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ABSTRACT

Vibration signal analysis is an important technique for bearing fault diagnosis. For bearings operating under
constant rotational speed, faults can be diagnosed in the frequency domain since each type of fault has a specific
Fault Characteristic Frequency (FCF), which is proportional to the shaft rotational speed. However, bearings often
operate under time-varying speed conditions. Additionally, the measurement of the time-varying rotational
speed requires instruments, such as tachometers, which leads to extra cost and installation. With the
development of time-frequency analysis, the time-varying FCFs manifest as curves in the Time-Frequency
Representation (TFR). It has been shown that extracting multiple time-frequency curves from the TFR and then
identifying the Instantaneous Fault Characteristic Frequency (IFCF) and Instantaneous Shaft Rotational Frequency
(ISRF), bearing faults can be automatically diagnosed under time-varying speed conditions without using
tachometers. However, the existing method used to identify the IFCF and the ISRF may lead to inaccurate results.
In this study, the complete MATLAB® codes and a more reliable approach to use Multiple Time-Frequency Curve
Extraction (MTFCE) for automatic bearing fault diagnosis under time-varying speed conditions are presented.

e A Multiple time-frequency curve extraction (MTFCE) Matlab code is presented to extract multiple curves from
the TFR.

e Custom Matlab code for automatic bearing fault diagnosis under time-varying speed conditions without using
tachometer data via the MTFCE is given and explained.

e A new parameter, the allowable variance of the curve-to-curve ratio, is proposed to identify the IFCF and ISRF
more reliably.
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Nomenclature

X(t, f)  TER of signal x(t)

T Variable referring to time
f Variable referring to frequency
(1) Extracted time-frequency curve

Sup(T) Upper boundary of a curve

faown(T) Lower boundary of a curve

Np(tn)  Number of peaks at time zn in the TFR

vm(tn)  Frequency of the mth peak at tn

Qm(tn) TFR amplitude of the mth peak at tn

mdt,) Index of the extracted peak at tn

q(m, t,) Vector indicating liked peaks between tn and tn-1
U(m, t,) Intermediate vector contributing to the optimization
N, Number of T-F curves to extract

c

isrf Estimated instantaneous shaft rotational frequency

feci Fault characteristic coefficient of inner race fault

feco Fault characteristic coefficient of outer race fault

er_i Allowed error of |average_ratio-fccil/fcci

er_o Allowed error of |average_ratio-fccol/fcco

var_i Allowed variance of curve-to-curve ratio of inner
race fault

var_o Allowed variance of curve-to-curve ratio of outer
race fault

ifcf Identified instantaneous fault characteristic

frequency
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Introduction

Bearing fault diagnosis is an important means to prevent the breakdown of rotating machines.
Vibration and acoustic signal analyses are commonly used techniques for bearing fault diagnosis since
the local defect at a certain location induces a specific Fault Characteristic Frequency (FCF) to the signal
and the FCF is proportional to the rotational frequency [1]. Based on this knowledge, bearing fault
diagnosis under constant rotational speed condition has been widely investigated [2-8]. However,
bearings often operate under time-varying speed conditions which results in a time-varying FCF.
Under such circumstance, methods used for the case of constant speed are not applicable. Therefore,
investigations of bearing fault diagnosis under time-varying speed conditions are critical for industrial
applications.

Various methods have proposed for bearing fault diagnosis under time-varying speed conditions,
including methods based on signal resampling [9-11], methods based on machine learning [12,13],
and methods based on time-frequency analysis [14,15]. Resampling the bearing vibration signal
according to the time-varying rotational speed can convert the time-varying FCF into a constant
Fault Characteristic Order (FCO) [9]. With the FCO, bearing faults can then be diagnosed similarly to
the case of constant speed. However, the accuracy of signal resampling is limited by many factors
such as interpolation methods. Also, additional instruments are required to measure the rotational
speed. Machine learning methods can be used to automatically diagnose bearing faults without the
acquisition of the rotational speed and signal resampling [12,13]. However, numerous data are
required to train the method-related parameter or classifier. Time-frequency analysis techniques,
such as Short-Time Fourier Transform (STFT), can be used to present the Instantaneous Fault
Characteristic Frequency (IFCF) as a curve in the Time-Frequency Representation (TFR) [14].
Additionally, the TFR can be used to estimate the time-varying rotational speed or Instantaneous
Shaft Rotational Frequency (ISRF). Therefore, bearing fault diagnosis methods based on the time-
frequency analysis is free from signal resampling and does not require numerous data for training.
However, for automatic bearing fault diagnosis, the IFCF and the ISRF need to be extracted from the
TFR.

