RNA extraction, library establishment
and sequencing

For RNA extraction, 2 g of each tissue sample were

thoroughly ground under low temperature, and RNA was

extracted according to the instructions of the Invitrogen

TRIzol Kit (Thermo Fisher Scientific, Waltham, MA,

United States). We detected the concentration and purity of

total RNA using a NanoDrop spectrophotometer (Thermo

Fisher Scientific), and the integrity was detected using an

Agilent 2100 Bioanalyzer and RNA 6000 Nano Kit (Agilent,

Santa Clara, CA, United States).

We used 3 μg of RNA samples to construct the libraries.

After fragmentation and reverse transcription, 400–500 base

pair cDNA was screened for PCR amplification and

purification, and finally the RNA library was obtained.

After the library was gradually diluted and quantified, we

conducted PE150 mode sequencing using the Novaseq

6000 platform (Illumina, San Diego, CA, United States).

After quality control, transcriptome assembly, and

functional annotation, the sequencing data were used for

transcriptome analysis and joint analysis with proteome

data (accession number: PRJNA869426; PRJNA869456;

PRJNA869436; PRJNA869437).

3.4 Protein extraction, library
establishment and mass spectrometry

We extracted the protein according to the instructions of the

Total Protein Extraction Kit (Nanjing Jiancheng Bioengineering

Institute, Jiangsu, China). We tested the quality of 20 μg of

protein by SDS-PAGE electrophoresis. After enzymatic

hydrolysis of the protein, 100 μg of the product were graded

using the reversed-phase high performance liquid

chromatography, and all components were collected. Next,

2 μg of peptide segments were removed, and an appropriate

amount of iRT standard peptide segments were added for data-

dependent acquisition (DDA) and data-independent acquisition

(DIA) mass spectrometry detection (Thermo Fisher Scientific).

DDA data were directly imported into Spectronaut software

(Spectronaut™ 14.4.200727.47784, Biognosys, Switzerland) to

build the spectral library. DIA data were also processed using

Spectronaut software, and the database was the same as that used

for database construction. The generated data were used for

proteome analysis and joint analysis with transcriptome data

(accession number: PXD036459).

3.5 Comparative analysis of differences
between transcriptome and proteome

We used the quantitative detection and analysis results of the

transcriptome and proteome analyses for the combined

transcriptome and proteome analysis. We identified the top

20 differentially expressed genes and proteins, searched for

their function in the NCBI database (https://www.ncbi.nlm.

nih.gov/), and analyzed and classified the degree of gene-

protein association.

3.6 Data analysis

Unigenes were annotated in NR (NCBI non-redundant

protein sequences, https://www.ncbi.nlm.nih.gov/), GO (Gene

Ontology, http://geneontology.org/), KEGG (Kyoto

Encyclopedia of Genes and Genomes, http://www.kegg.jp/),

Pfam (http://pfam.xfam.org/), eggNOG (Evolutionary

Genealogy of Genes: Non-supervised Orthologous Groups,

http://eggnog.embl.de/version_3.0/) and Swissprot (http://

www.uniprot.org/help/uniprotkb) databases. The data was

statistically analyzed by Excel (Microsoft Corporation,

Redmond, WA, United States). The principal component

analysis (PCA) was performed with SIMCA-P 14.1 (Umetrics,

Umea, Sweden). The results are presented as the mean ± standard
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deviation. Differences were considered to be significant at

p < 0.05.

4 Results

4.2 Transcriptome analysis

4.1.1 Transcriptome data statistics
For the high quality sequences in brain tissues, the range at

NT was 39,974,412 ± 2,738,421, the range at LT was 39,594,479 ±

856,995, and that at HT was 37,609,588 ± 491,216. In gill tissues,

the range at NT was 38,617,540 ± 1,571,668, the range at LT was

41,527,640 ± 3,090,700, and that at HT was 38,393,047 ±

2,819,399. The number of unigene sequences was 201,803,

with total length, maximum length, and average length of

sequences of 183,256,321, 48,514, and 908.10, respectively.

