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Assessment of global health risk of antibiotic
resistance genes
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Antibiotic resistance genes (ARGs) have accelerated microbial threats to human health in the

last decade. Many genes can confer resistance, but evaluating the relative health risks of

ARGs is complex. Factors such as the abundance, propensity for lateral transmission and

ability of ARGs to be expressed in pathogens are all important. Here, an analysis at the

metagenomic level from various habitats (6 types of habitats, 4572 samples) detects 2561

ARGs that collectively conferred resistance to 24 classes of antibiotics. We quantitatively

evaluate the health risk to humans, defined as the risk that ARGs will confound the clinical

treatment for pathogens, of these 2561 ARGs by integrating human accessibility, mobility,

pathogenicity and clinical availability. Our results demonstrate that 23.78% of the ARGs pose

a health risk, especially those which confer multidrug resistance. We also calculate the

antibiotic resistance risks of all samples in four main habitats, and with machine learning,

successfully map the antibiotic resistance threats in global marine habitats with over 75%

accuracy. Our novel method for quantitatively surveilling the health risk of ARGs will help to

manage one of the most important threats to human and animal health.
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Antibiotic resistance is an increasing global threat to human
health and to the clinical treatment of disease1. Antibiotic
resistance genes (ARGs) have been detected in the last

decade in all environments, including natural2–4, engineered5–8,
and clinical9,10 habitats. Anthropogenic activities, including the
clinical use of antibiotics, are widely regarded as the main drivers
of the dissemination of ARGs6,11,12.

ARGs, however, do not arise from current human activities.
They existed prior to the antibiotic era, having been detected in
permafrost13 and human paleofeces14. Anthropogenic activities
instead drive the selection of genes from environmental and
cellular sources, and these can be subsequently co-opted to confer
antibiotic resistance. These genes originally had a range of
environmental functions, such as liberating phosphorus from
phosphate15, or encoding efflux pumps. Diverse genes can
potentially confer resistance to antibiotics, so we need to deter-
mine whether genes bioinformatically identified as ARGs pose a
health risk to human health, and to do so from multiple
perspectives16–18.

The first consideration is the potential for the transmission of
ARGs from the environment to bacteria in humans16, defined
here as “human accessibility”. ARGs can transfer from the
environment to humans, via their bacterial hosts, and then have a
negative impact on human health6,19. Mass sampling and the
development of metagenome-assembled genomes (MAGs) have
allowed us to understand the distribution of ARGs and their hosts
in specific habitats4–7,9. Danko et al. (2021) assembled the first
atlas of urban metagenomics using 4728 metagenomic samples
from mass-transit systems in 60 cities7. Understanding the dis-
tribution and dissemination of ARGs in global habitats from the
perspective of global health is important, especially from envir-
onmental compartments to humans20. The second consideration
is the potential for the transmission of ARGs from environmental
bacteria to pathogens16–18, here defined as “mobility” and
“human pathogenicity” of the ARGs. From this perspective, only
ARGs in pathogenic hosts that can infect humans pose an ele-
vated risk to human health16. ARGs frequently move by hor-
izontal gene transfer (HGT) from nonpathogens to pathogens,
and this activity has been a major driver in the evolution of
pathogens resistant to antibiotics12,21,22. The third perspective is
the current clinical use of antibiotics17, here defined as the
“clinical availability” of the ARGs. The use of antibiotics has
increased globally in recent years23, and some new antibiotics
have been developed for clinical use24,25. In contrast, some
antibiotics are now rarely used. Considering clinical relevance in
evaluating the risk of ARGs is thus necessary.

In this work, based on the three perspectives outlined above,
we use 4572 metagenomic datasets to reveal the distribution and
dissemination of 2561 ARGs as well as their hosts in global
habitats. In the next step, we carry out a framework to quanti-
tatively evaluate the health risk of each ARG and sample by
considering the four indicators (human accessibility, mobility,
human pathogenicity, and clinical availability). There are 23.78%
of the ARGs pose a health risk, especially those which confer
multidrug resistance. Finally, we predict and map the antibiotic
resistance threats in marine habitats using machine learning.

Results
Global patterns of ARG distribution. We used a set of 4572
metagenomic samples to illustrate the global patterns of ARG
distribution (Supplementary Data 1). These samples were col-
lected from six types of habitats: air, aquatic, terrestrial, engi-
neered, humans and other hosts (Fig. 1a and Supplementary
Data 1). From these samples, we identified a total of 2561 ARGs
that conferred resistance to 24 drug classes of antibiotics based on

the Comprehensive Antibiotic Research Database (CARD). Of
these, 2401 were genes conferring resistance to only one drug
class, and 160 conferred resistances to multiple drug classes
(Supplementary Data 2). Twenty-five ARGs were found in more
than 75% samples, however, the frequency of most ARGs (2313/
2561) were <10% (Supplementary Fig. 1a). On the other hand,
nearly half of 2561 ARGs were commonly shared by diverse
habitats (Supplementary Fig. 1b), especially genes conferring
resistance to widely used antibiotics26 like aminoglycosides, tet-
racyclines, and beta-lactams (Supplementary Fig. 1c). These
results implied that anthropogenic activities, like the use of
antibiotics, were critical for dissemination of ARGs globally.