Multiple Time-Frequency Curve Extraction (MTFCE) algorithm is a newly proposed method
which can be used to extract time-frequency curves from the TFR of a signal [16-18]. With the
MTEFCE algorithm, multiple time-frequency curves can be extracted from the TFR of bearing vibration
signal. Bearing faults can be automatically diagnosed if the IFCF and ISRF are recognized from the
extracted time-frequency curves. In [16], the extracted time-frequency curves are identified as the
IFCF and the ISRF by calculating the average frequency ratio of two curves and comparing the
average ratio to the Fault Characteristic Coefficient (FCC) of each fault types. The FCC is the ratio of
the FCF to the rotational frequency, which remains constant under time-varying speed conditions.
Therefore, the average ratio of the IFCF to the ISRF should match the FCC if the bearing is faulty.
However, if the bearing is healthy, it is possible that the average ratio of two randomly extracted
curves matches the FCC yet either of the extracted curve is the IFCF or the ISRF. This will lead to a
false result that a healthy bearing is diagnosed as faulty. Therefore, the average ratio of two curves is
not sufficient for the identification of the IFCF and the ISRF. In view of this, the variance of the
frequency ratio of two curves should also be taken into account to ensure that the frequency ratio at
each frequency matches the FCC and not just the average ratio. Such an approach is developed in this
paper.

In this paper, Matlab codes of the MTFCE algorithm are provided. Based on the MTFCE
algorithm, custom Matlab codes for automatic bearing fault diagnosis under time-varying
rotational speed conditions are also provided. In addition, a new parameter, the allowable variance
of the curve-to-curve ratio, is proposed to identify the IFCF and ISRF more reliably. With the
provided Matlab codes, bearing faults can be diagnosed by simply inputting the bearing
vibration signal. The proposed method is free from signal resampling and free from any
instrument for measuring the time-varying rotational speed. The effectiveness of the Matlab codes
are validated by experimental data collected from bearings operating under time-varying speed
conditions.
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Method details

In this paper, Matlab codes developed for automatic bearing fault diagnosis under time-varying
speed conditions are released, attached in the. zip file. The function bearing_fault_diagnosis.m can
be used to automatically diagnose bearing faults via Multiple Time-Frequency Curve Extraction
(MTFCE), Instantaneous Shaft Rotational Frequency (ISRF) estimation, Instantaneous Fault
Characteristic Frequency (IFCF) identification, etc. Therefore, relevant functions are also included
in the. zip file. The function mltcurve.m extracts multiple Time-Frequency (T-F) curves from the
Time-Frequency Representation (TFR) of a signal. The function ISRF_estimation.m estimates the ISRF
from the extracted multiple T-F curves. The function fault_disgnosis.m identifies the IFCF and
diagnoses the bearing fault. Additionally, to compare the estimated ISRF with the measured ISRF, the
function encoder.m converts a measured encoder signal into the ISRF and the function compare_isrf
calculates the average error of |estimated ISRF-measured ISRF| /| measured ISRF. The method is
validated with bearing data measured under time-varying speed conditions, which can be found in
[19].

In this section, the MTFCE algorithm is explained. In the next section, the method for automatic
bearing fault diagnosis is demonstrated. Then, the performance of the method is examined by
measured bearing vibration data. Finally, conclusions are drawn based on all the above.

With the development of time-frequency analysis, time-varying frequency characteristics of a
signal can be revealed in the time-frequency domain. Time-frequency techniques, such as the Short-
Time Fourier Transform (STFT) or wavelet transform, can be used to obtain the Time-Frequency
Representation (TFR) of a signal [20]. The time-varying frequencies of the signal appear as T-F curves in
the TFR. However, to further analyze or utilize the time-varying frequencies, T-F curves need to be
extracted from the TFR.

An algorithm for Multiple Time-Frequency Curve Extraction (MTFCE) is given [16,17], based on a
fast path optimization approach. The fast path optimization approach was developed by latsenko et al.
[21] to reliably extract a single T-F curve from the TFR. The fast path optimization approach employs a
support function to optimally extract a T-F curve from the TFR with minimal frequency jumps.

Assuming that the TFR of a signal x(t) is X(, f), in which 7 is the variable referring to time, f is the
variable referring to frequency, then fast path-optimization can be used to extract a T-F curve f,(T)
from X(7, f), along with the upper boundary f,,(7) & lower boundary fqown(T) of the T-F curve. To
explain the approach, the number of peaks at time T, in the TFR is denoted as Ny(t,), the
corresponding frequency of the mth peak as vy, (Ty), the TFR amplitude of the mth peak as Qu(Ty)-
Peaks at time T, can be determined by

dX(t.f)] _
df
Un(Th) =fs.t. &2 X(Ta,f)] (1)
If X(z, f) has a time span [Ty, T2, . . ., Tn], the path optimization can be described as
N
{mc(t1), ... mc(T)} = arg max » ~ F[Tn, Qm, (Tn), Vi, (Tn), {Vim, (T1), .. Vi, (Tn) }] (2)

