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Abstract

Determining the dynamics of where and when individuals occur is necessary to understand

population declines and identify critical areas for populations of conservation concern. How-

ever, there are few examples where a spatially and temporally explicit model has been used

to evaluate the migratory dynamics of a bird population across its entire annual cycle. We

used geolocator-derived migration tracks of 84 Dunlin (Calidris alpina) on the East Asian-

Australasian Flyway (EAAF) to construct a migratory network describing annual subspe-

cies-specific migration patterns in space and time. We found that Dunlin subspecies exhib-

ited unique patterns of spatial and temporal flyway use. Spatially, C. a. arcticola

predominated in regions along the eastern edge of the flyway (e.g., western Alaska and cen-

tral Japan), whereas C. a. sakhalina predominated in regions along the western edge of the

flyway (e.g., N China and inland China). No individual Dunlin that wintered in Japan also win-

tered in the Yellow Sea, China seas, or inland China, and vice-versa. However, similar pro-

portions of the 4 subspecies used many of the same regions at the center of the flyway (e.g.,

N Sakhalin Island and the Yellow Sea). Temporally, Dunlin subspecies staggered their

south migrations and exhibited little temporal overlap among subspecies within shared

migration regions. In contrast, Dunlin subspecies migrated simultaneously during north
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migration. South migration was also characterized by individuals stopping more often and

for more days than during north migration. Taken together, these spatial-temporal migration

dynamics indicate Dunlin subspecies may be differentially affected by regional habitat

change and population declines according to where and when they occur. We suggest that

the migration dynamics presented here are useful for guiding on-the-ground survey efforts

to quantify subspecies’ use of specific sites, and to estimate subspecies’ population sizes

and long-term trends. Such studies would significantly advance our understanding of Dunlin

space-time dynamics and the coordination of Dunlin conservation actions across the EAAF.

Introduction

For millions of Arctic-breeding shorebirds, seasonal migrations span thousands of kilometers

and present survival risks that can in turn affect future productivity, and thus the growth tra-

jectory of a population [1–3]. Determining the extent to which individuals are spatially and

temporally connected to particular flyway areas is, therefore, an important component of coor-

dinated conservation strategies designed to halt or reverse population declines [4–7]. For small

Arctic-breeding shorebirds (< 100 g), archival tracking devices facilitate the estimation of pop-

ulation-level migratory connectivity [5, 8] between breeding, migration, and wintering areas,

and are a useful tool for studying drivers of population declines [9, 10]. Studies employing

archival tracking devices often focus specifically on understanding spatial and temporal con-

nectivity between breeding and wintering areas [9–12]. However, understanding the spatial

and temporal dynamics of flyway areas that connect breeding and wintering areas is also

important for determining drivers and consequences of population declines [13–15].

Constructing a migratory network from animal tracking data is one approach to assess spa-

tial and temporal connections among flyway areas and the migrants that use them [16–19].

Adapted from network theory, a migratory network combines movement data from multiple

individuals to graphically summarize how breeding and nonbreeding areas (i.e., network

nodes) are interconnected via immigration and emigration (i.e., network edges; [20]. Network

nodes and edges may also be characterized (i.e., weighted) by the quantity of individuals that

use them. Once constructed, a migratory network is a powerful framework for evaluating how

populations use a flyway in space and time [13, 21], estimating the tradeoffs associated with

various conservation actions [6, 7], and helping to understand drivers of population trends

[16, 22]. However, there are comparatively few examples where spatially and temporally

explicit migratory networks have been constructed to evaluate the migration dynamics of a

bird population across its entire annual cycle [e.g., 18, 19, 23].

Study system

The East Asian-Australasian Flyway (EAAF) has the greatest proportion of threatened and

near-threatened migratory bird species of any global flyway [24]. At least 60% of Arctic-breed-

ing shorebird populations have declined by up to 8% annually [2, 25], and the available evi-

dence suggests declines are primarily linked to anthropogenic habitat degradation at key

stopping and wintering sites in the Yellow Sea [2, 26–28]. However, for many species on the

EAAF, prioritizing flyway conservation actions has been difficult due to limited information

regarding population migration patterns [29–31].

The Dunlin (Calidris alpina) is a species of sandpiper that spends the winter in coastal and

interior wetlands of East Asia and migrates to Arctic and sub-Arctic breeding areas in eastern
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Russia and northern Alaska. Within the Beringia breeding region, there are 5 recognized sub-

species. Each subspecies has their own distinct breeding range (Fig 1), and population sizes

vary from ~2,000–500,000 [32, 33]. Dunlin that breed in northern Alaska (C. a. arcticola)

appear to have concerningly low adult survival rates (S = 0.54; [34]), and surveys indicate Dun-

lin populations have likely declined in the Republic of Korea (H.-J. Kim, pers. comm.), the

People’s Republic of China (28% from 1996–2014; [35; but see 36]), and Japan (up to 80%

from 1975–2008; [37]). However, prioritizing flyway conservation actions for specific popula-

tions has been difficult because Dunlin subspecies are visually indistinguishable in the field

and, therefore, we have an incomplete understanding of where and when on the EAAF each

subspecies occurs [33, 38, 39].

By compiling band recoveries, Lagassé et al. [40] provided the first detailed information on

the migration patterns of the 4 Dunlin subspecies that migrate and winter along the EAAF (C.

a. actites, arcticola, kistchinski, and sakhalina). In their analysis, the authors found that Dunlin

in Japan are predominantly C. a. arcticola, while Dunlin migrating and wintering in other areas

of the EAAF may comprise all 4 subspecies. The authors also found that continued habitat deg-

radation at key sites in the Yellow Sea would likely have a strong negative effect on all 4 Dunlin

subspecies, because 21–50% of subspecific migration recoveries were connected to the region.

Although these findings are a useful step toward understanding Dunlin migration dynamics on

the EAAF, Lagassé et al. [40] failed to locate any recoveries of the kistchinski subspecies and

warned of the likely effects of regionally biased observer effort on regional recovery patterns.

The authors were also unable to determine how birds moved between initial capture sites and

recovery sites, and consequently, lacked information on the spatial and temporal migration

dynamics of the 4 subspecies. These knowledge gaps continue to impede identification of the

network of sites visited by Dunlin subspecies, their relative use, and therefore, the prioritization

of flyway conservation actions for declining Dunlin populations on the EAAF [7, 38, 41].

Here, we aggregate geolocator-derived migration tracks of 84 Dunlin and construct a

migratory network to evaluate the spatial and temporal migration dynamics of the 4 Dunlin

subspecies that migrate and winter along the EAAF. Consistent with earlier work on Dunlin

migration patterns in the western Palearctic [42, 43], we predicted the distribution of Dunlin

subspecies along the EAAF would reflect the geographic distribution of the subspecies on their

breeding grounds (i.e., exhibit a parallel migration pattern; Fig 1). For example, we expected C.

a. arcticola, which breeds farthest north and east on the flyway (i.e., Alaska), to winter farthest

north and east (i.e., Japan). Similarly, we expected C. a. actites, which breeds farthest south and

west on the flyway (i.e., Sakhalin Island), to winter farthest south and west (i.e., the South

China Sea). Following this pattern, we expected C. a. sakhalina and kistchinski, which have

breeding ranges between the 2 other subspecies, to winter in intermediate regions, such as the

Yellow Sea and East China Sea, respectively. Finally, following Holmes [44] and Tomkovich

[45], we predicted Dunlin subspecies would migrate asynchronously, with subspecies breeding

farther north departing/arriving on breeding, migration, and wintering grounds later, and

subspecies that breed farther south departing/arriving earlier. We expected to find this pattern

because spring phenology is later at northern breeding sites used by the 4 subspecies, and

because Dunlin generally breed once favorable conditions become available in the spring and

migrate to intertidal staging areas soon after breeding is complete [44, 45].