We examined the abundance and composition of ARGs in
diverse sub-habitats at a global scale. The human-associated
habitats, including the digestive system and skin, had the highest
abundances of ARGs (Fig. 1b). Built environments, mainly
including urban subways, also had considerable abundances of
ARGs, confirming these as hotspots of ARGs7. Genes conferring
resistance to tetracyclines and aminoglycosides, two widely used
antibiotics in the clinic26, dominated in digestive system and skin,
respectively, while ARGs conferring multidrug resistance had a
high proportion in built environments (Fig. 1c). Although
geographic factors like latitude were reported to influence the
abundance of the ARGs4, confirmed in this study (Supplementary
Fig. 2), anthropogenic activities are also critical for dissemination
of ARGs. To further determine the impacts of anthropogenic
activities on the dissemination and abundance of ARGs, we
calculated population densities at each sample site.

Effect of anthropogenic activities on the dissemination of
ARGs. Sampling sites were clustered into two groups according to
their general population density, one with high-intensity activity
(>58 people/km2, the global average population density27), and
the other with low population density. Regions of high-intensity
activity had significantly higher total abundances of ARGs and
genes conferring resistance to specific classes (p < 0.001, two-
tailed Welch’s t-test; Fig. 1d and Supplementary Fig 3). A total of
671 ARGs were specifically detected in environments with high-
intensity activity (Fig. 1e). For ARGs shared between high- and
low-intensity environments, 715 were significantly more abun-
dant in high-intensity environments (p < 0.05, two-tailed Welch’s
t-test; Fig. 1f) and most of these conferred beta-lactam and
multidrug resistance (Supplementary Fig. 4).

Thirty-four ARGs were specific to low-intensity environments,
mainly annotated as beta-lactam resistance genes (adjust p > 0.05,
two-tailed Welch’s t-test; Fig. 1e and Supplementary Fig. 4). The
distributions of 1102 ARGs were not significantly influenced by
anthropogenic activities (adjust p > 0.05, two-tailed Welch’s t-test;
Supplementary Data 3). These genes are probably not resistance
genes that will affect human health and likely perform different
functions for their bacterial hosts in the natural environment13,15,17.
We identified potential ecological functions of ARGs in biogeochem-
ical cycling by annotating and mapping all ARG-like reads with genes
associated with the cycling of carbon, nitrogen, phosphorus and
sulfur (Supplementary Fig. 5). There were 43 genes initially identified
as ARGs that clearly perform biological functions in addition to
antibiotic resistance. Results indicated that different ARGs exhibit the
different level of correlation to the anthropogenic activities, which
will influence the health risk of ARGs on human lives. We then
quantitatively evaluated the health risk of each ARGs considering the
four indicators (human accessibility, mobility, human pathogenicity,
and clinical availability) in the following sections.

Human accessibility of ARGs. We first examined the ARGs that
were shared between humans and the other three main habitats to
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investigate the accessibility of ARGs to the human microbiota. As
expected, built environments had the most ARGs shared with
human habitats (1460), with terrestrial (1193), and aquatic (1223)
environments having fewer ARGs (Fig. 1g). Most of these ARGs
were annotated as conferring resistance to multidrug and beta-
lactams. We then determined the average abundance and pre-
valence of each ARG in the human habitats and calculated human
accessibility (see the “Methods” section; Supplementary Data 4).
Only 1714 of 2561 ARGs were detected in the human habitats,
most of them with average abundances <50 reads per kilobase per
million (RPKM) per sample and prevalence <10% (Supplemen-
tary Fig. 6 and Supplementary Data 4). The gene tetQ, conferring
resistance to tetracycline antibiotics, had the highest human
accessibility (Supplementary Fig. 6). These results indicated that
the human accessibility of ARGs were variable and only a fraction
of ARGs exhibited high accessibility to humans and posed
potential risk.

