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e long-range interactions, required to the accurate predictions of tertiary structures of 𝛽𝛽-sheet-containing proteins, are still
difficult to simulate. To remedy this problem and to facilitate 𝛽𝛽-sheet structure predictions, many efforts have been made by
computational methods. However, known efforts on 𝛽𝛽-sheets mainly focus on interresidue contacts or amino acid partners. In
this study, to go one step further, we studied 𝛽𝛽-sheets on the strand level, in which a statistical analysis was made on the terminal
extensions of paired 𝛽𝛽-strands. In most cases, the two paired 𝛽𝛽-strands have different lengths, and terminal extensions exist. e
terminal extensions are the extended part of the paired strands besides the common paired part. However, we found that the best
pairing required a terminal alignment, and 𝛽𝛽-strands tend to pair to make bigger common parts. As a result, 96.97% of 𝛽𝛽-strand
pairs have a ratio of 25% of the paired common part to the whole length. Also 94.26% and 95.98% of 𝛽𝛽-strand pairs have a ratio
of 40% of the paired common part to the length of the two 𝛽𝛽-strands, respectively. Interstrand register predictions by searching
interacting 𝛽𝛽-strands from several alternative offsets should comply with this rule to reduce the computational searching space to
improve the performances of algorithms.

1. Introduction

e issue of protein structure prediction is still extremely
challenging in bioinformatics [1, 2]. Usually, structural infor-
mation for protein sequences with no detectable homology to
a protein of known structure could be obtained by predicting
the arrangement of their secondary structural elements [3].
As we know, the two predominant protein secondary struc-
tures are 𝛼𝛼-helices and 𝛽𝛽-sheets. However, a combination
of the early suitable 𝛼𝛼-helical model systems and sustained
researches have resulted in a detailed understanding of 𝛼𝛼-
helix, while comparatively little is known about 𝛽𝛽-sheet [4].
Tertiary structures of 𝛽𝛽-sheet-containing proteins are espe-
cially difficult to simulate [3, 5]. Unlike𝛼𝛼-helices,𝛽𝛽-sheets are
more complex resulting from a combination of two or more
disjoint peptide segments, called 𝛽𝛽-strands.erefore, the 𝛽𝛽-
sheet topology is very useful for elucidating protein folding

pathways [6, 7] for predicting tertiary structures [3, 8–11],
and even for designing new proteins [12–14].

As fundamental components, 𝛽𝛽-sheets are plentifully
contained in protein domains. In a 𝛽𝛽-sheet, multiple 𝛽𝛽-
strands held together linked by hydrogen bonds and can
be classi�ed into parallel and antiparallel direction styles.
Adjacent 𝛽𝛽-strands bring distant residues on sequences into
close special contact with one another and constitute a
speci�c mode of amino acid pairing [1, 15–17], interactions
(like DNA base pairing). ere is a growing recognition of
the importance of the strand-to-strand interactions among
𝛽𝛽-sheets [18]. Several studies, including statistical studies
examining frequencies of nearest-neighbor amino acids in 𝛽𝛽-
sheets, found a signi�cantly different preference for certain
interstrand amino acid pairs at nonhydrogen-bonded and
hydrogen-bonded sites [1, 17, 19, 20], Dou et al. [21] cre-
ated a comprehensive database of interchain 𝛽𝛽-sheet (ICBS)
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interactions. We also developed the SheetsPair database [22]
to compile both the interchain and the intrachain amino acid
pairs.

Generally speaking, previous work on 𝛽𝛽-sheets mainly
focused on the interresidue contacts or amino acid partners
[23–28]. Prediction of inter-residue contacts in 𝛽𝛽-sheets is
interesting, while the prediction by ab initio structure is also
useful to understand protein folding [29, 30]. Our previous
studies showed that the interstrand amino acid pairs played
a signi�cant role to determine the parallel or antiparallel
orientation of 𝛽𝛽-strands [15], and the statistical results could
possibly be used to predict the 𝛽𝛽-strand orientation [16].
Cheng and Baldi [11] introduced BETAPRO method to
predict and assemble 𝛽𝛽-strands into a 𝛽𝛽-sheet, in which a
single misprediction of one amino acid pairing from the �rst
stage could be ampli�ed by the next stages and results in
serious wrong set of partner assignments between 𝛽𝛽-strands.
However, those studies can be viewed as initial steps of 𝛽𝛽-
sheet studies relative to predict strand level pairing [25]. In
this paper, to go one step further, we investigate the 𝛽𝛽-strand
pairing on the strand level for exploring the rules of how 𝛽𝛽-
strands form a 𝛽𝛽-sheet.