Methods

Geolocator deployment and recapture

Nests were located at 8 Arctic and sub-Arctic breeding sites using systematic area searches or

by rope dragging suitable habitats (Table 1 and Fig 1; [46]). Adults were captured at nests
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Fig 1. Breeding ranges of the 5 Dunlin subspecies that occur in the North Pacific, and the location of each field site (a–h) where light-level geolocators were

deployed. See Table 1 for site info. The pacifica subspecies does not migrate and winter along the East Asian-Australasian Flyway and is not discussed in this

paper.

https://doi.org/10.1371/journal.pone.0270957.g001

Table 1. Location, subspecies, and number of Dunlin equipped and later recaptured with light-level geolocators at 8 field sites along the East Asian-Australasian

Flyway. Site locations are in Fig 1.

Site id Field site Latitude, longitude Subspecies Deployment–recapture year Total deployed Geolocator model Total recoveredaC | P

a Utqiaġvik, Alaska 71.2652, -156.6359 arcticola 2010–11 51 Mk12 15 | 3

2016–17 46 Intigeo-W65 16 | 0

2017–18 8 Intigeo-W65 1 | 0

2018–19 40 Intigeo-W65 10 | 1

b Ikpikpuk River, Alaska 70.5525, -154.7309 arcticola 2010–11 35 Mk12 4 | 1

c Canning River, Alaska 70.1180, -145.8506 arcticola 2010–11 22 Mk12 3 | 2

2016–17 13 Intigeo-W65 3 | 0

d Chaun Delta, Russia 68.7750, 170.5495 sakhalina 2013–14 35 Intigeo-W65 4 | 6

e Belyaka Spit, Russia 67.0647, -174.5000 sakhalina 2011–12 10 Mk12 4 | 1

2013–14 15 Intigeo-W65 5 | 1

2016–17 14 Intigeo-W65 6 | 1

f Meinypilgyno, Russia 62.5833, 177.0300 sakhalina 2014–15 5 Intigeo-W65 3 | 0

2016–17 7 Intigeo-W65 4 | 0

G Cape Pogodny, Russia 56.2645, 162.5815 kistchinski 2017–18 20 Intigeo-W65 5 | 0

H Chaivo Bay, Russia 52.5000, 143.2833 actites 2016–17 18 Intigeo-W65 1 | 0

aC = number of tags with complete migration tracks, P = number with partial migration tracks.

https://doi.org/10.1371/journal.pone.0270957.t001
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during incubation or while attending broods using a bow net or mist net, respectively [47].

Once captured, we attached a unique metal band, a Darvic leg flag with an affixed light-level

geolocator, and a unique combination of color bands to the tibiotarsus and tarsometatarsus.

The total weight of the leg flag with affixed geolocator was < 3% of the mean body mass of the

smallest subspecies [48]. Although our tags were within suggested weight limits [49], leg-

mounted geolocators were found to decrease individual return rates by 43% at 2 of 3 sites

where C. a. arcticola were tagged in 2010 (Table 1; [50]). However, the same analysis found

return rates were unchanged in 3 other Dunlin subspecies (C. a. hudsonia, pacifica, and schin-
zii), and the authors suggested that future studies could mitigate impacts of tags by minimizing

the use of additional markers [50]. We minimized the use of additional markers after 2010,

and tags were recovered from individuals that successfully migrated and exhibited typical

breeding behavior the following year (i.e., as they incubated eggs or attended broods); suggest-

ing that carrying a tag likely did not alter the behavior of the birds presented here. Geolocators

were placed on both adults of a breeding pair, when possible, to maintain an even ratio of

males and females within our tagged populations. Adults were also measured (wing, tarso-

metatarsus, total head, culmen) and had feathers and/or blood collected for archival purposes

[51].

Ethics statement. Permits to capture and tag C. a. arcticola were approved by the U.S.

Geological Survey Bird Banding Laboratory (permit 23269, 23566), the U.S. Fish and Wildlife

Service (permit MB-085371), the Alaska Department of Fish and Game (permit 10–044, 11–

018, 16–111, 17–102, 18–160, 19–154), the North Slope Borough, and the Ukpeaġvik Iñupiat

Corporation. Trapping and handling procedures were carried out in accordance with Institu-

tional Animal Care and Use Committee protocols (Bishop’s University BUACC 2009–07; U.S.

Fish and Wildlife Service Alaska Region IACUC 2016–005 and 2019–008). Within Russia, per-

mits were not required to capture and tag C. a. kistchinski or C. a. sakhalina. Trapping and

handling of C. a. actites was approved by the Russian Federal Service for Supervision of Natu-

ral Resources (permit 2016–62, 2017–42).

Geolocator analysis

We used 2 models of light-level geolocators (Mk12, British Antarctic Survey, and Intigeo-

W65, Migrate Technology Inc.) across the 9-year study period (2010–2019; Table 1). Geoloca-

tors measured ambient light levels every minute and recorded the maximum value across

either a 2- (Mk12) or 5-minute (W65) sampling period. Mk12 geolocators truncated the maxi-

mum light value on an arbitrary scale from 0–64, and therefore, only detected coarse-scale

changes in ambient light levels (e.g., dusk and dawn). In contrast, W65 geolocators did not

truncate light values and detected fine-scale changes in ambient light levels throughout each

day. Ambient light levels were downloaded from recovered tags and any offset between the

geolocator’s internal clock and Greenwich Mean Time (i.e., clock drift) was linearly corrected

[52]. We were unable to address potential clock drift for tags that were non-functional upon

recovery (16 of 100 tags; Table 1).

Migration tracks were generated from ambient light level readings using the TwGeos (v0.0–

1; [53]) and FLightR (v0.4.9; [54]) packages in program R (v3.5.2; [55]). First, we used the

findTwilights function to identify the time of each sunrise and sunset (i.e., twilights; [56]).

These twilights were defined as the Greenwich Mean Time when light levels crossed an arbi-

trary threshold of 5 (Mk12) or 12.5 lux (W65). We then used the twilightEdit function to iden-

tify and discard incorrect twilight assignments due to periodic shading of the light sensor (e.g.,

if an adult roosted with the geolocator tucked among its body feathers). A twilight was consid-

ered incorrect and discarded if it was > 45 minutes different than the corresponding twilights
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that occurred in the surrounding 4 days (2 days before and 2 days after; [56]). Second, we cali-

brated individual geolocators using twilight data collected at a known location before geoloca-

tors were deployed or after they were recovered (i.e., “rooftop” calibration), or while

geolocators were attached to birds on their breeding grounds (i.e., “in-habitat” calibration;

[57]). We preferentially used an in-habitat calibration except at breeding sites north of 66.7˚N

where 24-hour sunlight precluded the identification of twilights in the light intensity data. For

geolocators that were not calibrated using either method, we used the calibration parameters

from a geolocator that was of the same model and manufactured in the same year (e.g., [58]).