Distribution of ARG hosts and mobile genetic elements
(MGEs) in different habitats. From the 4572 metagenomic
samples we used, 18,465 metagenome-assembled genomes
(MAGs) have been recovered by Nayfach et al.28, which greatly
aided our work in determining the global distribution of ARG
hosts. However, directly predicting the host of ARGs based on
MAGs is challenging and could lead to misleading results because
MAGs are composite genomes and do not represent an actual
genome of a single microbe in the community29. Here, we tried to
improve the accuracy of host identification of ARGs by imple-
menting strict quality criteria. We only considered ARGs in
contigs longer than 10 kb and made sure that the taxonomic
affiliation of any genes found in those ARG-containing contigs
agreed with the overall taxonomy of the MAG (Fig. 2a). Subse-
quently, 7555 MAGs were identified as being host of ARGs
(Supplementary Data 5). The hosts of individual ARGs differed
significantly in different habitats (Fig. 2b and Supplementary

Habitat Air (9)
Aquatic (1697) Engineered (1174)

Human (1020) Other host (276)
Terrestrial (396)

Terrestrial

Marine
Freshwater

Thermal springs

Aquatic

Soil
Deep subsurface

Digestive system
Skin

Human

Wastewater
Bioreactor

Lab enrichment
Built

Engineered

Relative abundance of ARG classes (%)
1500 1005005001000

Abundance (RPKM/sample)

a b c
Sub-habitat

p=7.60e−168

Ab
un

da
nc

e 
(R

PK
M

)

Group

d

34 1846 671

HighLow

High
Low

e

Built

Terrestrial

Aquatic

Human

Multidrug
Beta-lactams
Aminoglycoside
Tetracycline
Glycopeptide
Peptide

Phenicol
Fluoroquinolone
MLS

Diaminopyrimidine

Others
Fosfomycin

ARG classes

HighLow

g

f

2000

Elfamycin

Non-marine Saline and Alkaline

0

5000

10000

15000

20000

0.00

2.00

4.00

6.00

8.00

0.00

1.50
2.50
3.50

Lo
g 2(A

ve
ra

ge
 a

bu
nd

an
ce

)

71
5 

ge
ne

s
29

 g
en

es

1223

1193

1460

Fig. 1 Distribution patterns of antibiotic resistance genes (ARGs) globally. a Geographic distribution of samples with ARG abundance in various habitats.
Each point indicates one sampling location, rounded to the nearest degree, with point size reflecting the number of samples, and point color indicating the
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of human, mainly including the fecal samples, had the highest abundances of ARGs. c Composition of antibiotic resistome in each sub-habitat. Only sub-
habitats containing at least 20 samples are shown. d High-intensity human activities significantly promoted the abundance of ARGs. Each dot represents
one sample (n= 1643 and 2309 samples for Low- and High-group, respectively). The p value represents the statistical significance (two-tailed Welch’s t-
test). e Number of ARGs specific or shared in the areas with low- or high-intensity human activities. There were 671 ARGs specifically detected in high-
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Fig. 7a). Hosts of most ARGs (89.61%) were specific to one
habitat, with only few hosts shared across two or three habitats
(Supplementary Fig. 7b). ARG hosts in the built and human-
associated habitats were less diverse than the hosts in more nat-
ural habitats (Fig. 2b), perhaps a consequence of selective pres-
sures from anthropogenic activities.

The habitats contained distinct ARG hosts, suggesting that they
directly or indirectly selected these hosts. Mobile genetic elements
(MGEs), including insertion sequences (ISs), integrons and
transposons, are all capable of horizontally transferring ARGs
from one bacterium to another in association with plasmids and
phages21,30. Abundance and distribution of MGEs can be shaped
by environmental selection31–33. Thus, we determined the
composition of MGEs in each sample from the metagenomic
reads to discover if they influence the distribution of ARG hosts
in diverse habitats. MGEs were significantly and positively
correlated with ARGs in abundance and richness, respectively
(linear regression: p < 0.001) (Fig. 2c). Few MGEs (3.80%) were
shared by the four habitats, similar to the distribution of hosts
carried ARG (Supplementary Fig. 8). The unique environmental
conditions in each habitat type could influence the distribution of
MGEs31–33 and thus determine the distinct compositions of the
hosts that contained ARGs in each habitat. The abundance of
MGEs per sample was significantly higher in areas with high-, as
opposed to low-intensity anthropogenic activities (p < 0.001, two-
tailed Welch’s t-test; Fig. 2d). This could lead to the insertion of
more ARGs into genomes (Fig. 2e), which then drives an increase
in ARGs shared between non-pathogens and pathogens (Fig. 2f)
while also increasing the range of potentially pathogenic hosts of
ARGs (Fig. 2g). These results indicate that MGEs likely
contributed to the HGT of ARGs between hosts, and significantly
from non-pathogens to pathogens.

Mobility and human pathogenicity of ARGs. Considering that
MGEs can be either not binned, or incorrectly binned into the
wrong MAGs34,35, we collected 27,013 completed genomes in
NCBI RefSeq database36 to determine the mobility and human
pathogenicity of ARGs (see the “Methods” section; Fig. 2h). All
these completed genomes were sequenced by whole-genome
sequencing, the accurate and standard approach for discovering
MGEs35, and 16,889 of them were recognized as pathogens
(Fig. 2i and Supplementary Data 6). For determining the mobility
of ARGs, we extracted 5 kb upstream and downstream of the
ARGs detected in all completed genome for annotating the MGEs
(Fig. 2h). We only considered the ISs, integrases and transposases
in this step. Some sequences attributed to the function of plas-
mids and phages, but that did not directly affect the mobility of
ARGs were excluded. We used such conservative approach
mainly because it is difficult to identify phages and plasmids at
the gene level. Some genetic elements close to ARGs may be
involved in the function of plasmids and phages, however, they
cannot contribute to the HGT of ARGs and result in false
positives21. In total, there were 4612 MGEs identified from
completed genomes, and most of them (3061/4612) were trans-
posase (Fig. 2j).