Many results have shown the importance of statistical
analysis in protein structure studies [15, 16]. In particular,
statistical information could provide a starting point for de
novo computational design methods that are now becoming
successful for short, single-chain proteins [14], as well as
methods of protein structure predictions and understanding
of protein folding mechanisms [31, 32]. Fooks et al. [1] also
indicated that such statistical analysis results would be useful
for protein structure prediction.erefore, we advocate using
the tools of statistics and informatics to study 𝛽𝛽-sheet and
generate new rules for algorithm development. In this study,
we focused on the terminal extensions of paired 𝛽𝛽-strands.

2. Results

2.1. Dataset. All protein structure data used in this study
were taken from a PISCES [33, 34] dataset generated on
May 16, 2009. In the dataset, the percentage identity cutoff
is 25%, the resolution cutoff is 2.0 angstroms, and the 𝑅𝑅-
factor cutoff is 0.25. Secondary structures were assigned from
the experimentally determined tertiary structures by using
the DSSP program. Besides proteins containing disordered
regions [35–37], all data were further preprocessed according
to the following criteria: (i) no 𝛽𝛽-sheet-containing protein
chains were removed; (ii) protein chains with nonstandard
three-letter residue names (such as DPN, EFC, ABA, C5C,
PLP, etc.) were removed, since these indicate that the protein
chains have covalently bounded ligands ormodi�ed residues;
(iii) protein chains with uncertain structures or incorrect
data were removed. Since 𝛽𝛽-bulges tend to be isolated and
rare [11], we did not consider 𝛽𝛽-bulges in this study either,
as several previous studies did [1, 3]. Finally, 2,315 protein
chains were extracted, containing 19,214𝛽𝛽-strand pairs. Note
that in the special case of 𝛽𝛽-bulges, no amino acid pair is
assigned.

2.2. e 𝛽𝛽-Sheet Structure. e 𝛽𝛽-sheets, where two or more
𝛽𝛽-strands are arranged in a speci�c conformation, are illus-
trated in Figure 1(a), by a protein example (PDB code 1HZT).
Adjacent strands, or the so-called strand pairs, can either
run in the same (parallel) or in the opposite (antiparallel)
direction styles. In protein 1HZT, there are 3 𝛽𝛽-sheets called
A, B, and C, formed by 10 different 𝛽𝛽-strands numbered from
1 to 10, making 7 different𝛽𝛽-strand pairs, respectively.e 10
𝛽𝛽-strands can be named by the 𝛽𝛽-sheet each belongs to and
the index numbers in the order of partnership. For example,
the 3 𝛽𝛽-strands forming 𝛽𝛽-sheet A can be called “A1,” “A2,”
and “A3,” while other 4 𝛽𝛽-strands forming 𝛽𝛽-sheet B can be
called “B1,” “B2,” “B3,” and “B4,” respectively. “A1-A2,” “A2-
A3,” “B1-B2,” “B2-B3,” and “B3-B4” are all 𝛽𝛽-strand pairs.
Sequences of the 10 𝛽𝛽-strands with their initial and ending
residue numbers are also given in Figure 1(b).

2.3. Different Lengths of Paired 𝛽𝛽-Strands. For a 𝛽𝛽-strand
pair, the terminal of one 𝛽𝛽-strand does not always align
with the terminal of the other (Figure 2), making “terminal
extensions” besides the common paired parts. Note that only
amino acids in the common part construct amino acid pairs.

Why “terminal extensions” exist widely in 𝛽𝛽-strand pairs?
We�rstly investigated the lengths of two paired𝛽𝛽-strands and
then calculated the percent of each casewhether the “terminal
extensions” exist or not. Results are shown in Table 1.

As shown in Table 1, the two paired 𝛽𝛽-strands having
the same length only account for 29.53% of all samples. In
other 70.47% percent of samples, lengths of the two paired
𝛽𝛽-strands are different.

2.4. Statistical Results of Variables. We de�ne the following
variables.

(1) Let 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆2 represent the lengths of two paired
𝛽𝛽-strands, respectively. Length of the 𝛽𝛽-strand with
smaller strand number (strand numbers can be
obtained from PDB database) is de�ned as 𝑆𝑆𝑆𝑆1, while
length of the other 𝛽𝛽-strand is de�ned as 𝑆𝑆𝑆𝑆2.

(2) LetPL stand for the length of the commonpart, which
is oen smaller than 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆2.

(3) Terminal extensions can be found in either of the two
𝛽𝛽-strands. We de�ne the lengths of the two terminal
extensions 𝐸𝐸𝐸𝐸1 and 𝐸𝐸𝐸𝐸2, respectively. Length of the
terminal extension of the 𝛽𝛽-strand with length 𝑆𝑆𝑆𝑆1 is
de�ned as 𝐸𝐸𝐸𝐸1while the other as 𝐸𝐸𝐸𝐸2.

