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Background
The auditory brainstem response (ABR) is a voltage
response evoked by acoustic stimuli as sound is processed

Abstract

Background: Auditory brainstem responses (ABRs) are used to study auditory acuity in animal-
based medical research. ABRs are evoked by acoustic stimuli, and consist of an electrical signal
resulting from summated activity in the auditory nerve and brainstem nuclei. ABR analysis
determines the sound intensity at which a neural response first appears (hearing threshold).
Traditionally, threshold has been assessed by visual estimation of a series of ABRs evoked by
different sound intensities. Here we develop an automated threshold detection method that
eliminates the variability and subjectivity associated with visual estimation.

Results: The automated method is a robust computational procedure that detects the sound level
at which the peak amplitude of the evoked ABR signal first exceeds four times the standard
deviation of the baseline noise. Implementation of the procedure was achieved by evoking ABRs in
response to click and tone stimuli, under normal and experimental conditions (adult stem cell
transplantation into cochlea). Automated detection revealed that the threshold shift from pre- to
post-surgery hearing levels was similar in mice receiving stem cell transplantation or sham injection
for click and tone stimuli. Visual estimation by independent observers corroborated these results
but revealed variability in ABR threshold shifts and significance levels for stem cell-transplanted and
sham-injected animals.

Conclusion: In summary, the automated detection method avoids the subjectivity of visual analysis
and offers a rapid, easily accessible http://axograph.com/source/abr.html approach to measure
hearing threshold levels in auditory brainstem response.
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along the auditory pathway. It consists of electrical signals
resulting from the sum of sound-evoked activity along the
auditory nerve and brainstem nuclei. ABR analysis deter-
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mines the sound intensity at which a neural response first
appears (hearing threshold) [1]. Previous studies in rats in
mice have shown that ABR thresholds do not indicate
absolute behavioural hearing thresholds [2,3]. However,
ABR audiometry has been used extensively in animal
hearing research for examining gene therapy [4-10], cell-
replacement therapies [11-14], and noise-induced hear-
ing loss [15-20].

The ABR offers an objective measurement of auditory sig-
nal processing. The objectivity is diminished by conven-
tional visual inspection of the ABR threshold level.
Subjectivity and variability are introduced when the inves-
tigator has to decide when a complex, multi-component
response first becomes distinguishable from background
noise [21]. Methodologies have been developed to
address the subjective component of threshold detection
by including criteria about the shape, pattern, or absolute
amplitude of the response, yet these still require a visual
decision about the presence of a signal. Eliminating sub-
jectivity in auditory threshold determination would
improve the sensitivity and reliability of this important
audiometric technique.

While visual estimation remains the conventional tech-
nique for ABR threshold detection, a need for automated
statistical methods for detection is highly recognised. Sev-
eral methods have been developed based on the tech-
niques of F, analysis [22-25], cross correlation [26-28]
and feature vectors [29-32]. F,, analysis requires calcula-
tion of a variance ratio in the ABR waveform followed by
application of the F-statistic to this ratio. Cross correlation
measures the degree of similarity between a sliding tem-
plate and an averaged waveform. Feature vectors quantify
selected components of the response's time course. Fy, has
been incorporated into available software (Compumedics
Ltd) yet the other methods lack comparable implementa-
tion.

Here we develop a simple, fully automated auditory
threshold detection method to address the subjectivity
and variability associated with visual estimation of ABRs.
This method is based on the signal-to-noise ratio and the
software has been made readily available [33]. The algo-
rithm is calibrated by comparison with visual estimation,
implemented via investigation of stem cell transplanta-
tion, and compared against variability obtained with vis-
ual estimation.

Results and discussion

Algorithm

The automated method is based on the ratio between the
observed peak amplitude of the evoked ABR signal and
the standard deviation (SD) of the baseline noise. The
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peak was taken as the maximum absolute amplitude of
the averaged evoked ABR signal in a time window encom-
passing the ABR signal (Figure 1). This peak amplitude
represents the true peak amplitude plus a contribution
from the background noise. The SD of the noise was cal-
culated in a time window clearly following termination of
the ABR signal. These calculations were repeated for each
member of the family of voltage responses recorded at dif-
ferent sound intensity levels. The median value of the SDs
was taken as the best available estimate of the true noise
SD. The sound intensity level was deemed to have reached
threshold when the peak ABR amplitude was four times
the noise SD (Figure 1B). This signal-to-noise ratio was
chosen after investigating other values (SD = 3 or 5) as it
provides sensitive signal detection while maintaining a
low probability of a false positive.