The GC content was 40.72% (Supplementary Table S1).

The number of unigenes successfully annotated in the NR,

GO, KEGG, Pfam, eggNOG, and Swissprot databases were

46,152 (22.87%), 13,077 (6.48%), 23,995 (11.89%), 22,954

(11.37%), 40,671 (20.15%), and 31,934 (15.82%), respectively.

In total, 7,294 (3.61%) unigenes were annotated in all databases.

Figure 1 shows the annotation data information. The correlation

among all gill tissue samples was 0.81–0.98, and the correlation

among all brain tissue samples was 0.92–0.99 (Figure 2). The

correlation of brain tissue samples was higher than that of gill

tissue samples.

4.1.2 Differential expression analysis
Compared with the brain tissues at NT, 408 genes were up-

or down-regulated at HT and eight genes were up- or down-

regulated at LT. Compared with the gill tissues at NT,

101 genes were up- or down-regulated at HT, and 27 genes

were up- or down-regulated at LT (Table 1). The top 20 up-

and down-regulated differential expression genes that were

described in the NCBI database are summarized in detail in

Supplementary Tables S2-S9. In general, the gene expression

in brain (average, up 43.31-fold, down 35.84-fold) tissues

increased more at HT than at LT relative to NT. In gill

tissues at both temperatures, the degree of down-regulation

(average, HT 204.67-fold, LT 443.13-fold) was much greater

than that of up-regulation (average, HT 28.69-fold, LT 17.68-

fold). Only in brain tissues, the number of differential genes

increased with HT was 14, and the number of differential

genes decreased with HT was 20, the number of differential

genes increased with LT was 5, and the number of differential

genes decreased with LT was 9. Only in gill tissue, the number

of differential genes increased with HT was 14, and the

number of differential genes decreased with HT was 7, the

number of differential genes increased with LT was 15, and the

number of differential genes decreased with LT was 7.

FIGURE 1
The upset chart of unigenes annotation. Note: Number in each set represents the number of all unigenes annotated to each database. Number
of each intersection represents the number of common unigenes annotated bymultiple databases. A point on the abscissa represents the number of
unique unigenes annotated by each database. The multiple point connection on the abscissa represents the number of common unigenes
annotated by multiple databases which were connected.

Frontiers in Genetics frontiersin.org04

Duan et al. 10.3389/fgene.2022.1015505

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1015505


HSP70 was expressed in all tissues, and the expression level

was up-regulated higher at HT than at NT. At both temperatures,

the expression in gill tissues was higher than that in brain tissues,

but the differential expression in brain tissues (83.11-fold) was

higher than that in gill tissues (67.35-fold). Comparing LT with

NT revealed that the expression of HSP70 also increased at LT,

but to a lesser extent than that at HT. In brain tissues, the

expression of PLCH2 and P O 22 increased at HT and decreased

at LT. At HT, the expression of SMC O 3 in brain and gill tissues

increased, but the expression in brain tissues was lower than that

in gill tissues; at LT, the expression of SMC O 3 in gill tissues

decreased. At HT and LT, TMPS7 expression increased in brain

tissues, but the increase caused by HT was more obvious. At HT,

the expression of MATN1 in brain tissues increased, but the

expression decreased at LT. The expression of APA12 in brain

tissues decreased at LT, and that in gill tissues decreased at HT,

and the inhibition rate in gill tissues was higher than that of brain

tissues.

The expression of TNR1B in gill tissues increased at both HT

and LT, but the increase caused by HT was greater. The

expression of EGR2B in gill tissues increased at HT and LT,

FIGURE 2
Samples correlation test. Note: C_b_N1, C_b_N2 and C_b_N3 represent brain tissues at 22 °C, C_b_L1, C_b_L2 and C_b_L3 represent brain
tissues at 4°C, C_b_H1, C_b_H2 and C_b_H3 represent brain tissues at 30°C; C_g_N1, C_g_N2 and C_g_N3 represent gill tissues at 22°C, C_g_L1,
C_g_L2 and C_g_L3 represent gill tissues at 4°C, C_g_H1, C_g_H2 and C_g_H3 represent gill tissues at 30°C. Deeper red represents the higher the
correlation, deeper blue represents the lower the correlation. The range of correlation coefficient was 0.8–1, indicating that the correlation
among samples were very strong, which below 0.8, indicating that the correlation among samples were low.