This calibration step was necessary to calculate tag-specific parameters that described the dif-

ference between the theoretical and observed light-levels recorded by each geolocator [59, 60].

Twilight periods and calibration parameters were then used in the state-space hidden Mar-

kov model in FlightR to generate twice-daily location estimates. This approach used observed

light-levels, an uncorrelated random walk movement model with migratory and sedentary

behavioral states, and a spatially explicit behavioral mask to generate the most probable loca-

tion estimates according to available information on Dunlin migration ecology [59, 60].

Because Dunlin cannot rest or forage in deep water, we parameterized the movement model

so that location estimates over land or over ocean were equally likely if ambient light levels

indicated an individual was in a migratory state, but were weighted toward land if light levels

indicated an individual was in a sedentary state. Parameter values for the movement model

and the spatial behavioral mask were the same for all individuals. We used the “on-the-fly”

outlier detection algorithm to discard unrealistic location estimates [59]. In total, 10% of possi-

ble location estimates were typically discarded per complete migration track (median: 10%,

IQR: 8–11%, n = 84). Finally, we used the stationary.migration.summary function to aggregate

daily location estimates and estimate where and when a bird was stationary for 2 days or longer

(hereafter, stationary estimates; [60]). These stationary estimates include stopover and staging

sites [61], and were used in all further analyses. We chose to use FlightR because daily location

estimates, and derived stationary estimates, are less affected by tag shading than a traditional

threshold analysis [59], and it provides more reliable estimates in the weeks surrounding the

vernal and autumnal equinox [62].

After generating an initial migration track, we re-calibrated each geolocator using the

median latitude, longitude, and light level data from the bird’s longest estimated stationary site

(typically during the boreal winter). We chose to re-calibrate because calibration parameters

from a nonbreeding site are better at accounting for environmentally and behaviorally induced

noise in light-level recordings at nonbreeding sites than calibration parameters from a rooftop

calibration, or while a bird was on its breeding grounds [56, 57]. This re-calibration approach

was necessary because the truncated light-level recordings collected by Mk12 tags precluded

our ability to use other unknown-location-based calibration methods [e.g., 60, 63]. After re-

calibrating, we used the re-calibration parameters to re-estimate the migration track and sta-

tionary estimates. Re-estimated migration tracks were typically more precise, having less vari-

ability between consecutive location estimates and typically half as many daily location

estimates discarded by the outlier detection algorithm (median: 5%, IQR: 4–6%, n = 84). Other

than increased track precision, re-estimated migration tracks exhibited no major changes in

spatial or temporal itineraries of individual birds (S1 Appendix).

Refining migration tracks

We further refined stationary estimates and subsequent migration tracks using a 3-step pro-

cess. First, because of the general inaccuracy of solar geolocation [62, 64, 65], we merged all

sequential stationary estimates that were < 250 km apart by averaging geographic coordinates
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and combining arrival/departure dates. We also discarded stationary estimates prior to a bird

travelling > 250 km from their known breeding site (i.e., capture/re-capture site). This dis-

tance is a conservative buffer for the geographic resolution of stationary estimates returned by

FlightR [62] and functions to aggregate routine movements that may occur during a stationary

period (e.g., daily movements between roosting and foraging sites; [66]. Second, because solar

geolocation performs poorly at high latitudes [67], we discarded stationary estimates prior to a

bird travelling south of 66.7˚N. Finally, because FlightR can generate erratic stationary esti-

mates due to noisy light-level data [59], we discarded stationary estimates that had a turning

angle of< 60˚ (i.e., locations comprising an angle of< 60˚ between their prior and subsequent

stationary estimate; [68] but combined their arrival/departure date with their nearest neighbor.

We did not follow this procedure for the stationary estimate that was farthest from the breed-

ing site and had a stationary period� 42 days (S1 Appendix). This approach assumes that an

individual migrated without reversing direction until they departed their most distant winter

site to migrate north to breed [e.g., 69]. It also assumes that an individual would stop at its far-

thest winter site for� 42 days, a minimum winter duration supported by prior Dunlin track-

ing studies [58, 70] and repeat band resightings of Dunlin on the EAAF [71]. Although these

assumptions might not be fully met (e.g., a bird could exhibit north-south movements during

migration or winter), spatial inaccuracies in estimating latitude preclude finer resolving of the

tracks.

Defining migration parameters

To describe the migration ecology of individual Dunlin, we divided each migration track into

4 periods: breeding, south migration, winter, and north migration. We then estimated the fol-

lowing parameters: migration initiation date and arrival date on breeding and wintering

grounds, migration duration, minimum migration distance, migration speed (km/day), total

number of stationary estimates, and days spent at each stationary estimate. If a bird’s first or

last stationary estimate was > 250 km from their breeding site (e.g., due to breeding north of

66.7˚N), their south migration initiation/north migration arrival date was back/forward calcu-

lated by dividing the minimum geographic distance between their first/last stationary estimate

and their breeding site by an assumed travel rate of 58 kilometers per hour [72]. This analysis

was unable to consider post- and pre-breeding stationary periods that occurred north of

66.7˚N or were within 250 km of a bird’s breeding site and, therefore, southward initiation

and northward arrival dates are the latest and earliest dates possible, respectively.

South migration began when an individual departed for a stationary estimate that was

south of 66.7˚N and> 250 km from its breeding site. South migration ended, and the winter

period began, when an individual arrived at a stationary estimate that was south of 45.5˚N and

that lasted for� 42 days. We chose 45.5˚N and� 42 days as the migration-winter threshold

because Dunlin on the EAAF overwinter at latitudes this far north [40], are generally station-

ary through the winter [58, 70, 71], and typically stop at migration sites for < 42 days [58, 70,

73]. The winter period ended, and north migration began, when an individual departed for a

stationary estimate north of 45.5˚N (i.e., outside of the typical wintering range), or to a station-

ary estimate(s) south of 45.5˚N and for < 42 days before migrating north of 45.5˚N. North

migration ended when an individual arrived at a stationary estimate that was< 250 km from

its breeding site or, if a bird’s last stationary estimate was > 250 km from their breeding site

(e.g., due to breeding north of 66.7˚N), was forward calculated by estimating the time it would

take to travel between its final stationary estimate and its Arctic breeding site (see above).

Finally, we defined minimum migration distance as the sum of geographic distances between

sequential stationary estimates within south migration, winter, and north migration periods.
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We did not estimate the distance of the actual route that the bird flew. We estimated migration

speed by dividing the minimum migration distance by the total days spent in each period (i.e.,

migration duration). Our approach to estimating migration speed included stationary fueling

periods, and therefore, slower migration speeds by individuals that migrated farther, and/or

crossed major ecological barriers (e.g., the Bering Sea), may reflect a non-linear increase in

fueling demands [74] and not necessarily individual differences in migration strategy [75]. To

avoid potentially misinterpreting differences in migration speed between individuals, we only

assessed within-individual changes in migration speed between south and north migration.