{my...my} v 3

where m(t,) determines the peak to be extracted as the ridge at t,,, F[] is the chosen support function
for the optimization and {m, . . ., my} refers to a sequence of the peak numbers along the time span.
The fast path optimization is proposed to be only dependent on a finite number of the previous points
with the support function [21]

IOng(TH> n=1
{ 108Q 1 (Tn) + Wa (Vi (Tn), m[f 4], IQR[f4], A2) n=2
10gQn (Tn) + W2 (Vm(Ta), m[f ], IQR[f4], A2) + W1 (Vm(Tn) — fa(Tn-1), M[Af4], IQR[Af], A1) n >3

3)

F[1=
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where

}an (tn) —fa(Tu1) — m[Afd”

“4)

Wi (Vi (Tn) —fi(Tn-1) MIASS) IQRIAT . 1) =~ TORAT |
Wa (Vn(50). T 1QRI ] z) = a2 T )
m[ | = percos[ J,IQR[ ] = percoss[ ] — percos| ] (6)

where f4(7,.1) is the frequency of the candidate ridge point at t,_y, f; are the frequencies of a series of
candidate ridge points in history [Ty, . . ., Tn-1], Afy is the derivative of f;, m[] refers to the median of a
series, IQR is the interquartile range, perc, denotes the pth quantile of a series, and A, and A, are
penalty factors which can be taken as 1. Weight functions w;() and w,() are employed to suppress the
atypical variations of the ridge frequency’s value and derivative, respectively. With the support
function, the fast path optimization can be used to effectively extract the T-F curve from the TFR of a
signal with minimum/ without frequency jumps.
The optimization problem can be solved as [21]:

forn=1,.,Nm=1,.. Ny(tp)andk = 1,...,Np(tn_1)

q(m, tp) = argmaxy {F[Qm(Tn), Vin(Tn), Vk(Tn_1)] + Uk, Tn_1)},n > 1 7)
U(m, 1,) = { FlQun(Tn), Vm(Tn), Vm(Tn)] n=1
e F[Qm(fn)7 Vm(Tn), Vq(m‘r,,)(fn—l)] +U(g(m, tn), Tno1) n>1

where g(m, 7,,) is a vector that indicates which peaks at the previous moment 7,,.; should be linked to
the peaks at the current moment 7, and U(im, t,,) is an intermediate vector which contributes to the
optimization.

After the T-F curve is extracted from the TFR, the upper boundary f,,(7,) of the extracted T-F curve
fp(Tn) at time 7, can be obtained by

X(Tu f) < X(Tn ). fo(Ta) < f < f
Fup(Tn) :f,»s.t.{ ey S ()

Similarly, the lower boundary fgown(T,) of the extracted T-F curve f,(t,) at time 7, can be obtained

by _ X(Tn,fi) < X(tn ). fi < f < fp(Tn)
St =foe{ XA AL ©)

Pseudocode for the MTFCE algorithm is shown in Fig. 1. The Multiple Time-Frequency Curve
Extraction (MTFCE) algorithm iteratively applies the fast path-optimization approach to extract
multiple curves from the TFR. After a single T-F curve is extracted from the TFR, the TFR is updated by
resetting the amplitude of the extracted curve (from the lower boundary to upper boundary) to zero.

To demonstrate more details about the fast path optimization approach and the MTFCE algorithm,
an example of using the MTFCE algorithm to extract two T-F curves from the TFR is shown in Fig. 2

In this example, the TFR X(7, f) of a signal x(t) is an 8*8 matrix. It can be observed that there are two T-F
curves and the one with lower frequencies is more significant, marked in the TFR on the left side of Fig. 2.
First, the peaks at each moment are determined and the number of peaks at each moment Ny(7,) is
obtained. Then, g(m, t,,) and U(im, t,,) are calculated from 7 to g as given in Fig. 2. The peak at tg which
has the maximum value of U(m, t,,) is taken as the end point of the T-F curve. Therefore, the first peak at
Tg is considered as the end point. Then, the whole T-F curve can be extracted by tracking the peaks
backward based on the result of g(m, t,,). From the track, mt,) is determined which mth peak should be
extracted for each moment. Then, f,(7,) is obtained correspondingly. The upper boundary f,;(7,) and
lower boundary fgown(T,) are also determined. Thus, the first T-F curve f,(7)_1 is extracted. Also, even
though the peaks at 75 and 7 do not have the maximum amplitude curve, f,(t)_1 is successfully
extracted. It shows that the fast path optimization approach can prevent frequency jumps. To further
extract the second T-F curve, the TFR X(7, f) is updated, shown on the right side of Fig. 2, by setting the
amplitude of the TFR within the lower boundary the upper boundary to zero at each moment. Again,
applying the fast path optimization approach to the updated TFR, then the second T-F curve is extracted
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Function MTFCE( X(z, f'), Nc)
Input: X(z, f) — TFR of signal x(t) with length of time N: and length of frequency Ny,
Ne— number of T-F curves to extract
Require: Ne > 1, and N is interger
Output:[ f(7)_1, fi©)_2,..., flr)_ Nc]
[fo(2), fup(2), faown(T)] = fast-path-optimization ( X(z, ) )
Jo@)_1=fi(7)
for2<i<Ncdo
% update the TFR
for 1 <n<N:do
X, [) =0, faoun(Ta) <f < fup(tn)
% extract a new T-F curve
[ /(@) fup(D), faonn(7)] = fast-path-optimization ( X(z, f) )
Jo@)_i=fp(7)