It is now clearer than ever that MGEs were greatly responsible
to the dissemination of ARGs and used for determining the
mobility of ARGs in the previous studies, which assessed the
health risk of ARGs qualitatively17,18. In the present study, for
quantitative analysis, the mobility of ARGs was defined as the
number of associated MGEs detected (see “Methods” section;
Supplementary Data 7). It should be noted that it is almost
impossible to measure the absolute value of the mobility of ARG,
which can be changed with the genetic contexts in specific
species, because of the fitness costs in HGT17. However, our

method determined a potential mobility of ARGs, which was
critical for risk assessment. Most of the evaluated ARGs (2265/
2561) were carried by less than 10 different MGEs (Mobility <10)
(Fig. 2k).

We also determined the potential human pathogenicity of an
ARG based on the proportion of pathogens that carried it to
evaluate the health risk of clinical ARGs (see the “Methods”
section; Supplementary Data 8). The human pathogenicity of
ARGs exhibited a clearly bimodal distribution (Fig. 2k), indicating
that most ARGs had specific genetic contexts and were exclusively
carried by non-pathogens only (human pathogenicity= 0) or
pathogens only (human pathogenicity= 1).

Health risk assessment of ARGs and samples. In summary, we
analyzed the characteristics of ARGs to determine their human
accessibility, mobility, and human pathogenicity based on their
potential to move from the environment to humans and to drive
the evolution of pathogens resistant to antibiotics. We further
determined the clinical relevance of ARGs by systematically
evaluating the risk of ARGs to human health. Data for the global
use of antibiotics were collected37, which indicated that penam
(55.25%) and cephalosporins (13.07%), two beta-lactam anti-
biotics, were used the most (Supplementary Fig. 9). The total use
of antibiotics for each ARG was calculated as clinical availability
(see the “Methods” section and Supplementary Data 9 for details).
Genes conferring resistance to clinically available antibiotics were
a high proportion of the 2561 ARGs we detected. The multidrug
resistance gene tolC, for example, can confer resistance to nearly
all common antibiotics and thus had the highest clinical avail-
ability (Supplementary Data 9).

We evaluated the overall health risk for each ARG using the
four calculated metrics: human accessibility, mobility, human
pathogenicity and clinical availability, as determined above
(Fig. 3a). All, except clinical availability, only covered about half
of the ARGs (Fig. 3b). We calculated the risk index (RI) as
RI=HA ×MO ×HP × CA (also see the “Methods” section). This
formula was quite strict, and only 23.78% of the 2561 ARGs with
all four indicators were predicted as a health risk (Fig. 3c;
Supplementary Data 10). Most high-risk ARGs were multidrug
resistance determinants (Fig. 3d). However, this formula is still
reasonable. For example, the ARGs with high clinical availability
but with no MGEs may only be genes intrinsic to specific
hosts17,38 and cannot transfer between hosts. We divided the
ARGs with an RI > 0 into four categories based on the rank of
their RI for further examination: Q1 (top 25%), Q2 (50–75%), Q3
(25–50%), and Q4 (bottom 25%). Interestingly, most ARGs
conferring multidrug resistance or resistance to commonly used
antibiotics, such as tetracycline belonged to Q1, and ARGs
conferring resistance to rarely used antibiotics such as glycopep-
tides belonged to Q4 (Fig. 3e). These results confirmed that the
use of antibiotics increased the risk of ARGs to human health and
potentially caused the failure of clinical treatments of infection38.
To validate the performance of our assessment method, we
determined ARGs in 568 hospital pathogenic MAGs from
another catalog of human gut microbiota39 (Supplementary
Data 11) as well as a subset of completed genomes from
pathogens. The method used for assigning ARGs in MAGs was
the same as Fig. 2a. Results clearly showed that the number of
ARGs belonging to Q1 were significantly higher than other ranks
per genome (Fig. 3f), confirming that these ARGs were highly
dangerous to human health and complicated the clinical
treatment of disease. On the contrary, ARGs belonging to Q3
and Q4 were seldomly carried by genomes of pathogens. These
results testified to the validity of our work in health risk
assessment.
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We evaluated the risk of antibiotic resistance for each sample
using a combination of abundance and RI of ARGs (see the
“Methods” section) to model global surveillance, based on a data
set of 4005 metagenomic samples from four main habitats
(aquatic, terrestrial, built, and human-associated) around the
world. The risk of antibiotic resistance was global, even in the
polar region (Fig. 3g). Human-associated habitats posed the
highest risk of antibiotic resistance, and health risk was also
influenced by anthropogenic activities (Supplementary Fig. S10),
as expected.