Evaluating subspecific migration dynamics

Annual migration tracks were combined across individuals to construct a migratory network

map that was used to evaluate subspecies’ spatial and temporal migration dynamics. Partial

migration tracks, resulting from geolocators malfunctioning, were included in the characteri-

zation of subspecies’ migration ecology (e.g., migration initiation and arrival dates, etc.), but

were not included in the migratory network. If a bird was tracked over multiple years, we only

used the first year of data.

To construct the migratory network, we first clustered stationary estimates into flyway

regions using the partitioning around medoids (pam) function in the raster package (v2.5–8;

[76]) in program R. This function required that the number of clusters (i.e., flyway regions) be

decided a priori. We optimized the number of clusters by iteratively clustering stationary esti-

mates until the median cluster diameter was< 700 km. We selected a 700 km threshold

because resightings of Dunlins carrying geolocators indicated that stationary estimates were

typically accurate to within 700 km of an individual’s actual location (n = 5; location error = 45

km, 260 km, 349 km, 1067 km, 1246 km). This approach allowed us to objectively define fly-

way regions at a fine enough spatial resolution to be biologically relevant but coarse enough to

capture much of the geographic uncertainty in stationary estimates [62, 64, 65]. We then deter-

mined the proportion of each subspecies that occurred in each flyway region on each ordinal

day (i.e., day 1–365, independent of year) during south migration, north migration, and winter

periods.

Finally, we evaluated the spatial and temporal migration dynamics of Dunlin subspecies

using multiple approaches. First, we used pairwise two-tailed Fisher’s exact tests to statistically

compare the proportion of each subspecies that occurred in each flyway region during south

migration, north migration, and winter. We limited these analyses to subspecies with data

from� 25 individuals (i.e., C. a. arcticola and sakhalina). Second, we used pairwise Wilcoxon

rank sum tests to evaluate seasonal differences between subspecies in migration initiation date,

arrival date, migration duration, minimum migration distance, migration speed (km/day),

total number of stationary estimates, and days spent at each stationary estimate. Here, we

included all subspecies with� 5 individuals (i.e., C. a. arcticola, sakhalina, and kistchinski).

Results

In total, 339 geolocators were deployed at 8 sites from 2010 to 2018 (Table 1 and Fig 1). The

number of tags deployed ranged from 12 to 145 per site, and 18 to 215 per Dunlin subspecies.

One-hundred and seven (32%) tags were recovered, including 84 that recorded complete

migration tracks and were used to construct a migratory network, 16 that recorded partial

migration tracks and were combined with the above 84 to characterize subspecies’ migration

parameters (Table 1), 4 that were excluded because they were from a previously tracked bird,

and 3 that failed to collect useable data.
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Subspecific migration dynamics

We found that the timing of south migration differed across the subspecies, with C. a. kistch-
inski (n = 5) initiating south migration 35–51 days earlier than C. a. sakhalina (n = 35) and 48–

68 days earlier than C. a. arcticola (n = 59; Wilcoxon rank-sum tests: 95% CI reported above;

Table 2). Similarly, C. a. sakhalina initiated south migration 10–20 days earlier than C. a. arcti-
cola (Table 2). This staggered migration pattern is consistent with our prediction that Dunlin

breeding at lower latitudes would initiate south migration earlier than those breeding at higher

latitudes (Table 2 and Fig 1). This pattern was violated, however, by the 1 tracked C. a. actites,
which bred farthest south but migrated later than the other subspecies (Table 2). Subspecies’

south migration distances and durations were also similarly staggered (Table 2). The 1 tracked

C. a. actites had the shortest migration distance and duration (Table 2).

We identified 12 flyway regions that were used only during migration (i.e., migration

regions); 2 of the 12 (regions 24 and 25 in W Alaska; Fig 2) were used only during south migra-

tion. Regions in W Alaska (regions 24 and 25) and the NW Sea of Okhotsk (region 18) sup-

ported a greater number of C. a. arcticola (27–56%; n = 52) during south migration than C. a.

sakhalina (0–12%; n = 26; pairwise Fisher’s exact tests: p =< 0.01–0.01), whereas the NE Sea

of Okhotsk (regions 19 and 20) supported a greater number of C. a. sakhalina (42% & 69%)

than C. a. arcticola (10% & 10%, respectively; p =< 0.01; Fig 2). In contrast, the majority of

tagged C. a. arcticola (56%), sakhalina (77%), and kistchinski (100%) occurred in N Sakhalin

Island (region 15; Fig 2). This is also the only region where C. a. actites are known to breed

(Fig 1). Although, during south migration C. a. arcticola, kistchinski, and sakhalina occurred

in many of the same regions (Fig 2), they generally did not occur in the same region at the

same time (Fig 3). Differences in subspecies’ south migration initiation dates and durations

(see above) were reflected in the subspecies having staggered peak passage dates across migra-

tion regions (e.g., region 15, Fig 3), and were consistent with staggered arrival dates on the

wintering grounds (Table 2).

During the winter period, Dunlin were generally stationary (Table 3), but C. a. kistchinski
(n = 5) spent 41–88 more days on its wintering grounds than C. a. sakhalina (n = 26), and 82–

112 more days than C. a. arcticola (n = 52; Wilcoxon rank-sum tests: 95% CI reported above;

Table 3). Similarly, C. a. sakhalina spent 26–46 more days on its wintering grounds than C. a.

arcticola (Table 3). However, we found that C. a. arcticola were typically more stationary than

C. a. sakhalina; flying 528–1,455 fewer km, having 1–2 fewer stationary estimates, and spend-

ing 14–67 more days at each stationary estimate (Table 3).

Table 2. South migration characteristics for each subspecies of Dunlin on the East Asian-Australasian Flyway. Reported is the median value and interquartile range.

Subspecies arcticola sakhalina kistchinski actites Wilcoxon rank-sum pairwise

comparisonsa

South migration n = 59 n = 35 n = 5 n = 1 a b c

Initiation 31 Aug (22 Aug–9 Sep) 15 Aug (12 Aug–23 Aug) 5 Jul (29 Jun–9 Jul) 4 Sep < 0.01 < 0.01 < 0.01

Winter arrival 2 Nov (28 Oct–13 Nov) 18 Sep (10 Sep–2 Oct) 19 Jul (16 Jul–3 Aug) 8 Sep < 0.01 < 0.01 < 0.01

Total duration (days) 65 (51–76) 32 (27–47) 20 (15–21) 4 < 0.01 < 0.01 0.01

Distance (km) 7,067 (6,433–7,777) 5,038 (4,786–5,684) 4,164 (4,110–4,420) 2,359 < 0.01 < 0.01 0.01