Fig. 1. Pseudocode for the MTFCE algorithm.

Input: X(z, ), N.=2

=[1 2 3 4 5 6 7 8]

==

Lo 1=[15 5 10 10 15 15 10 15]

s ol

% update the TFR

X(z /)=

[s€ o€ sz 0T s1 ol

X(nf)=

L n/a
[130 260 390 504 454 438 569 @i [ 25300302525 30025 30 ]

U(m,r,)=| 118 230 378 360 471 522 479 472
n/a 248 na n/a 365 395 na n/a Jo(m)=[35 35 35 35 35 35 35 35]

m(c)=[1 1 1 12 2 1 1] g [0 25 0 0 10 10 0 0 ]
]

1z, 15 5 00 10 15 15 10 15
[ Ble)2=125 30 30 25

fo(t)=120 15 20 20 20 25 20 20 ] . .
Jaow(t)=[0 0 0 0 10 10 0 0] Output: f,(1)_1./,(7)_2

25 30: 25 30]

Fig. 2. Schematic results of multiple curve extraction from TFR.

as fy(7)_2. It can be seen that the results of f,(7)_1 and f,(7)_2 agree with the corresponding frequencies
of the T-F curve marked in the original TFR and the updated TFR, respectively.

The Matlab function for the fast path optimization ecurve.m [21] and the function for the MTFCE
algorithm mltcurve.m are included in the. zip file.

Automatic Bearing fault diagnosis under time-varying speed conditions via MTFCE algorithm

Vibration signal analysis is an important technique for bearing fault diagnosis. Transforming the
vibration signal of a bearing into the frequency domain, bearing faults can be identified since each type
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of fault has a specific Fault Characteristic Frequency (FCF) which is proportional to the Shaft Rotational
Frequency (SRF). The Fault Characteristic Coefficient (FCC), i.e. the ratio of the FCF to the SRF, can be
determined by the bearing structural parameters. The FCC of the outer race fault (FCC,) and the FCC of
the inner race fault (FCC;) can be calculated as follows [1]:

My _d
FCC, = 5 (1 Dcos¢>

FCC, = %(1 + %cosqﬁ)
where n;, is the number of rolling elements, d is the diameter of the rolling element, D is the pitch
diameter of the bearing, @ is the angle of the load from the radial plane. Bearing faults can be diagnosed
by observing the FCF in the frequency spectrum of the vibration signal if the bearing is under constant
rotational speed. However, bearings often operate under time-varying speed conditions which make
the FCFalso time-varying. Therefore, bearing faults cannot be simply observed in the frequency domain.

Time-frequency analysis can be used to analyze a signal in time-frequency domain which renders it
an effective technique for bearing fault diagnosis under time-varying speed conditions even without
measuring the rotational speed. With the time-frequency analysis techniques, for instance, the STFT
and wavelet transform, the TFR of the signal can be obtained to reveal the time-frequency
characteristics of a signal. The Instantaneous Fault Characteristic Frequency (IFCF), its harmonics, and
the Instantaneous Shaft Rotational Frequency (ISRF) show as time-frequency curves in the TFR of the
vibration signal when the bearing is faulty.

By extracting multiple time-frequency curves from the TFR and identifying the IFCF and the ISRF
from the extracted time-frequency curves, bearing faults can be diagnosed under time-varying speed
conditions without using a tachometer to measure the rotational speed [16]. The proposed method for
automatic bearing fault diagnosis under time-varying speed conditions contains the following steps:

e Step 1: applying Hilbert transform to the raw signal to obtain the envelope signal;

e Step 2: applying the STFT to the envelope signal to obtain the TFR of the envelope signal;

e Step 3: using the Multiple Time-Frequency Curve Extraction (MTFCE) algorithm to extract multiple
time-frequency curves from the TFR;

e Step 4: estimating the ISRF as the T-F curve of the lowest frequency;

e Step 5: calculating the point-to-point frequency ratios of each curve to the estimated ISRF (i.e. for
each curve, the result is a series of frequency ratios), the average of the ratios of each curve and the
variance of the ratios of each curve, then, identifying the IFCF by using the tolerant error of average
ratio to the FCC of different fault types and the tolerant variance of the ratio;

e Step 6: diagnosing the fault with the result of IFCF identification.