Global mapping of the antibiotic resistance threats in marine
environments. After evaluating the health risk of each sample, we
wanted to map the antibiotic resistance threats around the world,
using machine learning (Fig. 4a). We used 712 samples from
marine habitats to establish the prediction model (Supplementary
Data 12). The distribution of the risks for marine samples were
uneven (Supplementary Fig. 11), so for better prediction accu-
racy, the dataset was discretized by three unsupervised methods
(k-means40, equal width, and equal frequency41), and the samples
were then divided into 10 ranks according to their risks (rank 10
for the highest risk and rank 1 for the lowest risk). Seventeen
anthropogenic drivers in marine habitats provided by Halpern
et al.42 as well as the latitude were chosen as 18 factors (Sup-
plementary Data 12) that influenced the risk ranks. The random
forest algorithm combined with 10-fold cross-validation was used

in machine learning for better performance and avoiding the
overfitting of prediction model43.

The different methods discretized the dataset in different results
(Supplementary Figs. 12 and 13). Equal frequency resulted in a well-
distributed dataset, however, it failed to clearly distinguish the
samples in ranks 1–5. On the contrary, equal width clearly
differentiated the samples in each rank, but nearly all the samples
were grouped as rank 1 with only one sample in some ranks. k-
means algorithm, the most known and used clustering method40,
balanced the sample number (not strictly even but better than the
original dataset and equal width) and dissimilarity in each rank. We
further determined the prediction performance of machine learning
based on the dataset discretized by k-means and equal frequency, and
the former exhibited much higher accuracy rate than the latter
(Fig. 4b). Results of 10-fold cross-validation also showed the
prediction performance of machine learning with the k-means
method (Supplementary Fig. 14). We then chose the best model in
10-fold cross-validation with the accuracy rate= 76.06% for further
analysis. This model classified each risk rank well (Fig. 4c). Latitude,
which has been confirmed to significantly influence the abundance of
ARGs (Supplementary Fig. 2), was the most important predictor in
the prediction model (Fig. 4d). In the meantime, climate change
stressors including ultraviolet radiation changes (UV), sea level rise
(SLR), surface temperature rise (STR), and ocean acidification (OA)
were also critical for the prediction model.

With the prediction results from machine learning, global
mapping of antibiotic resistance risk in marine habitats with each
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pixel (20′ × 20′ resolution) were done (Fig. 4e). Note that the risk
rank here only represents the relative risk (antibiotic resistance
risk in rank 10 areas is higher than rank 1), areas in rank 1 did
not mean no risk. The global distribution of antibiotic resistance
is related to the prediction of the abundance of ARGs in each
country and territory by Hendriksen et al.5. For example, the
ARG risks in the marine areas close to Brazil and Africa were
higher than in the marine areas close to eastern USA. This result
was consistent with the higher ARG abundance of urban sewage
in Brazil and Africa, compared to the USA5. For comparison
between oceans, the antibiotic resistance threats in Pacific and
Atlantic Ocean were the higher than others. The antibiotic
resistance risk of marine areas close to the Antarctic Pole were
higher than the areas near the Arctic Pole. This map provided an
overview of the antibiotic resistance threat in global marine,
which was important for surveillance. However, it is still limited
by the number of samples, for example, samples in high-risk
ranks were less than lower ones, and there was low coverage of

marine areas, with 712 samples. Thus, for more comprehensive
and accurate mapping of antibiotic resistance threats in marine
environments, we need more high-quality metagenomic datasets.
On the other hand, we could not map the antibiotic resistance
threats in terrestrial and human-associated habitats, mainly
because of the uneven distribution of samples and the lack of
metadata on original soil properties.

Discussion
We annotated 4572 metagenome samples with CARD to identify
ARGs and obtain an unprecedented view of their global ARG
distribution. A total of 2561 ARGs covering various habitats were
used to link their abundance to the intensity of anthropogenic
activities. The dissemination of ARGs across habitats and HGT of
ARGs from non-pathogenic hosts to pathogens increased with
the intensity of anthropogenic activities, associated with an
increase in the abundance of MGEs. These results were pre-
dictable, but the global distribution of the main hosts of ARGs
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was surprising. By examining different habitats, we demonstrated
that particular ARGs were found in distinct host taxa in different
environments. Sequencing the 16S rRNA gene combined with
high-throughput qPCR is a common approach to identify
microorganisms that are ARG hosts by correlation analysis2,3,44.
Metagenomic sequencing can more accurately identify hosts that
have ARGs, although studies are often limited to a single
habitat4,7 and metagenomic approaches can cause false positives.
Here we examined all available MAGs from multiple habitats by
applying stricter quality criteria, which improved the accuracy of
host identification of ARGs.