(4) Let EL represent the whole length; 𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸1 +
𝐸𝐸𝐸𝐸2.

en, the paring ratio R could be calculated by

𝑅𝑅 𝑅
𝑃𝑃𝑃𝑃
𝐸𝐸𝐸𝐸

× 100% =
𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  1 + 𝐸𝐸𝐸𝐸2
× 100%. (1)

e ratio of the common paired part to the length of each
𝛽𝛽-strand (𝑖𝑖 𝑖𝑖 𝑖 𝑖) could be calculated by

𝑅𝑅𝑅𝑅𝑖𝑖 =
𝑃𝑃𝑃𝑃
𝑆𝑆𝑆𝑆𝑖𝑖

× 100%, 𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖 (2)
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F 1: An illustrated example of 𝛽𝛽-strand pairing in a 𝛽𝛽-sheet (PDB code: 1HZT). (a) e sketch of the tertiary structure of the protein
produced by using RASMOL. Protein 1HZT is an 𝛼𝛼/𝛽𝛽 protein with 10 𝛽𝛽-strands numbered from 1 to 10, forming seven different strand pairs.
(b)e sequences of the 10 𝛽𝛽-strands with their initial and ending residue numbers. (c)e 10 𝛽𝛽-strands in the linear primary sequence. (d)
An example of a 𝛽𝛽-strand partnership graph.e pairing is between strands “B3” and “B4,” with the light gray box representing the common
pairing part.

Strand1:

Strand2:

F 2: A schematic diagram of terminal extensions of 𝛽𝛽-strand
pairs. e two blank lines represent the two 𝛽𝛽-strands, respectively.
e light gray box represents the common pairing part of the two
𝛽𝛽-strands with amino acid pairing.

A small percent of 𝛽𝛽-strand pairs have no “terminal
extensions,” theR,𝑅𝑅𝑅𝑅1, and𝑅𝑅𝑅𝑅2 values for whichwill be 100%.

We calculated PL, 𝐸𝐸𝐸𝐸1, 𝐸𝐸𝐸𝐸2, EL for all 𝛽𝛽-strand pairs in
the present dataset. Table 2 gives the range of these variables
as well as the averages and standard deviations.

We also calculated R, 𝑅𝑅𝑅𝑅1, and 𝑅𝑅𝑅𝑅2 for all 𝛽𝛽-strand pairs
in the present dataset. e distribution of these variables is
shown in Figure 3.

3. Discussion

3.1. Strands Tend to Align eir Terminals. For the 70.47%
of samples with different strand lengths, although they have

different lengths, the differences are not big for most of them.
Only a small percent of samples (below 2.09%) have the
difference above 5. In these cases, it is obvious that they
cannot align the terminals (with both 𝐸𝐸𝐸𝐸1 = 0 and 𝐸𝐸𝐸𝐸2 = 0).
ey have two ways to choose from: either align to only one
terminal making another “terminal extension”, or align to
none of the two terminalsmaking both “terminal extensions.”
However, it can be seen from Table 1 that most 𝛽𝛽-strands
tend to be in the former case. For example, in case of the
length difference 1, the former case accounts for 85.18%
while the latter only 14.82%. It is consistent with the case of
same-length strand pairs, in which 𝛽𝛽-strands tend to align
their terminals with each other. Interestingly, it is suggested
that 𝛽𝛽-strands tend to align their terminals. In different-
length strand pairs, they still retain one terminal alignment,
although they can not align both ends.

3.2. Small “Terminal Extensions”. FromTable 2, it can be seen
that lengths of 𝛽𝛽-strands are not very long, ranging from 1 to
25with an average length about 4-5 amino acids.e averages
and the standard deviations are similar between lengths of the
two paired 𝛽𝛽-strands (𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆2).

e length of the common part PL has a range similar
to that of lengths of 𝛽𝛽-strands. is indicates that although
“terminal extensions” exist, common pairing parts occupy
most of 𝛽𝛽-strands, while “terminal extensions” occupy least.
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F 3: Distribution of R, 𝑅𝑅𝑅𝑅1, and 𝑅𝑅𝑅𝑅2 variables in the current dataset.

T 1: Statistical results of lengths of two paired 𝛽𝛽-strands and percent of samples in each case whether the two “terminal extensions” exist
or not.