Number of stationary estimates 4 (3–5) 3 (3–5) 1 (1–2) 0 0.14 < 0.01 < 0.01

Stationary estimate duration (days) 8 (4–17) 7 (5–11) 9 (6–13) – 0.16 0.98 0.60

Speed (km/day) 109 (97–137) 155 (115–185) 250 (196–278) 590 – – –

a“a” indicates a pair-wise comparison between arcticola and sakhalina; “b”: arcticola and kistchinski; “c”: sakhalina and kistchinski. No statistical comparisons were made

with the actites subspecies due to a low sample size. P-values are reported.

https://doi.org/10.1371/journal.pone.0270957.t002
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Fig 2. Migratory network depicting south migration movements made by Dunlin subspecies along the East Asian–Australasian Flyway, and (D) south

migration stationary estimates color-coded by flyway region. Network nodes and edges are weighted by the proportion of individuals that stopped in each flyway

region, and the proportion that migrated between flyway regions, respectively.

https://doi.org/10.1371/journal.pone.0270957.g002
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We identified 13 flyway regions that were used during the winter (i.e., winter regions). We

also found that the S Korean Peninsula and central Japan (region 11 and 12, respectively) sup-

ported more C. a. arcticola (15% & 14%) than C. a. sakhalina (0% & 0%; pairwise Fisher’s exact

tests: p = 0.05 & 0.09, respectively), whereas inland China, the NW Yellow Sea, and N China

(regions 5–7, respectively) supported more C. a. sakhalina (19–50%) than C. a. arcticola (0–19%;

Fig 3. The proportion of each Dunlin subspecies that occurred in each flyway region along the East Asian-Australasian Flyway by day of year. See Fig 2 for the

location of each region.

https://doi.org/10.1371/journal.pone.0270957.g003

PLOS ONE Dunlin migration dynamics on the EAAF

PLOS ONE | https://doi.org/10.1371/journal.pone.0270957 August 4, 2022 11 / 23

https://doi.org/10.1371/journal.pone.0270957.g003
https://doi.org/10.1371/journal.pone.0270957


p =< 0.01–0.01; Fig 4). However, many winter regions supported similar proportions of the sub-

species (Fig 4). For example, when assessing major geographic regions, we found that the Yellow

Sea (regions 4, 6, 9–11) supported the majority of tagged C. a. kistchinski (60%), arcticola (63%),

and sakhalina (92%; including the 1 C. a. actites). The East and South China seas (regions 1–3)

also supported many C. a. sakhalina (31%), arcticola (48%), and kistchinski (100%; including the

1 C. a. actites; Fig 4 and S1 Dataset). No individual Dunlin that wintered in Japan also wintered in

the Yellow Sea, China seas, or inland China, and vice-versa (Fig 4). Where subspecies used the

same winter region, they generally occurred in the region at the same time (Fig 3).

We found that north migration parameters were similar across the Dunlin subspecies. For

example, C. a. kistchinski, sakhalina, and arcticola had similar north migration initiation dates

and durations (Table 4). However, like south migration, subspecies migrated different dis-

tances, consistent with the minimum distances required to travel between winter regions and

subspecific breeding sites (Tables 2 and 4). We also found that individuals differed in how they

migrated during north versus south migration. Individuals migrating north typically traveled

1.7–5.4x faster, had 0.2–0.7x as many stationary estimates, and spent 0.3–1.1x the number of

days at each stationary estimate than when they migrated south (IQR reported above, n = 83;

Tables 2 and 4). However, the 1 tracked C. a. actites showed the opposite pattern during north

migration, migrating slower and stopping more often and for longer durations than during

south migration (Tables 2 and 4).

Table 3. Winter characteristics for each subspecies of Dunlin on the East Asian-Australasian Flyway. Reported is the median value and interquartile range.

Subspecies arcticola sakhalina kistchinski actites Wilcoxon rank-sum pairwise

comparisonsa

Winter n = 52 n = 26 n = 5 n = 1 a b c

Total duration (days) 192 (179–200) 230 (202–242) 289 (277–292) 206 < 0.01 < 0.01 < 0.01

Distance (km) 0 (0–721) 1,403 (536–1,953) 349 (0–1,321) 1,744 < 0.01 0.29 0.29

Number of stationary estimates 1 (1–2) 3 (2–3) 2 (1–2) 2 < 0.01 0.36 0.28

Stationary estimate duration (days) 128 (56–182) 66 (49–103) 102 (81–202) 47 & 158 < 0.01 0.57 0.02

Speed (km/day) 0 (0–4) 7 (2–9) 1 (0–5) 8 – – –

a“a” indicates a pair-wise comparison between arcticola and sakhalina; “b”: arcticola and kistchinski; “c”: sakhalina and kistchinski. No statistical comparisons were made

with the actites subspecies due to a low sample size. P-values are reported.

https://doi.org/10.1371/journal.pone.0270957.t003

Table 4. North migration characteristics for each subspecies of Dunlin on the East Asian-Australasian Flyway. Reported is the median value and interquartile range.

Subspecies arcticola sakhalina kistchinski actites Wilcoxon rank-sum

pairwise comparisonsa

North migration n = 52 n = 26 n = 5 n = 1 A b c

Initiation 17 May (7 May–19 May) 17 May (29 Apr–21 May) 16 May(19 Apr–22 May) 2 Apr 0.84 1.00 0.87

Breeding arrival 30 May (27 May–3 Jun) 30 May (27 May–2 Jun) 27 May (25 May–29 May) 18 May 0.53 0.05 0.10

Total duration (days) 13 (10–25) 13(10–31) 9 (5–40) 46 0.83 0.58 0.61

Distance (km) 6,308 (5,806–6,897) 5,152 (4,944–5,616) 4,612 (4,562–4,705) 4,254 < 0.01 < 0.01 < 0.01

Number of stationary estimates 2 (1–2) 2 (1–3) 1 (1–2) 2 0.70 0.39 0.34

Stationary estimate duration (days) 5 (3–9) 5 (3–10) 3 (3–25) 11 & 33 0.96 0.53 0.47

Speed (km/day) 432 (270–615) 400 (172–494) 542 (112–922) 92 – – –

a“a” indicates a pair-wise comparison between arcticola and sakhalina; “b”: arcticola and kistchinski; “c”: sakhalina and kistchinski. No statistical comparisons were made

with the actites subspecies due to a low sample size. P-values are reported.

https://doi.org/10.1371/journal.pone.0270957.t004
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Fig 4. Migratory network depicting winter movements made by Dunlin subspecies along the East Asian–Australasian Flyway, and (D) winter stationary

estimates color-coded by flyway region. Network nodes and edges are weighted by the proportion of individuals that stopped in each flyway region, and the

proportion that migrated between flyway regions, respectively.

https://doi.org/10.1371/journal.pone.0270957.g004
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Fig 5. Migratory network depicting north migration movements made by Dunlin subspecies along the East Asian–Australasian Flyway, and (D) north

migration stationary estimates color-coded by flyway region. Network nodes and edges are weighted by the proportion of individuals that stopped in each flyway

region, and the proportion that migrated between flyway regions, respectively.

https://doi.org/10.1371/journal.pone.0270957.g005
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We identified 10 migration regions that were used during north migration. Across the 10

regions, C. a. arcticola and sakhalina occurred in similar proportions (Fig 5), had similar peak

passage dates (e.g., region 15; Fig 3), and had similar arrival dates on their breeding grounds

(Table 4). Over the entire nonbreeding period, Dunlin subspecies exhibited the highest degree

of spatial and temporal overlap during north migration, a moderate degree during the winter,

and the lowest degree during south migration (Tables 2–4 and Figs 2–5).