TABLE 1 Statistical analysis of differentially expressed genes.

Control_vs._Treat Up-regulated Down-regulated Total

C_b_N_vs._C_b_H 139 269 408

C_b_N_vs._C_b_L 0 8 8

C_b_H_vs._C_b_L 282 256 538

C_g_N_vs._C_g_H 55 46 101

C_g_N_vs._C_g_L 21 6 27

C_g_H_vs._C_g_L 86 73 159

Note: C_b_N represents brain tissues at 22°C, C_b_L represents brain tissues at 4°C,

C_b_H represents brain tissues at 30°C; C_g_N represents gill tissues at 22°C, C_g_L

represents gill tissues at 4°C, C_g_H represents gill tissues at 30°C. The expression

difference of different genes was 10 times, that were, the gene expression in treatment

groups were 10 times higher than that of the control groups. p < 0.01.
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but the effect at LT was stronger. The expression ofH90A1 in gill

tissues increased at both HT and LT. The expression promoted

by HT was greater, however, the increase multiple promoted by

LT was more. The expression of IL17F in gill tissues increased at

HT and LT, and the effect of LT was stronger. The expression of

KNG2 in gill tissues decreased significantly at HT and LT. The

expression of FA10A in gill tissues decreased significantly at HT

and LT, and the HT inhibition rate was higher. The expression of

APOA1 in gill tissues decreased significantly at HT and LT, and

the inhibition rate at LT was higher. The expression levels of

A1AT, FETUA, SPYA, C1RA, FIBG, HPPD, FIBA, PRVB, and

FIBB in gill tissues decreased significantly at HT and LT, and the

inhibition rates at LT were higher.

4.1.3 KEGG enrichment analysis
According to the results of KEGG enrichment analysis results

(Supplementary Figures S1–S4), we selected the top 20 pathways

with the most significant enrichment for display. In general, most of

the pathways enriched in brain tissues differed among different

temperatures; at different temperatures, gill tissues shared more

enriched pathways (25%). AtHT, brain tissues weremainly enriched

in pathways related to metabolism and DNA repair, whereas at LT,

they were mainly enriched in cancer-related pathways. At both HT

and LT, gill tissues were mainly enriched in pathways related to cell

proliferation, apoptosis, immunity, and inflammation.

4.2 Proteome analysis

4.2.1 Proteome data
The identification and quantitative results of the proteome

data analysis revealed that the numbers of proteins in brain

tissues were 7,431 ± 218 at NT, 7,330 ± 197 at LT, and 5,749 ±

117 at HT. In gill tissues, the range at NT was 6,356 ± 218, the

range at LT was 5,072 ± 229, and that at HT was 4,072 ± 442. In

total, 10,623 proteins were obtained; 2,424 of themwere common

to all groups, and the numbers of proteins specific to brain-NT,

brain-LT, brain-HT, gill-NT, gill-LT, and gill-HT were 97, 100,

91, 187, 100, and 76 (Figure 3).

The PCA results showed that brain and gill tissues were

divided on one side (Figure 4). Comparatively speaking, the

aggregation of brain tissues was stronger than that of gill tissues.

Additionally, the aggregation of brain and gill tissues was

stronger at LT and NT, with the tissues at HT located further

away from the tissues under the other temperature conditions.

4.2.2 Differential expression analysis
Figure 5 shows the different protein quantities at different

temperatures. The numbers in the treatment vs control

comparisons of brain-HT vs brain-NT, brain-LT vs brain-NT,

gill-HT vs gill-NT, and gill-LT vs gill-NT were 1,204, 149, 1,745,

and 511, respectively. In the brain and gill tissues, the number of

up-regulated differentially expressed proteins was greater at HT

than at LT. In brain tissues, the number of down-regulated

differentially expressed proteins was greater at LT than at HT.