The automated detection method is based on a statistical
foundation. Assuming a normal distribution of baseline
noise data, 99.98% of noise values will lie within + 4 SD
of the mean. Any amplitude values occurring outside this
range allow rejection of the null hypothesis (no ABR sig-
nal) at the p < 0.0002 level. This confidence level is valid
when a single data point in the ABR signal is examined. If
we search for a peak amplitude across a time window con-
taining 100 data points, then a peak signal > 4 SD is sig-
nificantly different from baseline noise at the p < 0.02
level, thus confirming the presence of an ABR signal and
providing a statistically reliable estimate of the hearing
threshold level.
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Computational algorithm for ABR threshold detec-
tion. A. Series of auditory brainstem responses (ABRs)
evoked by click stimuli delivered at decreasing intensities.
The automated threshold detection method compares the
peak amplitude of the signal versus the standard deviation of
baseline noise (boxed areas). B. Plot of the signal-to-noise
ratio is used to calculate the hearing threshold level when
peak amplitude is four times the standard deviation of the
baseline noise to ensure few false positives (inset).
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An automated detection method based on the signal-to-
noise ratio has previously been reported [22,23,25]. This
method requires calculation of a parameter, F,, which is
the variance of the amplitude values across an specified
time window of the averaged response (VAR(S)), divided
by the variance of the amplitude of a single time point
across several hundred sweeps (VAR(SP)). This determin-
istic approach assumes that the evoked ABR voltage wave-
form is constant from trial to trial yet neural population
signals typically fluctuate in amplitude from trial to trial
due to changes in the number of neurons contributing to
the response. Such ABR amplitude fluctuations will cause
VAR(SP) to be systematically overestimated. In contrast,
assumption of biological variability has been included in
our algorithm.

This relatively simple and intuitive threshold detection
method was developed as a plug-in module for AxoGraph
X, a data analysis application (AxoGraph Scientific). The
automated analysis module, with source code, is freely
available with an application license [33]. The module
imports a graph containing the family of averaged voltage
responses recorded at different sound intensity levels,
then automatically outputs a plot of the signal-to-noise
ratio versus sound intensity, with the ABR threshold level
indicated.

Automated method detects accurate and consistent
hearing threshold levels

To test the automated detection method, ABRs were
evoked by acoustic stimuli (click and tone) and measured
with subdermal electrodes in normal-hearing mice (Fig-
ure 1, 2). The ABRs consisted of five major wave compo-
nents as reported previously [34-36]. In mice, the waves
likely correspond to peripheral signal processing (wave [;
auditory nerve) and central signal processing (waves I1-V;
cochlear nucleus, superior olivary complex, lateral lem-
niscus, inferior colliculus, respectively). Acoustic stimuli
were delivered in descending intensities and hearing
thresholds were detected by computerised automated
detection and compared to visual estimations of hearing
thresholds. For automated detection, peak signal and
background noise measurements were made in time win-
dows of 0.5-8 ms and 12-20 ms, respectively. A plot of
signal-to-noise ratio versus sound intensity level was gen-
erated, and the ABR threshold level was indicated (see
inset: Figure 1B). For visual estimation, two experienced
observers (auditory clinician, neuroscientist) noted the
lowest sound intensity that evoked an ABR.

For click and tone stimuli, automated detection produced
a similar threshold value as visual estimation for the same
series of ABR traces in normal-hearing mice (Figure 2).
Summary data indicated that automated detection pro-
vided a mean threshold value of 33 + 2 dB (n = 21) for
click stimuli that was not significantly different than the
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Automated method detects accurate and consistent
hearing threshold levels. A. Summary data showing that
automated detection with a signal-to-noise ratio value of four
(SD % 4) predicts equivalent and consistent threshold levels
in comparison to visual estimation for click and tone (16
kHz) stimuli. B. The variability associated with visual estima-
tion is evident as the absolute difference in threshold values
between two observers was statistically different than zero
for click (* p < 0.05) and tone stimuli (**p < 0.001). Values
expressed as mean * SEM for all graphs with number of ani-
mals indicated within columns.

mean threshold value predicted by visual estimation (31
+ 2 dB; n = 21; Figure 2A). This was also consistent in
response to tone stimuli where automated detection
showed a mean threshold value of 32 + 3 dB (n = 18)
while visual estimation predicted a mean threshold value
of 29 + 2 dB; n = 18; Figure 2A). Individual data revealed
that automated detection produced identical estimates of
ABR threshold compared to visual estimation in 48% of
mice (n = 10/21) for click stimuli and in 50% of mice (n
= 9/18) for tone stimuli. In the non-identical data, the
threshold estimates for automated detection differed from
visual estimation by a mean of 6 + 0.6 dBs (n = 11) for
click stimuli and by 9 + 3 dBs (n = 9) for tone stimuli.