Discussion

Patterns of spatial and temporal flyway use can have a profound effect on individual fitness,

and thereby, where and when a population experiences decline [13–15]. For example, the tim-

ing and degree to which Dunlin subspecies use an area may affect individuals’ access to opti-

mal foraging conditions [77], exposure to predation pressure [78, 79], subsequent

reproductive success [1, 77], and survival rates [1]. Our migratory network provided an infor-

mative framework for objectively delineating flyway regions and describing population-spe-

cific migration patterns in space and time. We found that Dunlin subspecies used many of the

same core flyway regions (e.g., the East China Sea, Yellow Sea, and N Sakhalin Island; Figs 2–

5), but that C. a. arcticola and sakhalina segregated along edge flyway regions; with C. a. arcti-
cola occurring more along the eastern edge of the flyway (e.g., migrating and wintering in

western Alaska and central Japan) and C. a. sakhalina occurring more along the western edge

of the flyway (e.g., wintering in N China and inland China; Figs 2 and 4). No individual Dunlin

that wintered in Japan also wintered in the Yellow Sea, China seas, or inland China, and vice-

versa (Fig 4). This apparent east-west divide, combined with evidence that C. a. arcticola
exhibit strong interannual site fidelity to specific wintering sites in Japan and elsewhere [40],

suggests that wintering-ground effects on population survival rates likely operate indepen-

dently among C. a. arcticola that winter in Japan, and among Dunlin that winter elsewhere.

Future efforts to compare seasonal survival rates of C. a. arcticola that winter in Japan to those

of Dunlin that winter outside of Japan could enable researchers to better parse the many fac-

tors potentially driving C. a. arcticola population declines [26, 27, 80, 81].

During south migration, we found that C. a. arcticola, sakhalina, and kistchinski staggered

their migration initiation and winter arrival dates; the southernmost (kistchinski) and north-

ernmost (arcticola) breeding subspecies migrating first and last, respectively (Table 2 and Fig

1). Although we expected this pattern to result from earlier breeding phenology at lower lati-

tudes [44, 45], it may also reflect differing strategies for how subspecies minimize their expo-

sure to predation by Peregrine Falcons (Falco peregrinus); C. a. kistchinski timed their south

migration before Peregrine Falcons typically migrate south [82], and C. a. arcticola migrated

after (e.g., that seen in Western Sandpiper [Calidris mauri] and Dunlin on the East Pacific Fly-

way, [78]; Table 2). Alternatively, subspecific differences in south migration timing may reflect

differing strategies for where and when subspecies undergo flight feather molt; C. a. arcticola
and sakhalina undergo flight feather molt on their breeding grounds (mid-June to late August;

[45, 83], whereas, C. a. kistchinski initiate flight feather molt in mid-July (on their breeding

[45] or nonbreeding grounds [84] and complete it on China Sea and Yellow Sea nonbreeding

grounds (e.g., that seen in Dunlin in the western Palearctic, [85]; Table 2, [84]. If the south

migration initiation dates we observed are widespread among C. a. kistchinski, efforts to iden-

tify and conserve important China Sea and Yellow Sea molting sites may be more critical to

the persistence of this subspecies than previously recognized [33, 86].

During the winter, we found that C. a. sakhalina flew farther, stopped more, and spent

fewer days at each stop than C. a. arcticola (Table 3). The more mobile wintering behavior

exhibited by C. a. sakhalina likely reflects the subspecies unique use of freshwater wetlands in
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inland China (region 5; Fig 4) and annual hydrological dynamics in the Yangtze River Flood-

plain (YRF), where most Dunlin in inland China occur [87]. Indeed, we found that 46% of

tagged C. a. sakhalina wintered in inland China. All arrived after monsoonal flood waters typi-

cally recede and reveal abundant shorebird habitats (i.e., October), and all generally departed

before the spring rains (i.e., April; Fig 3, [88, 89]); requiring individuals make additional

migrations between inland China and alternate wintering regions in the fall and spring (e.g.,

that seen in C. a. pacifica on the East Pacific Flyway, [90]; S1 Dataset). In addition to flying far-

ther and stopping more, C. a. sakhalina likely comprises much of the> 45,000 Dunlin that

occur in inland China [87], and is likely the subspecies most threatened by habitat degrada-

tion/loss from human modifications to the natural hydrological regime of the YRF (e.g., the

Three Gorges Dam; [88, 89, 91]. However, many waterbodies in the YRF are connected

through a series of sluices, and therefore, coordination of hydrological management actions

that optimize wetland habitat quality and seasonal availability could significantly support C. a.

sakhalina populations in the region [92].

During north migration, we found that C. a. arcticola, sakhalina, and kistchinski departed

their wintering sites and arrived at their breeding sites on similar dates (Table 4), despite dif-

ferences in their migration distances (Table 4) and breeding phenologies [44, 45]. However,

arrival dates for C. a. arcticola and sakhalina that bred north of 66.7˚N may have been 3–10

days later than estimated [93] because we were unable to identify pre-breeding stationary peri-

ods in areas with 24-hour sunlight (see above). Nonetheless, the similar departure dates suggest

that Dunlin subspecies use similar social and/or environmental cues, such as annual changes

in day length [94], to time their north migrations.

Limitations and future directions

The migration patterns presented here are for adult Dunlin that returned to the same breeding

site and were recaptured in a following year. Therefore, our results do not include the migra-

tion patterns of birds that died, juveniles, or adults that emigrated from their original capture

site. Uneven sampling effort across subspecies and breeding sites is another limitation of our

findings. For example, the migration patterns we found for C. a. actites and kistchinski are

from 1 and 5 individuals, respectively, and each subspecies was only studied at a single breed-

ing site (Table 1). Lastly, the geographic uncertainty associated with geolocator-derived loca-

tion estimates [62, 64, 65] required coarse spatial and temporal interpretation [56].

Combining migration tracking data with on-the-ground survey techniques may be an effec-

tive approach to refine our understanding of subspecies’ migration patterns and to overcome

the limitations of our findings. For example, C. a. actites is classified as vulnerable under the

International Union for Conservation of Nature’s regional Red List criteria, due to its small

population size [39]. Despite conservation concerns, targeted conservation efforts have not

been possible because, until recently, little was known of the subspecies’ migration dynamics

[39, 40]. Our tracking data and previously published band recoveries [40, 95] indicate the sub-

species migrates through the Yellow and East China seas and primarily winters in the South

China Sea (Fig 3). Due to C. a. actites’ genetic and morphological distinctness among Dunlin

subspecies [96, 97], it is possible to combine capture and sampling methodologies with flock

counts [e.g., 43, 98] to estimate how many C. a. actites likely occur at particular South China

Sea sites, and at sites in other regions where C. a. actites occur [40, 95]. Collectively, such

efforts may significantly advance our understanding of C. a. actites space-time dynamics and

our ability to implement conservation actions for this vulnerable subspecies.