In gill tissues, the number of up-regulated differentially expressed

proteins was greater at LT as well.

Supplementary Tables S10-17 provide a detailed summary of

the top 20 proteins with up- and down-regulation of

differentially expressed proteins. In general, the protein

expression in brain (average, up 52.67-fold, down 13.54-fold)

and gill (average, up 73.02-fold, down 12.92-fold) tissues

increased more at HT than at LT. The protein expression in

brain (up 3.77-fold, down 4.79-fold) tissues decreased more at

LT, and the protein expression in gill (up-8.64-fold, down-4.35-

fold) tissues increased more at LT compared to at HT.

At HT, the up-regulated differentially expressed protein with a

multiple >100 in brain tissues was ras-related protein Rab-11B

(RB11B, 229.27-fold), and the down-regulated differentially

expressed protein with a multiple >100 was 40S ribosomal

protein S9 isoform X2 (RS9, 138.63-fold). In gill tissues, the up-

regulated differentially expressed proteins with multiples >100 were
histone H1.0-like (AT1A3, 119.83-fold) and sodium/potassium-

transporting ATPase subunit alpha-3-like (H10B, 716.84-fold). At

LT, only uncharacterized protein LOC557882 (GSK3B, 14.78-fold,

down-regulated) in brain tissues and 60S ribosomal protein L34-like

(RL34, 16.70-fold, up-regulated), coronin-1C (COR1C, 16.53-fold,

up-regulated), and retinoblastoma binding protein 5 (RBBP5, 11.41-

fold, up-regulated) in gill tissues had multiples >10 and <20; the
other proteins had multiples <10.

FIGURE 3
Overlap of DIA data among different tissues and temperature.
Note: C_b_N represents brain tissues at 22°C, C_b_L represents
brain tissues at 4°C, C_b_H represents brain tissues at 30°C;
C_g_N represents gill tissues at 22°C, C_g_L represents gill
tissues at 4°C, C_g_H represents gill tissues at 30°C. The number in
the center represents the number of common proteins. The
number in each petal represents the number of unique proteins.
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4.2.3 Subcellular localization analysis
In the subcellular localization analysis (Table 2), the first,

second, and fourth types of proteins were Nuclear, Cytoplasmic,

and Mitochondrial in all comparison treatment groups. In third

place, the Plasma Membrane category and the Extracellular

category contained the most proteins for brain tissues and gill

tissues, respectively. Proteins in the Cytoskeletal category

appeared only in gill tissues.

4.2.4 KEGG enrichment analysis
Supplementary Figures S5–S8 show the enrichment maps of

the top 20 pathways of differentially expressed proteins. In

general, more differentially expressed proteins were enriched

in KEEG pathways at HT than at LT. At both HT and LT, more

enriched differentially expressed proteins were present in gill

tissues than in brain tissues. Many of the differentially expressed

proteins were enriched in signaling pathways, such as

Endocytosis, PI3K-Akt signaling, and MAPK signaling, in

different tissues and at different temperatures. Temperature

stimulation strengthened metabolic pathways in brain and gill

tissues. At HT relative to NT, pathways related to glucose

metabolism were strengthened, and at LT those related to

amino acids and fatty acids were strengthened. At both HT

and LT, the apoptosis related pathways in brain tissue were

strengthened. The analysed results of the differentially expressed

protein interaction network are shown in Supplementary Figures

S9–S12.