Considering the fact that the ISRF may not appear in the TFR of the envelope signal, more steps are
needed to complete the method.

e Step 7: applying the STFT to the raw signal to obtain the TFR of raw signal if no IFCF is identified in
Step 7;

e Step 8: using the MTFCE algorithm to extract multiple time-frequency curves from the TFR obtained
in Step 8;

e Step 9: taking the T-F curve of the lowest frequency as the newly estimated ISRF;

e Step 10: calculating the frequency ratios of each curve obtained in step 2 to the newly estimated
ISRF, the average of the ratios of each curve and the variance of the ratios of each curve, then,
identifying the IFCF by using the tolerant error of average ratio to the FCC of different fault types and
the tolerant variance of the ratio;

e Step 11: diagnosing the fault with the result in step 11.

A flowchart for the method for automatic bearing fault diagnosis under time-varying speed
conditions is shown in Fig. 3. The procedure of the bearing fault diagnosis follows the steps described



1422 H. Huang et al./MethodsX 6 (2019) 1415-1432

Raw signal

T T T T T T T

| Hilbert Transform |

O ]

Envelope signal ( Raw signal )

| TFR of envelope signal | TFR of raw signal

IR T e

r
| MTF CE algorithm | MTFCE algorithm

|
._____;____J [ 1

Multiple T-F curves: New T-F curves:
curve_1, curve_2, curve_3... curve_nl, curve_n2, curve_n3...

Y

[
ISRF estimation (1) :

|
-

1
|

Bearing fault type ( Bearing fault type )

Fig. 3. Flowchart of bearing fault diagnosis under time-varying speed conditions via multiple time-frequency curve extraction
algorithm.

above. With the exception of the STFT and the MTFCE, the main modules of the bearing fault diagnosis
include ISRF estimation and the IFCF identification.

The ISRF is estimated as the time-frequency curve with the lowest frequency among all the extracted
time-frequency curves. To determine which time-frequency curve has the lowest frequency, the average
frequency of each extracted time-frequency curve is calculated, then the curve of the minimum average
frequency is considered as the ISRF. Pseudocode for the ISRF estimation is shown in Fig. 4.

The identification of the IFCF utilizes the FCC since the ratio of the FCF to shaft rotational speed
equals the FCC regardless of the variation of the rotational speed. The average point-to-point ratio of
two curves is employed to measure the relation of two time-frequency curves. If the IFCF is properly
extracted from the TFR, then the average ratio of the IFCF to the estimated ISRF should be
approximately the FCC. A parameter defined as the allowed error of |average_ratio-FCC| |/ FCC is
proposed to estimate the error between the calculated curve-to-curve average ratio and the FCC in
reality. Additionally, the allowed variance of curve-to-curve ratio is proposed to prevent the case
where the IFCF is not properly extracted but the average ratio approximately equals the FCC. Therefore,
if the average ratio of a time-frequency curve to the estimated ISRF satisfies the restriction of the
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Function ISRF _estimation ([fp(7)_1, f(v)_2,..., fo(r)_Nc])
Input: [ fy(7)_1, fy(7)_2,..., fp(z)_ Nc]— extracted T-F curves
Output: isrf — estimated instantaneous shaft rotational frequency
Sfor1<n<N.do
M(n) = mean(fp(t)_n)
find i: M(i)=min(M(1), M(2), ....M(N.))
isrf =fp(r)_i

Fig. 4. Pseudocode for the ISRF estimation.

Function IFCF _identification ([fy(t)_1, f(7)_2,..., fo(z)_ Ncl, isfr, fcci, feco, er i, var_i, er_o, var_o)

Input: [ f(7)_1,f(7)_2,..., fo(t)_ Ne] — extracted T-F curves, isft — estimated ISRF, fcci — calculated FCC, feco — calculated FCCo,
er_i— allowed error of |average_ratio(i)-fccil/feci, var_i allowed variance of curve-to-curve ratio for inner race fault,
er_o — allowed error of |average_ratio(o)-fccol/fcco, var_o allowed variance of curve-to-curve ratio for outer race fault.