Two independent observers estimated significantly differ-
ent threshold levels for the same series of ABRs (Figure
2B). The absolute difference in threshold values between
observers was statistically different than zero for click
stimuli (1.7 + 0.7 dB; n = 21; p < 0.05) and for tone stim-
uli (3.9 £ 0.9 dB; n = 18; p < 0.001). Together, the results
confirm that a signal-to-noise ratio value of four (SD =+ 4)
predicts equivalent and consistent threshold levels in
comparison to visual estimation and that variability in
threshold detection is associated with visual estimation.

Automated detection method is used to investigate
vestibular stem cell transplantation

The automated threshold algorithm was implemented to
investigate the effect of adult stem cell transplantation
into the cochlea on hearing threshold levels (Figure 3).
Stem cell transplantation is rapidly gaining interest as a
potential therapy for hearing loss (for review see [37,38]).
Our recent findings show that transplantation of adult
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Automated detection method is used to investigate
vestibular stem cell transplantation. The mean differ-
ence in ABRs before and after surgery (threshold shift) was
not significantly different for mice transplanted with vestibu-
lar stem cells compared to sham-injected mice in response to
click and tone stimuli.

tongue stem cells into deafened mice results in a signifi-
cantly smaller mean ABR threshold shift compared to
sham injection [39]. Previous studies suggest that vestibu-
lar stem cells reside in the vestibular sensory epithelium,
and are pre-programmed to differentiate into vestibular
hair cells that share similarities with cochlear hair cells
[40-42]. Here we use the automated threshold algorithm
to determine ABR changes after adult vestibular cell trans-
plantation. Acoustic deafening prior to transplantation, as
performed in our earlier studies, was omitted to investi-
gate the specific effects of stem cells on transplant surgery.
Hearing thresholds were measured four weeks after trans-
plantation of a cell suspension containing vestibular stem
cells or sham injection of the vehicle (phosphate buffer)
alone. Comparisons were made of the shift between pre-
and post-surgery ABR threshold levels in the treated ear
(Figure 3).

The mean ABR threshold shift between pre- and post-sur-
gery hearing levels for mice transplanted with vestibular
cells was 34 + 6 dB (n = 5) in response to click stimuli.
This threshold shift was not significantly different than for
mice receiving a sham injection (48 + 5 dB; n = 6). For
pure tone stimuli, the mean ABR threshold shift was also
not significantly different for stem cell-transplanted (33 +
9 dB; n = 5) versus sham-injected animals (41 + 3dB; n=
6; Figure 3B).

Automated detection avoids variability associated with
visual estimation

To assess the subjectivity and variability associated with
visual estimation of ABR threshold levels (Figure 4), ten
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independent observers assessed the threshold levels on
the ABRs previously analyzed by automated detection (see
Figure 3). The observers were blind to the experimental
conditions, and included experienced auditory clinicians
and neuroscientists. Visual estimation corroborated the
results provided by automated detection, showing that
threshold shifts between stem cell-transplanted and
sham-injected mice were not significantly different in
response to click and tone stimuli (Figure 4A). However
examination of the data for individual observers shows
that while most observers did not detect a significant dif-
ference in threshold shifts, some observers noted a signif-
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Automated detection avoids variability associated
with visual estimation. A. Mean ABR threshold shift for
stem cell-transplanted and sham-injected mice in response to
click and tone stimuli as estimated by visual inspection. The
mean value for each animal was calculated from the data of
ten independent observers. Comparisons of the two cohorts
reveal similar results as for data analyzed by automated
detection (see Figure 3). B. Examination of the data for indi-
vidual observers shows that most observers did not detect a
significant difference between stem cell-transplanted and
sham-injected mice (NS) while some observers noted a sig-
nificant difference in threshold shifts (S; p < 0.05). This varia-
bility in significance levels differed between click and tone
stimuli.
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icant difference (p < 0.05) between stem cell-transplanted
and sham-injected mice (Figure 4B). This variability in
significance levels differed for click and tone stimuli. Thus
the automated detection method predicts similar mean
threshold values as visual estimation, in agreement with
the results obtained for normal-hearing mice (Figure 2A),
and avoids the variability in ABR threshold shifts and sig-
nificance levels associated with visual estimation.

Conclusion

A simple, fully automated auditory threshold detection
method was developed to address the subjectivity and var-
iability associated with visual estimation of ABRs. The
threshold values provided by automated detection were
similar to those provided by visual estimation, indicating
the automated method predicts valid threshold levels. The
automated detection method was implemented in experi-
mental conditions and revealed no difference between
stem cell-transplanted and sham-injected mice. Visual
estimation by independent observers corroborated these
results but revealed variability in ABR threshold shifts and
significance levels for stem cell-transplanted and sham-
injected animals. In summary, the automated detection
method developed here offers an accessible, accurate, and
reproducible approach for measuring hearing threshold
levels in auditory brainstem responses.