4.3 Comparative analysis of differences
between transcriptome and proteome

Based on transcriptomics and proteomics data, we extracted

and mapped the heat stress-related differentially expressed genes

(Table 3). Of the 96 genes we identified as potentially being

highly related to temperature stress (59 from transcriptome and

FIGURE 4
PCA analysis of DIA data among different tissues and temperatures. Note: C_b_N represents brain tissues at 22°C, C_b_L represents brain
tissues at 4°C, C_b_H represents brain tissues at 30°C; C_g_N represents gill tissues at 22°C, C_g_L represents gill tissues at 4°C, C_g_H represents
gill tissues at 30°C.
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38 from proteome data), HSP70 was present in both the

transcriptome and proteome. In addition, we found that

PLCH2 and PLCB4 may be involved in the synthesis of 1-

phosphatidylinositol 4,5-bisphosphate phosphodiesterase by

querying on NCBI, and RL17 and RL35 for ribosomal protein,

MYH1, MYH13, and MYSS for myosin, HSP70 and H90A1 for

heat shock protein, IL20 and IL17F for interleukin, and SYT6 and

SYN3 for synapsin.

At HT, a large number of HSP70 transcripts and translations

were found in brain and gill tissues. This part of the study was

based on the results of differential expression of transcriptomics

and proteomics and the classical heat stress protein (HSP70 at

HT). The results are shown in Supplementary Tables S18, 19. The

differential expression multiple ofHSP70 in brain tissues reached

83.11-fold, ranking second, and that of OST2B ranked first

(155.30-fold); in gill tissues, the differential expression

multiple of HSP70 reached 67.35-fold, ranking third, and

those of IL20 (89.14-fold) and TNR1B (71.14-fold) ranked

first and second, respectively. The differential expression

multiple of HSP70 protein in brain tissues was only 10.84-

fold, thus it was not among the top 20, which were RB11B,

RAB3A, DYN3, TBCC, LUM, UBAC1, MYH1, PTPRS, EWS,

EPT1, HA10, NID2, PLCB4, SYT6, TB22B, CCG1, C O 1A1,

RANG, and AT2A1, respectively (One protein was not named in

NCBI, so only 19 genes were listed). The differential expression

multiple of HSP70 protein in gill tissues reached 45.84-fold,

ranking sixth; those ranking first through fifth were H10B,

ATp1A3, MYH13, HMGB1, and KPYM, respectively. In this

study, we did not evaluate the changes of differentially

expressed proteins under LT stimulation in detail because the

differential expression multiples was very low (the largest was

16.70-fold).

The genes that could be searched on NCBI and had specific

functional descriptions (Supplementary Tables S18, 19) were

extracted and a correlation network diagram was drawn

(Figures 6, 7). We classified the genes related to the top

FIGURE 5
Histogram of differentially expressed proteins among different tissues and temperatures. Note: C_b_N represents brain tissues at 22°C, C_b_L
represents brain tissues at 4°C, C_b_H represents brain tissues at 30°C; C_g_N represents gill tissues at 22°C, C_g_L represents gill tissues at 4°C,
C_g_H represents gill tissues at 30°C. Comparisons represents difference comparison groups (Treat vs. Control). Upregulated represents Up-
regulation of differentially expressed proteins. Downregulated represents Down-regulation of differentially expressed proteins. FC represents
fold change. p < 0.05.

TABLE 2 Statistical analysis of subcellular localization.

Treat vs. control Nuclear Cytoplasmic Plasma membrane Mitochondrial Extracellular Cytoskeletal Others

C_b_H vs. C_b_N 624 435 162 122 119 30

C_b_L vs. C_b_N 85 46 27 13 21

C_b_L vs. C_b_H 647 489 180 143 150 28

C_g_H vs. C_g_N 896 700 140 184 210 22 29

C_g_L vs. C_g_N 236 206 46 52 95 14

C_g_L vs. C_g_H 542 378 74 99 114 20 16

Note: C_b_N represents brain tissues at 22°C, C_b_L represents brain tissues at 4°C, C_b_H represents brain tissues at 30°C; C_g_N represents gill tissues at 22°C, C_g_L represents gill

tissues at 4°C, C_g_H represents gill tissues at 30°C.
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20 proteins into four categories: material synthesis, material

transfer, power system, and other important life activities. In

brain tissues, two of the top three genes were classified as

“material transfer” and one was classified as “power system”.