Output:hc — bearing health condition (0-“Healthy”, 1-“inner race fault”, 2- “outer race fault”),
ifcf — identified instantaneous fault characteristic frequency

he=0

for1<i<Ncdo

for 1 <n<N:do
ratio(n) = f(t)_i(n) / isfi(n)
average_ratio(i) = mean(ratio)
W(i) = variance(ratio)
if (1-er_i)* feci <average_ratio(i)< (1+er_i)* feci && (i) <var_ido
he=1; ifef = fp(x)_i
else if (1-er_o)* feco <average ratio(i)< (1+er_o)* fcco && Wi) <var_o do
he=2; ifef = (7). i

Fig. 5. Pseudocode for the IFCF identification.

allowed error and the allowed variance of curve-to-curve ratio, then the curve is identified as the IFCF.
Pseudocode for the IFCF identification is shown in Fig. 5. In this automatic bearing fault diagnosis
method, bearing faults cover two types of faults, i.e. inner race fault and outer race fault. For other
types of faults, a similar IFCF identification procedure can be added to the method frame if the FCC of
the fault is known.

Pseudocode for the automatic bearing fault diagnosis under time-varying speed conditions
without measurement of shaft rotational speed is shown in Fig. 6.

It can be seen that there are 10 inputs for the automatic bearing fault diagnosis method. Among
them, FCCI and FCCO are determined by the bearing structure parameters, and x is the bearing
vibration signal. Therefore, there are 7 method-related parameters, including er_i, var_i, er_o, var_o,
N¢, w, and ol that need to be selected by the user. Parameters er_i, var_i, er_o, and var_o are used as
restrictions for the IFCF identification. If the value is set too small, the T-F curve extracted from the
signal of a faulty bearing may not be identified as the IFCF. On the contrary, if the value is set too large,
the extracted T-F curve may be identified as the IFCF by mistake. As to the number of the extracted T-F
curves N, the selection is a trade-off between the accuracy and computational cost. It should be
selected as large enough to extract the IFCF or the ISRF at an acceptable computational cost.
Additionally, w and ol are the parameters for the STFT. A larges window size w can provide a better
frequency resolution in the frequency domain, however, requires a higher computational cost. For the
overlap size ol, a larger ol can provide a better time resolution in the time domain, however, requires a
higher computational cost. The quality of the TFR impacts on the result of the T-F curve extraction,
therefore, w and ol should be well tuned to ensure the accuracy of the fault diagnosis. Overall, users
need to tune the 7 method related parameters when using the proposed method.

The Matlab function for the ISRF estimation ISRF_estimation.m, the function for the IFCF
identification fault_diagnosis.m, and the function for the automatic bearing fault diagnosis
bearing_fault_diagnosis.m are attached in the. zip file. Additionally, an application example
main_bearing_fault_diagnosis_example.m which utilizes the proposed method is also attached in
the. zip file. For the Hilbert transform, Hilbert() is used to obtain the envelope signal. For the STFT,
spectrogram() is employed to obtain the TFR of a signal.
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Function bearing_fault_diagnosis (x, fcci, fcco, er_i, var_i, er_o, var_o, Ne, w, ol)
Input: x — bearing vibration signal, fcci — calculated FCCi, fcco — calculated FCCo,
er_i — allowed error of laverage_ratio(i)-fccil/feci, var_i allowed variance of curve-to-curve ratio for inner race fault,
er_o—allowed error of |average_ratio(o)-fcco|/feco, var_o allowed variance of curve-to-curve ratio for outer race fault,
Ne— number of T-F curves to extract, w— window size used for STFT, ol — overlap size used for STFT.
Output:hc — bearing health condition (0-"“Healthy”, 1-“inner race fault”, 2-“outer race fault”),
ifcf — identified IFCF if bearing is diagnosed as faulty,
isrf— estimated ISRF if bearing is diagnosed as faulty,
he=0
envelope = Hilbert(x) % obtain the envelope signal
eTFR = STFT (envelope, w, ol) %obtain the TFR of the envelope signal
5(@)_1,fo(2)_2..... f(r)_ N:] = MTFCE (eTFR, N.)
isrf = ISRF estimation ([fp(z)_1, /() 2,..., fp(r)_Nc])
[he, ifcf] = IFCF identification ([f(v) 1, f(7)_2,..., fp(t)_ Ne, isfr, feci, feco, er_i, var_i, er_o, var_o)
if he=0do
TFR = STFR (x, w, ol)
[fo(2)_newl, fo(t)_newl,..., fo(t)_newNc] = MTFCE (TFR, N.)
isrf = ISRF_estimation ([fy(v)_newl, f(t)_new2,..., fp(t)_ newNc])
[he, ifcf] = IFCF _identification ([fy(t)_1, fi7)_2,..., fo(z)_ Nc], isfi, feci, feco, er_i, var_i, er_o, var_o)
if he=1 do
print (‘Inner race fault’)
if he=2 do
print (‘Outer race fault’)
if he=0 do
print (‘Healthy bearing’)

Fig. 6. Pseudocode for automatic bearing fault diagnosis under time-varying speed conditions without measurement of shaft
rotational speed.