Combining migration tracking data with on-the-ground survey techniques may also be an

effective approach to estimate subspecies’ population sizes and long-term trends. For example,
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we found that subspecific migration phenologies were generally asynchronous during south

migration, and that the pattern of asynchrony was consistent across migration regions (Fig 3

and S1 Table). By understanding how subspecies migrate in temporally distinct waves, on-the-

ground survey efforts (e.g., daily flock counts) may be combined with migration tracking data

(e.g., individual turnover rates, population peak passage dates) to estimate the number of indi-

viduals of each subspecies’ that use a particular site [99, 100]. Such survey efforts may also be

applied across years and across key regions to estimate each subspecies’ population size [87,

101] and population trends [2, 102, 103]. Such a monitoring design could provide specific

information necessary to inform more comprehensive conservation plans for Dunlin on the

EAAF [33, 38, 39].

Conclusion

Our migratory network, constructed using geolocator-derived migration tracks of individual

Dunlin, provided an informative framework for objectively delineating flyway regions and

describing population-specific migration patterns in space and time. We found Dunlin sub-

species exhibited unique patterns of spatial and temporal flyway use on the EAAF. Spatially, C.

a. arcticola predominated in regions along the eastern edge of the flyway (e.g., western Alaska

and central Japan), whereas C. a. sakhalina predominated in regions along the western edge of

the flyway (e.g., N China and inland China; Figs 2 and 4). No individual Dunlin that wintered

in Japan also wintered in the Yellow Sea, China seas, or inland China, and vice-versa (Fig 4).

However, similar proportions of the 4 subspecies used many of the same regions at the center

of the flyway (e.g., N Sakhalin Island and the Yellow Sea; Figs 2–5). Temporally, Dunlin sub-

species staggered their south migrations and exhibited little temporal overlap among subspe-

cies within shared migration regions (Table 2 and Fig 3). In contrast, Dunlin subspecies

migrated simultaneously during north migration (Table 4 and Fig 3). South migration was

also characterized by individuals stopping more often and taking more days to complete their

migration (Table 2) than during north migration (Table 4). Taken together, these spatial-tem-

poral migration dynamics indicate that Dunlin subspecies may be differentially affected by

regional habitat change and population declines according to where and when they occur. By

understanding how subspecies migrate south in temporally distinct waves (S1 Table), we sug-

gest on-the-ground survey efforts (e.g., daily flock counts) may be combined with migration

tracking data (e.g., individual turnover rates, population peak passage dates) to estimate the

number of individuals of each subspecies’ that use a particular site [99, 100]. Such survey

efforts may also be applied across years and across key regions to estimate subspecies’ popula-

tion sizes [87, 101] and long-term trends [2, 102, 103]. Such studies would significantly

advance our understanding of Dunlin space-time dynamics and the coordination of Dunlin

conservation actions across the EAAF.
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S2 Fig. Winter characteristics for each subspecies of Dunlin on the East Asian-Australasian
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S3 Fig. North migration characteristics for each subspecies of Dunlin on the East Asian-

Australasian Flyway. Reported is the median value and interquartile range.

(TIF)
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1. Baker AJ, González PM, Piersma T, Niles LJ, Nascimento ILS, Atkinson PW, et al. Rapid population

decline in Red Knots: Fitness consequences of decreased refueling rates and late arrival in Delaware

Bay. Proceedings Royal Society London B. 2004; 271:875–882.

2. Studds CE, Kendall BE, Murray NJ, Wilson HB, Rogers DI, Clemens RS, et al. Rapid population

decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nature Commu-

nications. 2017; 8:14895. https://doi.org/10.1038/ncomms14895 PMID: 28406155

3. Rakhimberdiev E, Duijns S, Karagicheva J, Camphuysen CJ, Castricum VRS, Dekinga A, et al. Fuel-

ling conditions at staging sites can mitigate Arctic warming effects in a migratory bird. Nature Commu-

nications. 2018; 9:4263. https://doi.org/10.1038/s41467-018-06673-5 PMID: 30323300

4. Myers JP, Morrison RIG, Antas PZ, Harrington BA, Lovejoy TE, Sallaberry M, et al. Conservation strat-

egy for migratory species. American Scientist. 1987; 75:18–26.

5. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT. Links between worlds: Unraveling migratory

connectivity. Trends in Ecology & Evolution. 2002; 17:76–83.

6. Iwamura T, Fuller RA, Possingham HP. Optimal management of a multispecies shorebird flyway

under sea-level rise. Conservation Biology. 2014; 28:1710–1720. https://doi.org/10.1111/cobi.12319

PMID: 24975747

7. Dhanjal-Adams KL, Klaassen M, Nicol S, Possingham HP, Chadès I, Fuller RA. Setting conservation

priorities for migratory networks under uncertainty. Conservation Biology. 2017; 31:646–656. https://

doi.org/10.1111/cobi.12842 PMID: 27641210

8. McKinnon EA, Love OP. Ten years tracking the migrations of small landbirds: Lessons learned in the

golden age of bio-logging. The Auk. 2018; 135:834–856.

9. Kramer GR, Andersen DE, Buehler DA, Wood PB, Peterson SM, Lehman JA, et al. Population trends

in Vermivora warblers are linked to strong migratory connectivity. Proceedings of the National Acad-

emy of Sciences. 2018; 115:E3192–E3200. https://doi.org/10.1073/pnas.1718985115 PMID:

29483273

10. Rushing CS, Van Tatenhove AM, Sharp A, Ruiz-Gutierrez V, Freeman MC, Sykes PW Jr, et al. Inte-

grating tracking and resight data enables unbiased inferences about migratory connectivity and winter

range survival from archival tags. Ornithological Applications. 2021; 123:duab010.

11. Fraser KC, Stutchbury BJM, Silverio C, Kramer PM, Barrow J, Newstead D, et al. Continent-wide

tracking to determine migratory connectivity and tropical habitat associations of a declining aerial

insectivore. Proceedings of the Royal Society B. 2012; 279:4901–4906. https://doi.org/10.1098/rspb.

2012.2207 PMID: 23097508

12. Finch T, Saunders P, Avilés JM, Bermejo A, Catry I, de la Puente J, et al. A pan-European, multipopu-

lation assessment of migratory connectivity in a near-threatened migrant bird. Diversity and Distribu-

tions. 2015; 21:1051–1062.

13. Bauer S, Lisovski S, Hahn S. Timing is crucial for consequences of migratory connectivity. Oikos.

2016; 125:605–612.