In gill tissues, two of the top three were classified as “power

system” and one was classified as “other important life activities”

(histone 1-gene regulation, which protects cells and DNA from

damage).

5 Discussion

Today’s aquatic ecosystem is subject to serious human

intervention, which affects important physical and chemical

parameters such as water temperature, transparency, and

nutrients (Ayele and Atlabachew, 2021). Water temperature

variation is an important element with a range of influence on

organisms living in it. When facing water temperature changes,

fish try to adapt (Papakostas et al., 2014) or leave the area

(Valdimarsson et al., 1997), and they may die (Till et al.,

2019). The natural habitat of C. guichenoti has been negatively

impacted by human factors and global warming. Because they

cannot escape from their environment, they have to adapt to the

abnormal warming phenomenon. Therefore, it is of great

significance to study the effects of extreme temperature

stimulation of this species.

After fish are stimulated by the outside world, the brain sends

instructions to the body so that the tissues can coordinate and

cooperate to respond to environmental stimuli. The gills are the

respiratory organs of fish, and they are in direct contact with the

environment. These tissues are the first to respond to

environmental pressure and make adaptive changes.

Therefore, we assessed effects of temperature stress on brain

and gill tissues in this study.

After being stimulated by temperature, brain and gill tissues

of C. guichenoti showed certain differences in both transcriptome

and proteome data. Overall, the differential expression quantity

of both genes and proteins decreased to a certain extent at HT,

which was also reported for the transcriptome data from liver

tissue of large yellow croaker (Larimichthys crocea) (Qian and

Xue, 2016). Moreover, the degree of decline in gill tissues was

greater than that of in brain tissues in C. guichenoti. However, the

number of genes decreased more in brain tissues than in gill

tissues, while proteins showed the opposite pattern. Comparing

the transcriptome and proteome data (Supplementary Tables

S2–17) revealed that genes and proteins could be up- or down-

regulated in multiples, sometimes hundreds of times, under

temperature stimulation. This phenomenon may mean that C.

guichenoti can resist the negative effects of HT stimulation by

reducing the expression of some genes and proteins and

increasing the expression of other specific genes and proteins.

Hu et al. (2016) found that the number of cold-induced genes in

the gills of zebrafish (Danio rerio) and tilapia (Oreochromis

niloticus) increased with the extension of cold treatment time,

and similar results were reported for the liver of gilthead sea

bream (Sparus aurata) (Mininni et al., 2014). Nuez-Ortín et al.

(2018) found that HT stimulation caused the differential

expression of 276 proteins in the liver of Atlantic salmon

(Salmo salar), and the differential multiple was 1.2–5.4. These

values were smaller than those in our study, which suggests that

C. guichenoti had a stronger response to the HT stimulation in

our study. The correlation analysis of the genome data and the

principal component analysis of the proteome data showed that

the correlation among different treatment groups was strong for

brain tissues and weak for gill tissues. Nitzan et al. (2019)

analyzed the transcriptome of gill and liver tissues of blue

tilapia (Oreochromis aureus) stimulated by LT using the non-

metric multidimensional scaling analysis method and found that

the similarity of liver tissues was higher than that of gill tissues.

Because brain tissues in the fish body are not in contact with the

environment, they exist in a more stable environment, whereas

the gill tissues are more likely to be affected by external factors,

resulting in a weaker correlation.

TABLE 3 The genes that may be highly related to temperature stress.