Method validation

Vibration signals of bearing with different health conditions measured under time-varying
rotational speed conditions are used to validate the method. Signals can be found in [19]. Experiments
are performed on a SpectraQuest machinery fault simulator (MFS-PK5M). The experimental set-up is
shown in Fig. 7. A motor drives the shaft and an AC drive is used to adjust the rotational speed. The
shaft is supported by two ER16 K ball bearings, the left one is a healthy bearing and the right one is the
experimental bearing, replaced by bearings of different health conditions. Structural parameters of the
bearings are given in Table 1. An accelerometer (ICP accelerometer, Model 623C01) is placed on the
housing of the experimental bearing to collect the vibration data. Additionally, an incremental
encoder (EPC model 775 with CPM = 1024) is installed to measure the shaft rotational speed.

The proposed method is examined by all the 36 datasets provided in [19]. However, for brevity, only
selected results are shown here. The selected results are obtained by applying the proposed method to
three signals measured from bearings with different health conditions, one measured from a bearing
with inner race fault, one from a bearing with outer race fault, and the other one from a healthy bearing.

According to the information provided in [19], signals are all collected at 200 kHz for 10 s. Also, FCC;
= 543 and FCCo = 3.57. Since the sampling frequency is too high which leads to very high
computational cost, the signal is down-sampled 10 times to fix the computation. If high computational
cost is not a concern, then it is not necessary to down-sample the signal.

1 Bearing with inner race fault Input: bearing vibration signal x(t)=I-D-2.mat (Channel_1) [19],
f$=200,000 Hz, FCCj= 5.43 and FCCo= 3.57, N. = 4, er_i=0.02, var_i = 0.11, er_o = 0.055, var_o = 0.09,
w =9000, and ol = 8800. Additionally, Shaft encoder signal s(t) =I-D-2.mat (Channel_2).Results: “Inner
race fault”. The down-sampled bearing vibration signal is shown in Fig. 8. The obtained TFR of the
envelope signal via the Hilbert transform and STFT is shown in Fig. 9. Then, the T-F curves extracted
from the TFR of the envelope signal via the MTFCE are shown in Fig. 10. By estimating the bottom T-F
curve as the ISRF, the second lowest T-F curve is identified as the [FCF with the average curve-to-curve
ratio=5.4311 (matching the FCC;) and the variance of the curve-to-curve ratio=0.0148. The
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Fig. 7. Experimental set-up [19].

Table 1

Parameters of bearings.
Bearing type Pitch diameter Ball diameter Number of balls FCG FCCo
ER16K 38.52mm 7.94 mm 9 5.43 3.57

Voltage(V)
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Fig. 8. Bearing vibration signal (inner race fault).
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Fig. 9. TFR of envelope signal (inner race fault).
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Frequency(Hz)
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Fig. 10. Extracted T-F curves from the TFR of envelope signal (inner race fault).

estimated ISRFand theidentified IFCFare showninFig. 11. Additionally, the measured ISRFis obtained
from the shaft encoder signal. A comparison of the estimated ISRF to the measured ISRF is shown in
Fig. 12. The average error |estimated ISRF-measured ISRF| | measured ISRF = 1.84%.
Bearing with outer race fault Input: bearing vibration signal x(t)=0-C-1.mat (Channel_1) [19],
fs=200,000 Hz, FCC;=5.43 and FCCo=3.57,N. =4, er_i=0.02, var_i =0.11, er_o = 0.055, var_o = 0.09,
w =9000, and ol =8800. Additionally, Shaft encoder signal s(t) = O-C-1.mat (Channel_2). Results:
“Outer race fault”. The down-sampled bearing vibration signal is shown in Fig. 13. The obtained TFR
of the envelope signal via the Hilbert transform and STFT is shown in Fig. 14. Then, the T-F curves
extracted from the TFR of the envelope signal via the MTFCE are shown in Fig. 15. By estimating the
bottom T-F curve as the ISRF, no IFCF is identified from the extracted curves. Therefore, the TFR of
the bearing vibrations signal should be investigated, which is obtained via the STFT, shown in
Fig. 16. Then, the T-F curves extracted from Fig. 16 via the MTFCE are shown in Fig. 17. By estimating
the bottom T-F curve in Fig. 17 as the new ISRF, the second top T-F curve in Fig. 15 is identified as the
IFCF with the average curve-to-curve ratio = 3.4378 (matching the FCCp) and the variance of the
curve-to-curve ratio=0.0038. The estimated ISRF and the identified IFCF are shown in Fig. 18.
Additionally, the measured ISRF is obtained from the shaft encoder signal. A comparison of the
estimated ISRF to the measured ISRF is shown in Fig. 19. The average error |estimated ISRF-
measured ISRF| / measured ISRF = 1.44%.
3 Healthy bearing Input: bearing vibration signal x(t) = H-D-3.mat (Channel_1) [19], fs = 200,000 Hz,
FCC;=5.43 and FCCp=3.57, Nc =4, er_i=0.02, var_i =0.11, er_o = 0.055, var_o = 0.09, w =9000, and