14. Hewson CM, Thorup K, Pearce-Higgins JW, Atkinson PW. Population decline is linked to migration

route in the Common Cuckoo. Nature Communications. 2016; 7:12296. https://doi.org/10.1038/

ncomms12296 PMID: 27433888

15. Briedis M, Bauer S. Migratory connectivity in the context of differential migration. Biology Letters.

2018; 14:20180679. https://doi.org/10.1098/rsbl.2018.0679 PMID: 30958254

16. Taylor CM, Stutchbury BJM. Effects of breeding versus winter habitat loss and fragmentation on the

population dynamics of a migratory songbird. Ecological Applications. 2016; 26:424–437. https://doi.

org/10.1890/14-1410 PMID: 27209785

17. Knight SM, Bradley DW, Clark RG, Gow EA, Bélisle M, Berzins LL, et al. Constructing and evaluating

a continent-wide migratory songbird network across the annual cycle. Ecological Monographs. 2018;

88:445–460.

PLOS ONE Dunlin migration dynamics on the EAAF

PLOS ONE | https://doi.org/10.1371/journal.pone.0270957 August 4, 2022 19 / 23

https://doi.org/10.1038/ncomms14895
http://www.ncbi.nlm.nih.gov/pubmed/28406155
https://doi.org/10.1038/s41467-018-06673-5
http://www.ncbi.nlm.nih.gov/pubmed/30323300
https://doi.org/10.1111/cobi.12319
http://www.ncbi.nlm.nih.gov/pubmed/24975747
https://doi.org/10.1111/cobi.12842
https://doi.org/10.1111/cobi.12842
http://www.ncbi.nlm.nih.gov/pubmed/27641210
https://doi.org/10.1073/pnas.1718985115
http://www.ncbi.nlm.nih.gov/pubmed/29483273
https://doi.org/10.1098/rspb.2012.2207
https://doi.org/10.1098/rspb.2012.2207
http://www.ncbi.nlm.nih.gov/pubmed/23097508
https://doi.org/10.1038/ncomms12296
https://doi.org/10.1038/ncomms12296
http://www.ncbi.nlm.nih.gov/pubmed/27433888
https://doi.org/10.1098/rsbl.2018.0679
http://www.ncbi.nlm.nih.gov/pubmed/30958254
https://doi.org/10.1890/14-1410
https://doi.org/10.1890/14-1410
http://www.ncbi.nlm.nih.gov/pubmed/27209785
https://doi.org/10.1371/journal.pone.0270957


18. Lamb JS, Paton PWC, Osenkowski JE, Badzinski SS, Berlin AM, Bowman T, et al. Spatially explicit

network analysis reveals multi-species annual cycle movement patterns of sea ducks. Ecological

Applications. 2019; 29:e01919. https://doi.org/10.1002/eap.1919 PMID: 31141283

19. Morrick ZN, Lilleyman A, Fuller RA, Bush R, Coleman JT, Garnett ST, et al. Differential population

trends align with migratory connectivity in an endangered shorebird. 2022. Conservation Science and

Practice. 2022; 4:e594.

20. Urban DL, Minor ES, Treml EA, Schick RS. Graph models of habitat mosaics. Ecology Letters. 2009;

12:260–273. https://doi.org/10.1111/j.1461-0248.2008.01271.x PMID: 19161432

21. Jacoby DMP, Freeman R. Emerging network-based tools in movement ecology. Trends in Ecology &

Evolution. 2016; 31:301–314. https://doi.org/10.1016/j.tree.2016.01.011 PMID: 26879670

22. Iwamura T, Possingham HP, Chadès I, Minton C, Murray NJ, Rogers DI, et al. Migratory Connectivity

magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proc R Soc

B. 2013; 280:20130325. https://doi.org/10.1098/rspb.2013.0325 PMID: 23760637

23. Kölzsch A, Kleyheeg E, Kruckenberg H, Kaatz M, Blasius B. A periodic Markov model to formalize ani-

mal migration on a network. Royal Society Open Science. 2018; 5:180438. https://doi.org/10.1098/

rsos.180438 PMID: 30110431

24. Kirby J. Review 2: Review of Current Knowledge of Bird Flyways, Principal Knowledge Gaps and Con-

servation Priorities. CMS Scientific Council: Flyway Working Group Reviews. 2011. https://www.cms.

int/sites/default/files/document/ScC16_Doc_10_Annex_2b_Flyway_ WG_Review2_Report_Eonly_0.

pdf.

25. Smith PA, McKinnon L, Meltofte H, Lanctot RB, Fox AD, Leafloor JO, et al. Status and trends of tundra

birds across the circumpolar Arctic. Ambio. 2020; 49:732–748. https://doi.org/10.1007/s13280-019-

01308-5 PMID: 31955397

26. Piersma T, Lok T, Chen Y, Hassell CJ, Yang HY, Boyle A, et al. Simultaneous declines in summer sur-

vival of three shorebird species signals a flyway at risk. Journal of Applied Ecology. 2016; 53:479–

490.

27. Murray NJ, Marra PP, Fuller RA, Clemens RS, Dhanjal-Adams K, Gosbell KB, et al. The large-scale

drivers of population declines in a long-distance migratory shorebird. Ecography. 2018; 41:867–876.

28. Zhang SD, Ma Z, Choi CY, Peng HB, Bai QQ, Liu WL, et al. Persistent use of a shorebird staging site

in the Yellow Sea despite severe declines in food resources implies a lack of alternatives. Bird Conser-

vation International. 2018; 28:534–548.

29. Kirby JS, Stattersfield AJ, Butchart SHM, Evans MI, Grimmett RFA, Jones VR, et al. Key conservation

issues for migratory land and waterbird species on the world’s major flyways. Bird Conservation Inter-

national. 2008; 18:S49–S73.

30. Hua N, Tan K, Chen Y, Ma Z. Key research issues concerning the conservation of migratory shore-

birds in the Yellow Sea region. Bird Conservation International. 2015; 25:38–52.

31. Xia S, Yu X, Millington S, Liu Y, Jia Y, Wang L, et al. Identifying priority sites and gaps for the conserva-

tion of migratory waterbirds in China’s coastal wetlands. Biological Conservation. 2017; 210:72–82.

32. Blokhin AY, Kokorin AI, Tiunov IM. Present status of Dunlin Calidris alpina population at north-eastern

Sakhalin (Far East). In: Waders of Eastern Europe and Northern Russia: studies and conservation.

Proceedings of the Sixth Meeting on Studies and Conservation of Waders (V. K. Ryabitsev and L. V.

Korshikov, eds.), 2004, pp. 21–25. Urals University Press (in Russian), Ekaterinburg, Russia.

33. Bamford M, Watkins D, Bancroft W, Tischler G, Wahl J. Migratory Shorebirds of the East Asian-Aus-

tralasian Flyway; Population Estimates and Internationally Important Sites. Wetlands International,

Oceania, 2008, Canberra, Australia.

34. Weiser EL, Lanctot RB, Brown SC, Gates HR, Bentzen RL, Bêty J, et al. Environmental and ecological

conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds. The

Auk: Ornithological Advances. 2018; 135:29–43.

35. Wang X, Chen Y, Melville DS, Choi CY, Tan K, Liu J, et al. Impacts of habitat loss on migratory shore-

bird populations and communities at stopover sites in the Yellow Sea. Biological Conservation. 2022;

269:109547.

36. Choi CY, Li J, Xue WJ. China Coastal Waterbird Census Report (Jan. 2012–Dec. 2019). Hong Kong:

Hong Kong Bird Watching Society. 2020.
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