The global distribution of ARGs and their hosts, mainly based
on their number and abundance is important, but insufficient for
evaluating the health risk of antibiotic resistance16–18. By sys-
tematically considering their accessibility, potential to contribute
to pathogenicity, mobility between hosts and relevance to clinical
treatment, we improved determinations of the health risk for the
2561 ARGs detected in the metagenomic analysis. Only 23.78% of
the 2561 ARGs were determined as “risk ARGs” with an RI > 0
because of our stringent, but reasonable, methods. We confirmed
that the use of antibiotics was tightly linked to the health risk of
the ARGs, but some ARGs were exceptions. For example, ARGs
conferring resistance to beta-lactams were common, but only 172
of 1631 ARGs in this class had a significant risk index. ARGs
conferring resistance to glycopeptide antibiotics (such as vanco-
mycin, a last line of defense antibiotic) were mainly in the lowest
risk Q4 category. For these ARGs, we need information about
whether they co-exist with multidrug-resistant ARGs in the same
pathogens30 before the target antibiotics are used. Vaccines would
then be more efficient and less risky than antibiotics45.

Global prediction or surveillance of antibiotic resistance has
already begun5,46,47. Hendriksen et al. precisely predicted the
global abundance of ARGs using World Bank variables, mainly
concerning sanitation and health5, but abundance did not directly
represent health risk. In this study, we provided a feasible
quantitative method for global mapping of antibiotic resistance
threats for each pixel (20′ × 20′) in marine habitats with machine
learning. However, there is still an immediate need for a global
cooperative system for reporting ARGs and their hosts, especially
in clinics. The Global Antimicrobial Resistance Surveillance
System of the WHO provides the opportunity for global coop-
eration on surveilling antimicrobial resistance47. Most impor-
tantly, these data should be collected under the supervision of
governments and shared on public platforms such as the World
Health Organization (WHO) with detailed metadata, including
clear coordinates of sampling sites, physicochemical properties of
samples (for water or soils), age, gender, race and dietary habits
(for humans), and so on.

Our study provides a novel and straightforward method for
quantification and standardization of the antibiotic resistance
threats all around the world that will improve decision-making in
clinics and public health management. Predicting future threats,
as demonstrated by COVID-19, is difficult. The most serious
threats, however, are likely those we already recognize48. ARGs
and their hosts are unquestionably a serious global threat, cur-
rently causing about 700,000 deaths a year around the world, and
this could increase to 10 million deaths a year by 205048. We used
a systematic and targeted surveillance of ARGs to evaluate the
antibiotic resistance threats around the world, which provides
some early warning. Comprehensive systems for surveilling the
risk of antibiotic resistance under global cooperation should be a
priority.

Methods
Collecting the datasets of metagenome, completed genomes, and MAGs. In
this study, we used several datasets for comprehensively evaluating the health risk

of ARGs. We downloaded 4572 metagenomic samples for determining the global
distribution of ARGs and MGEs across diverse habitats from European Nucleotide
Archive49. We fortunately have the permission to download the 18,465 MAGs
constructed by Nayfach et al. 28 from the IMG/M portal50,51. For more accurately
determining the mobility and human pathogenicity of ARGs, 27,013 completed
genomes in NCBI RefSeq database36 were collected. To validate the performance of
our assessment method, we determined ARGs in 568 hospital pathogenic MAGs of
another catalog39 from European Nucleotide Archive49. The pathogenic genomes
in this study were defined by comparison of their taxonomical information to the
A-to-Z database which is continually updated with clinically relevant pathogens
and aligned with information from the Robert Koch Institute in Germany and the
WHO52. Detailed information for these datasets is provided in Supplementary
Data 1, 5, 6 and 11, including the ARGs annotation, sampling location, habitat
information and pathogenic identification. IBM® Aspera Connect (v4.1.1) was used
for downloading all these data.

ARG and MGE annotation and abundance calculation at the metagenomic
level. The raw data of metagenomic samples were qualified by FastQC (v0.11.5;
https://github.com/s-andrews/FastQC), and then trimmed and quality-filtered
using Trimmomatic53 (v0.36). ARGs were annotated with the CARD using reads
by their recommended tool, RGI54 (v5.1.1), with default parameters for metage-
nomic reads. BWA55 (v0.7.13) was used for mapping reads to ARGs in each
sample, and the unmapped reads were removed using Samtools56 (v1.3.1). The
number of mapped reads of ARGs in each sample were counted using a script,
which is available at GitHub (see “Code availability” below). ARG abundance was
calculated as RPKM with the number of reads and gene lengths. ARGs were
manually reclassified based on the drugs to which they confer resistance. ARGs
referring to penam, cephalosporin, carbapenem, cephamycin, penem and mono-
bactam were grouped into the beta-lactam class. ARGs referring to macrolides,
lincosamides and streptogramins were grouped into the MLS class. ARGs referring
to more than one drug class were grouped into the multidrug class.