Gene form transcriptome Gene form
proteome

Brain Gill Brain Gill

HT LT HT LT HT HT

OST2B PNMA1 IL20 HA17 RB11B H10B

HSP70 USH2A TNR1B NR3BA RAB3A AT1A3

PLCH2 BC11B GLMN YCX91 DYN3 MYH13

P O 22 FA20A IKKB GVIN1 TBCC HMGB1

SMC O 3 LORF2 PEG10 ZAN LUM KPYM

RL17 — CRYAB GPR54 UBAC1 HSP70

PMP22 — PRLHR SN25B MYH1 COR1B

5HT3A — LFG2 CASP7 PTPRS MYSS

SCN2A — MDH1B EGR3 EWS H2AX

JUNB — DNJA4 BZW1A EPT1 SAR1B

SGSM1 — EGR2B IRE1 HA10 VPP1

DESM — H90A1 K1C18 NID2 RL35

UXS3 — NOX O 1 RTBS PLCB4 PPIL2

MY O 15 — TC1A PGAM1 SYT6 PABPA

TMPS7 — IL17F PGH2 TB22B TBB1

FOXN1 — GT2D2 HHLA2 CCG1 WDR35

CASR — MSS51 — C O 1A1 DENR

MATN1 — AGO1 — RANG FACE1

RBM3 — — — AT2A1 SYN3

MAG — — — — —

Note: HT, represents the tissues at 30°C, LT, represents the tissues at 4°C. Words in

italics represent gene names.
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In this study, the variation laws of differentially expressed

genes and proteins were very clear. For genome and proteome

and brain and gill tissues, the number of differentially expressed

genes or proteins at HT was greater than that at LT, and the

number of up-regulated differentially expressed genes or proteins

at HT was greater than that at LT. Under stimulation by HT or

LT, the number of down-regulated differentially expressed genes

in brain tissues was greater than that of up-regulated

differentially expressed genes; the number of up-regulated

differentially expressed proteins was greater at HT, and the

opposite was true at LT. At both HT and LT, the number of

up-regulated differentially expressed genes and proteins in gill

tissues were greater than that of down-regulated genes and

proteins. The number of up-regulated genes induced by LT

was greater than that of down-regulated genes, and this

phenomenon was also reported for the heart of rainbow trout

(Oncorhynchus mykiss) and the liver of large yellow croaker

(Vornanen et al., 2005; Qian and Xue, 2016). The greater

number of up-regulated differentially expressed proteins

compared to down-regulated proteins at after HT stimulation

was also found in the skin mucus of large yellow croaker (Zhang

et al., 2021), but the opposite phenomenon in the liver of rainbow

trout (Quan et al., 2021).

In this study, the actual expression abundance of

differentially expressed genes was not very high (e.g., OST2B,

IL20, and TNR1B), but their up-regulation after temperature

FIGURE 6
The diagram of gene-protein-potential functions in brain.
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stimulation was very significant. This result meant that these

genes may play an important role in the temperature stress

response in C. guichenoti. The actual expression abundance

did not affect the function of these genes, which may be due

mainly to biological signal amplification via the organism-

cascade amplification function (Calabrese and Giordano,

2021). We found that the products of the top 20 differentially

expressed genes did not all appear in the list of the top

20 differentially expressed proteins, either because these genes

were not translated into proteins or because these genes were

FIGURE 7
The diagram of gene-protein-potential functions in gill.
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directly combined with other substances to form new substances

when modified after translation. Although some genes are only

transcribed to a small extent, the cascade amplification of

biological information can result in translation of a lot of

protein (i.e., those ranking among the top 20 differentially

expressed proteins) to perform biological functions. Indeed,

Supplementary Tables S10-17 show that the actual expression

abundance of most differentially expressed up-regulated proteins

induced by temperature stimulation was very high.

Of the top 20 differentially expressed up-regulated genes

identified in our study, only a few have been studied in fish,

and most of them were based on other vertebrate organisms. The

studies have mainly focused on the nervous system (PMP22,

SCN2A, 5HT3A, RBM3, IL20) (Itou et al., 2009; Wang et al.,

2010; Bartnik et al., 2011; García-González et al., 2017; Sertel et al.,

2021), tumor/cancer (BC11B, JUNB, MATN1, PEG10, PGAM1,

PRLHR, RBM3, TNR1B from the NCBI non-redundant protein

sequences) (Heater et al., 2006; Sureban et al., 2008; Abbas et al.,

2014; Zhang et al., 2020; Zhu et al., 2020; Liu et al., 2022; Zheng,

2022), the visual system (MYO 15, USH2A) (Chwalisz et al., 2003;