140

T T T T T T T T T
= —IFCF
S
g
~ ISRF
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60|

40f
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Fig. 11. Estimated ISRF and identified IFCF (inner race fault).
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Fig. 12. Comparison of the estimated ISRF to the measured ISRF (inner race fault).
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Fig. 13. Bearing vibration signal (outer race fault).
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Fig. 14. TFR of envelope signal (outer race fault).
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Fig. 15. Extracted T-F curves from the TFR of envelope signal (outer race fault).
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Fig. 17. Extracted T-F curves from the TFR of vibration signal (outer race fault).
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Fig. 18. Estimated ISRF and identified IFCF (outer race fault).
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Fig. 19. Comparison of the estimated ISRF to the measured ISRF (outer race fault).

ol =8800. Additionally, Shaft encoder signal s(t)=H-D-3.mat (Channel_2). Results: “Healthy
bearing”. The down-sampled bearing vibration signal is shown in Fig. 20. The obtained TFR of the
envelope signal via the Hilbert transform and STFT is shown in Fig. 21. Then, the T-F curves extracted
from the TFR of the envelope signal via the MTFCE are shown in Fig. 22. By estimating the bottom T-F
curve as the ISRF, no IFCF is identified from the extracted curves. Therefore, the TFR of the bearing
vibrations signal is further investigated, which is obtained via the STFT, shown in Fig. 23. Then, the
T-F curves extracted from Fig. 23 via the MTFCE are shown in Fig. 24. By estimating the bottom T-F
curve in Fig. 24 as the new ISREF, still no IFCF is identified from Fig. 21. Therefore, the bearing is
diagnosed as healthy. It is worth mentioning that, in Fig. 22, the average ratio of the second highest
curve to the bottom curve is 3.6323 which matches the FCCo within the allowable relative error
er_o. The bearing will be diagnosed as faulty with outer race fault if we were to only use the average
ratio for the IFCF identification as in [ 16]. However, the variance of the curve-to-curve ratio of these
two curve is 1.3439 which is above the allowable variance var_o. Therefore, the accuracy of the
proposed automatic bearing fault diagnosis method is improved with the proposed approach.

The same settings of the parameters N.=4, er_i=0.02, var_i=0.11, er_o=0.055, var_o=0.09,
w =9000, and ol = 8800 are valid for 26 datasets provided in [19], including I-A-2, I-A-3, I-B-2, I-B-3, I-
D-1, I-D-2, I-D-3, 0-A-1, O-A-3, 0-B-3, 0-C-1, 0-C-2, 0-D-1, O-D-3, H-A-1, H-A-2, H-A-3, H-B-1, H-B-2,
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Fig. 20. Bearing vibration signal (healthy).
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Fig. 21. TFR of envelope signal (healthy).
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Fig. 22. Extracted T-F curves from the TFR of envelope signal (healthy).
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Fig. 23. TFR of the original signal (healthy).
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Fig. 24. Extracted T-F curves from the TFR of the original signal (healthy).

H-B-3, H-C-1, H-C-2, H-C-3, H-D-1, H-D-2, and H-D-3. Since the results are dependent on the obtained
TFR, modification of w and ol can lead to different result. By setting w = 9000 and ol = 8000, the results
of datasets I-C-3, 0-A-2, and O-D-2 are satisfying. By setting w =7000 and ol = 6800, the results of
datasets I-C-1, and I-C-2 are satisfying. Therefore, the proposed method is found valid for 31 datasets
out of the 36 datasets. It is believed that further modifications to the parameter could improve the
accuracy rate. Users are encouraged to modify the settings of the parameters according to the
characteristics of their signal(s) of interest.

It should be mentioned that the performance of the MTFCE algorithm is related to the quality of the
obtained TFR. If the vibration signal is blurred by strong noise or interferences, the time-frequency
curves may not be properly extracted from the TFR by the MTFCE algorithm. For such cases, bearing
fault feature extraction methods should be applied to remove the noise or interference before
obtaining the TFR of the signal.

Conclusions

In this paper, the Matlab code for Multiple Time-Frequency Curve Extraction algorithm is given.
The MTFCE code can then be used for automatic bearing fault diagnosis under time-varying speed
conditions without measuring the speed. Additionally, a new parameter, the allowable variance of the
curve-to-curve ratio, is added to the automatic bearing fault diagnosis method aiming to improve the
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accuracy. Custom Matlab codes are provided in the attached. zip file to enable the method to be
applied. Vibration data of bearing with different health conditions measured under time-varying
rotational speed conditions are used to demonstrate the approach. The results show that the code and
methodology can effectively diagnose the bearing faults under time-varying speed conditions.
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