The annotation of MGEs in each sample from the metagenomic reads was
performed to discover if they could influence the distribution of ARG hosts in
diverse habitats. Reads of ISs were annotated with the ISfinder database57 using
BWA55 (v0.7.13). Reads were also annotated with the nucleotide sequence referred
to the NCBI Reference Sequence of transposases and integrases, which were
clustered using CD-HIT58 (v4.7) with the threshold ≥90%, using BWA55 (v0.7.13).
The abundances of the MGEs were calculated in the same manner as for the ARGs.

Potential ecological functions of ARGs in biogeochemical cycling. We compiled
a comprehensive database of genes involved in the cycling of carbon, nitrogen,
phosphorus, and sulfur (CNPS), including SCycDB59, NCycDB60, and QMEC61.
Potential ecological functions of ARG-like reads were annotated with the CNPS
database we created by BWA55 (v0.7.13).

Determination of the ARG hosts in MAGs. The MAGs and ARG contigs were
taxonomically assigned using Kraken2 (v2.1.2) with the default parameter. After
that, we tried to improve the accuracy of host identification of ARGs by imple-
menting stricter quality criteria: only considering ARGs in contigs longer than
10 kb and making sure that the taxonomic affiliation of any genes found in those
ARG contigs agreed with the overall taxonomy of the MAG (Fig. 2a).

ARGs and MGEs annotation in completed genomes. ARGs in completed gen-
omes were annotated with CARD by their recommended tool, RGI54 (v5.1.1), with
default parameters for genomes. We then extracted 5 kb upstream and downstream
of the ARGs detected in all completed genomes for annotating the MGEs, because
such close proximity of MGEs and ARGs is more likely to induce HGT21. For
genomes, ISs were annotated with the ISfinder database57 using BLASTN (v0.7.13;
e-value ≤ 10−10, identity ≥ 80%, coverage ≥ 80%), while the transposases and inte-
grases were annotated with the NCBI Reference Sequence, which were clustered
using CD-HIT58 (v4.7) with the threshold ≥ 90%, at an e-value ≤ 10−10 with a
minimum amino acid identity of 60% over 60% query coverage using Diamond62

(v0.9.36.137).

Collection of population data and global antibiotic use. The population density
of each sampling location was collected from the SEDAC Population Estimation
Service63, which provides population data in a specific area using longitude and
latitude. We only considered samples from aquatic, terrestrial, engineered and
human-associated habitats with clear location coordinates. All samples were
clustered by population density into two groups regardless of habitat: one was an
area with high-intensity anthropogenic activities with >58 people/km2, and the
other area was summarized as low-intensity activity. This threshold was chosen
because it is the global average population density calculated according to the
global population and land area27. Data for global antibiotic use were collected
from an online website37 containing data on antibiotic use in hospitals and from
retail outlets in 76 countries.
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Determining the health risk of ARGs to humans. We emphasized the impor-
tance of determining the health risk of ARGs to humans from multiple perspectives
rather than basing risk only on abundance. We defined four indicators from these
perspectives: “human accessibility” (HA), “mobility” (MO), “human pathogenicity”
(HP), and “clinical availability” (CA).

HA represents the ability of ARGs to transfer from the environment to the
bacterial groups in humans16 and is calculated as

HA ¼ Average abundancehuman ´Prevalencehuman ð1Þ
where Average abundancehuman and Prevalencehuman represent the average
abundance and prevalence of ARGs in human-associated habitats, respectively.

MO represents the ability of ARGs to transfer between hosts by HGT. We
determined the MO of ARGs as the number of the related MGEs in completed
genomes, which could potentially transfer them between genomes or to plasmids.

HP specifically represents the ability of ARGs to transfer from nonpathogenic
hosts to pathogenic hosts, leading to the evolution of pathogens resistant to
antibiotics and the failure to control clinical infections17. HP was calculated for
each ARG as

HP ¼ Numberpathogenic=Numberall ð2Þ
where Numberpathogenic is the number of pathogenic ARG hosts and Numberall is
the total number of hosts containing ARGs.

CA represents the clinical availability of ARGs, so we indicated that their health
risk was higher than others if the ARGs conferred resistance to the most commonly
used antibiotics. We then calculated CA for each ARG as

CA ¼ ∑n
i¼1Usage of antibiotici ð3Þ

where n is the number of antibiotics to which the ARG conferred resistance. For
example, according to the classification in CARD, tetC confers resistance to
macrolide, fluoroquinolone, aminoglycoside, carbapenem, cephalosporin
(cephamycin), glycylcycline, penam, tetracycline, peptide, aminocoumarin,
rifamycin, phenicol, triclosan, and penem antibiotics. So, the number of antibiotics
to which tetC conferred resistance is 14, and the clinical availability of tetC was the
sum of the consumption of these 14 antibiotics.