Methods

Auditory Brainstem Responses (ABRs)

Auditory function was assessed by measuring ABR thresh-
olds in CBA/CaH mice aged 4 to 6 postnatal weeks (n =
41) as previously described [43]. ABR thresholds were
recorded in two groups of animals: normal hearing mice
(n = 30) and mice receiving a unilateral stem cell trans-
plantation or sham injection into the left cochlea (n=11).
Briefly, mice were anaesthetized with ketamine (100 mg/
kg) and xylazine (20 mg/kg), and ABRs were recorded dif-
ferentially between subdermal platinum electrodes placed
at the vertex and lateral to the left cheek with an electrode
at the lower back serving as ground. Clicks (1 ms duration,
100 ms interstimulus interval) and tone pips (16 kHz; 1
ms rise/fall; 3 ms duration, 90 ms interstimulus interval)
were delivered via an electrostatic insert speaker and ABRs
were obtained by reducing the intensity in 5 dB steps
beginning at 90 dB (Tucker Davis Technologies). The ABR
signal was obtained by time locked averaging with a min-
imum of 512 averages. ABRs were band passed filtered
above 300 Hz and below 1500 Hz. No stimulus artifact
was observed. With ideal recording conditions, a baseline
noise of 100-200 pV was achieved. ABRs were recorded
with BioSig software (Tucker Davis Technologies) and
converted to TIFF files for visual estimation in printed for-
mat or to ASCII files for automated computer analysis.

http://www.biomedcentral.com/1471-2202/10/104

All experiments were performed with the approval of the
Garvan Institute and St Vincent's Hospital Animal Ethics
Committee, in accordance with the Australian Code of
Practice for the Care and Use of Animals for Scientific Pur-
poses (National Health and Medical Research Council,
2004).

Stem cell transplantation

For vestibular primary cell culture, male and female CBA/
CaH mice (n = 5; aged 10-15 postnatal days) were anes-
thetized with CO, and decapitated. Inner ears were placed
in chilled Dulbecco's modified Eagle medium (D-MEM)
containing 9.6 mg/ml HEPES, and the utricular maculae
and ampullary cristae carefully dissected. The outer mar-
gins of the sensory epithelia were then trimmed away and
the tissues processed according to a method adapted from
that of Oshima et al. [42]. Tissues were incubated in 0.5
mg/ml thermolysin (Sigma) in D-MEM for 30 min at
37°C and then in 0.125% trypsin in Hank's Balanced Salt
Solution for 20 min at 37°C. Tissues were washed in
Advanced D-MEM/F-12 medium containing 20 mM
glutamine and 10% fetal bovine serum and gently tritu-
rated. Dissociated cells were centrifuged at 400 x g and
resuspended in 10 ml Advanced D-MEM/F-12 medium
containing 20 mM glutamine, B-27 supplement minus
vitamin A, N2 supplement, 20 ng/ml EGF, 20 ng/ml bFGF
(both Millipore), 100 U/ml penicillin G and 100 pg/ml
streptomycin. The cell suspension was then poured
through a 70 um cell strainer (BD Falcon) into plastic tis-
sue culture dishes (BD Falcon) and cultured at 37°C with
5% CO,. Cells were collected after seven days in vitro for
transplantation experiments after dissociation with Try-
PLE Express. All reagents from Invitrogen unless otherwise
stated.

For transplant surgery, cochleostomies were performed on
CBA/CaH mice aged 4 to 6 postnatal weeks (n = 11) as
previously described [43]. Briefly, minimal trauma sur-
gery was performed on mice anaesthetised with 75 mg/kg
ketamine and 15 mg/kg xylazine. A minimally invasive
procedure was initiated by micro drilling through the
bulla to access the inner ear and perform a lateral wall
cochleostomy in the basal turn of the cochlea. Transplan-
tations were made using a glass capillary needle (tip diam-
eter of 100 um) inserted into the cochleostomy. For stem
cell injections (n = 6), one microliter of stem cells sus-
pended in phosphate buffer was injected over one minute
to deliver 2000-4000 cells. For sham injections (n = 5),
identical techniques were followed except that phosphate
buffer was substituted for the stem cell solution.

Statistics are quoted as mean + standard error of the mean
(SEM). Significant differences in mean threshold values
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were determined using a two-tailed unpaired t-test (Prism,
GraphPad).
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