Han et al., 2018), and immune-related aspects (FOXN1, IL20)

(Wang et al., 2010; Lv et al., 2020). In tumors and cancer, the genes

are mainly involved in melanoma, acute myeloid leukemia, liver

tumor, glioma, breast cancer, colon cancer, bladder cancer, and

ovarian cancer, which may suggest that temperature stimulation

stress does great harm to organisms. Many studies of immune

stress have focused on HSP70, including in Japanese sturgeon

(Acipenser schrenckii) (Luo et al., 2022), Nile tilapia (O. niloticus)

(Iri et al., 2022), and the ray-finned fish Schizothorax wangchiachii

(Wang et al., 2022). In our study, the genes stimulated by

temperature were mainly concentrated in immune, metabolic,

apoptosis, and cancer-related pathways, which was similar to

results reported for Atlantic salmon (heat stress) (Nuez-Ortín

et al., 2018), pufferfish (Takifugu fasciatus) (cold stress) (Wen

et al., 2019), and cardinal fish (Pterapogon kauderni) (heat and

cold stress) (Pan et al., 2021). Our KEEG analysis revealed a large

number of genes that have not been specifically studied to date. For

example, we found no reports about fishOST2B, but its differential

expression multiple reached 155.3021-fold, which suggests that it

is important for the resistance of C. guichenoti to temperature

stress. The enrichment pathways of the proteome had similarities

with those of the genes, including those related to metabolism,

immunity, and apoptosis, but there were differences in categories

and quantities as well.

Subcellular localization can indicate the functional regions of

proteins (Shi et al., 2012; Lee et al., 2020). In our study, the number

of proteins located in each functional part of the cell implied that

C. guichenoti had a stronger response to HT stimulation than to

LT stimulation. The number of proteins in gill tissues was higher

than that in brain tissues inmost functional parts of the cell, except

for the plasma membrane, which may be because the gill tissues

were in direct contact with the environmental temperature

changes. Specific cytoskeletal structures were the main

difference between brain and gill tissues, but other differences

were reflected in the plasma membrane and extracellular space.

This result suggested that brain tissues may devote more energy to

plasma membrane related activities, such as signal transduction,

and gill tissues may spend more energy on extracellular secretions,

such as mucus. Genes with specific functional descriptions that

could be searched in the NCBI database were extracted from the

up-regulated differentially expressed proteins, and the top

20 induced by HT stimulation were identified. Hsp70 is one of

the most studied temperature stress proteins, and the differentially

expressed proteins located higher than HSP70 in the top 20 list

may play important roles in the temperature stress response, but

more studies are needed to explore their specific functions.

6 Conclusion

When fish are stimulated by temperature, they reduce food

intake, show weakened swimming ability, and can even die. In

response to temperature stress, a large number of substances

change at the molecular level in fish tissues. In other words,

the response of fish to temperature stimulation may be

attributed to gene transcription and protein expression. When

stimulated by temperature, the fish increases or decreases the

abundance of some substances at the molecular level, and then

adjusts the body state to deal with the adverse environmental

impact. Therefore, it is important to explore the differential

expression profiles of genes and proteins in C. guichenoti after

exposure to extreme temperatures.

In this study, the differential expression profiles and

relationship network between transcriptome and proteome

data revealed that 96 genes, including OST2B, IL20, RB11B,

and H10B, may play important roles in the response of C.

guichenoti to temperature stress. The abundance of transcripts

or translation products of these genes showed steep changes after

being stimulated by temperature, which suggests that they are

important in the fish’s resistance to temperature stress. Prior to

this study, little was known about the transcriptome and

proteome of C. guichenoti, so most of the information about

the functions of genes and proteins was based on other

vertebrates. In this study, we evaluated these genes for the

first time in C. guichenoti, and we propose that they may play

an important role in the protection of germplasm resources,

breeding of new varieties, and functional research and

verification of special genes and proteins in C. guichenoti.
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