Finally, the risk index (RI) of the ARGs to human health was calculated as

RI ¼ HA ´MO ´HP ´CA ð4Þ
We also calculated RI for each sample as

RIsample ¼ ∑n
i¼1Abundancei ´RIi ð5Þ

where Abundancei is the abundance of ARGi in the sample, and RIi is the RI of
ARGi calculated using Eq. (4).

To validate the performance of our assessment method, the ARG annotation
from hospital pathogenic MAGs were performed as described above. We calculated
the number of ARGs carried by per pathogenic MAG with different risk ranks
(Q1–Q4), respectively. We also compared the number of ARGs in each risk rank
detected in the pathogenic completed genomes.

Global mapping for antibiotic resistance threats in marine environments.
Seventeen data sets of anthropogenic drivers in marine habitats were collected from
the database provided by Halpern et al.42 and downloaded from https://
knb.ecoinformatics.org/view/doi:10.5063/F1S180FS in August 2021 and used for
prediction the antibiotic resistance threats in marine habitats. In the meantime,
latitude was chosen as a geographic factor because it has been reported to influence
the abundance of the ARGs4, as confirmed in this study. The 712 samples from
marine habitats were divided into 10 ranks according to their risk after dis-
cretization. The 18 selected indicators associated with the 712 marine samples were
collected for machine learning using random forest algorithm combined with the
ten-fold cross-validation. Random forest was an accurate algorithm by using
bootstrap sample: each tree was built by about 2/3 samples of all data and model
performance was validated by the remaining out-of-bag data64. To further ensure
the performance of random forest and avoid overfitting, we used 10-fold cross-
validation. The original dataset was randomly partitioned into 10 folds. In each
round, nine folds were used to train the model as the training set, and the
remaining data evaluated model as the test set43. The results of ten-fold cross-
validation were evaluated by confusion matrix. The final prediction model was
constructed based on the k-means discretization methods because it exhibited the
best performance. We further evaluated the performance of machine learning by
receiver operator characteristic curve (ROC) plots, which constructed in each rank.
The importance of each indicator was also determined by machine learning to
estimate the most critical factors influencing the antibiotic resistance threats in
marine habitats. We also collected the information of 18 indicators in 380,887 sites
with 20′ × 20′ resolution in marine areas for prediction. After calculating risk for
each site, we converted all data to the Mollweide projection with a WGS84 datum
for showing the global antibiotic resistance threats in marine habitats by ArcGIS
(v10.8). All the scripts for machine learning, including building the prediction
model, plotting ROC, determining the importance of indicators, and predicting the
risk of unobserved marine sites, can be found in the GitHub (see the “Code
availability” section). Machine learning were performed in Python (v3.9) using
PyCharm Community Edition (version: 2021.2.2).

Statistical analysis and visualization. Significant differences were identified using
multiple methods, mentioned in the main text and legends of figures. Two-tailed
Welch’s t-tests were performed in Excel Analysis Tools (Microsoft Corporation,
Redmond, USA), F-statistic and Fisher’s exact test were performed by the basic
statistic package in R (v3.6.3), and Kruskal–Wallis H-test with the pairwise com-
parisons were performed in IBM® SPSS® Statistics (v20.0.0). For multiple com-
parisons, p values were adjusted by FDR in R (v3.6.3). The geographic distribution
of the samples and the global RI map of diverse habitats was constructed using the
ggmap65 and ggplot266 packages in R (v3.6.3). All Venn diagrams were generated
using EVenn (http://www.ehbio.com/test/venn; v1.0). The regression analysis,
point plots, density plots and box plots visualized using the ggplot2 package in R
(v3.6.3). All the schematic diagrams or elements in this paper were drawn using
BioRender (https://app.biorender.com/; v1.0) with full publishing rights. Heatmaps
were constructed using TBtools67 (v1.082). Other plots were constructed using
GraphPad Prism (v7.00).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw data used in this study are available in NCBI RefSeq database, IMG/M portal, and
European Nucleotide Archive. Information for all metadata used in this study as well as
the important data for analysis are provided in Supplementary Data 1, 5, 6 and 11,
including the accession-codes. Supplementary Data contained the critical supplementary
information in this study are also publicly available online (https://doi.org/10.6084/
m9.figshare.19189652). The raw data underlying figures are provided as Source data
which can be obtained in public repository (https://doi.org/10.6084/
m9.figshare.19189568). The nucleotide sequences in our CNPS database can be available
in https://doi.org/10.6084/m9.figshare.19193489. Source data are provided with
this paper.

Code availability
All the scripts and codes for gene annotation, abundance calculation, machine learning,
statistical analysis and visualization used in this study are available online at https://
github.com/ZhenyanZhang/ARG-global68.
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