Abs (𝑆𝑆𝑆𝑆1 − 𝑆𝑆𝑆𝑆2)
∗ Number of pairs Percent Percent of 𝐸𝐸𝐸𝐸1 = 0

and 𝐸𝐸𝐸𝐸2 = 0
Percent of 𝐸𝐸𝐸𝐸1 = 0

and 𝐸𝐸𝐸𝐸2 > 0
Percent of 𝐸𝐸𝐸𝐸1 > 0

and 𝐸𝐸𝐸𝐸2 = 0
Percent of 𝐸𝐸𝐸𝐸1 > 0

and 𝐸𝐸𝐸𝐸2 > 0
0 5673 29.53% 82.95% 0.00% 0.00% 17.05%
1 5633 29.32% 0.00% 40.48% 44.70% 14.82%
2 3170 16.50% 0.00% 30.57% 41.10% 28.33%
3 1798 9.36% 0.00% 28.59% 31.15% 40.27%
4 1016 5.29% 0.00% 26.77% 29.82% 43.41%
5 618 3.22% 0.00% 29.13% 27.51% 43.37%
6 401 2.09% 0.00% 30.42% 25.69% 43.89%
7 323 1.68% 0.00% 25.39% 32.51% 42.11%
8 247 1.29% 0.00% 16.19% 30.36% 53.44%
9 101 0.53% 0.00% 26.73% 24.75% 48.51%
10 69 0.36% 0.00% 20.29% 39.13% 40.58%
>10 165 0.86% 0.00% 15.15% 27.27% 57.58%
∗Absolute value of the difference of 𝑆𝑆𝑆𝑆1 − 𝑆𝑆𝑆𝑆2.

T 2: Statistical results of variables of 𝛽𝛽-strand pairs in the
current dataset.

Minimum
value

Maximum
value Average Standard

deviation
𝑆𝑆𝑆𝑆1 1 25 4.99 2.82
𝑆𝑆𝑆𝑆2 1 25 4.90 2.80
𝑃𝑃𝑃𝑃 1 23 4.86 2.26
𝐸𝐸𝐸𝐸1 0 18 1.15 1.79
𝐸𝐸𝐸𝐸2 0 22 1.03 1.64
𝐸𝐸𝐸𝐸 2 29 7.03 3.09

e fact that the maximum value of EL is 29, only a little
bigger than that of lengths of 𝛽𝛽-strands, and the fact that
in average both the “terminal extensions” only have about 1
amino acid (𝐸𝐸𝐸𝐸1 = 1.05 and 𝐸𝐸𝐸𝐸2 = 1.03) also support this
assumption.

Figure 3 gives percent of samples for 𝑅𝑅, 𝑅𝑅𝑅𝑅1, and 𝑅𝑅𝑅𝑅2
in each range of their possible values (from 0% to 100%),
respectively. It can be seen that the distributions of 𝑅𝑅𝑅𝑅1 and
𝑅𝑅𝑅𝑅2 are similar. More than half of the 𝛽𝛽-strand pairs have
these two variables above 95% (or in the range (95–100)).
Big 𝑅𝑅𝑅𝑅1 or 𝑅𝑅𝑅𝑅2 means big common part of 𝛽𝛽-strands, or
small “terminal extensions.” Rare 𝛽𝛽-strand pairs have smaller
values of R, 𝑅𝑅𝑅𝑅1, and 𝑅𝑅𝑅𝑅2, which indicates that most 𝛽𝛽-
strands do not pair by means of small “common part” or big
“terminal extensions.” It could be concluded from the results
that𝛽𝛽-strands tend to pair with bigger pairing commonparts,
leaving smaller “terminal extensions.”

3.3. Possible Reasons for 𝛽𝛽-Strand Extensions. Why “terminal
extensions” exist so widely in 𝛽𝛽-strand pairs? e fact that
lengths of two paired 𝛽𝛽-strands are not the same in most
cases as shown in Table 1 may be one of the possible reasons.
If paired 𝛽𝛽-strands have the same lengths, most of them
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culated from the present dataset. e horizontal axis denotes the
percentage of common paired region 𝑃𝑃𝑃𝑃 to 𝐸𝐸𝐸𝐸 (for curve 𝑅𝑅) or
to 𝑆𝑆𝑆𝑆 (for curves 𝑅𝑅𝑅𝑅1 and 𝑅𝑅𝑅𝑅2). Points on the R curve denote the
cumulative percentages of samples whose 𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 equals
or is bigger than the corresponding abscissa value. Points on the
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whose 𝑅𝑅𝑅𝑅1 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 or 𝑅𝑅𝑅𝑅2 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 equals or is bigger than
the corresponding abscissa value, respectively.

(82.95%) tend to align their terminals with each other, leaving
no “terminal extensions.”

A 𝛽𝛽-strand is led to pair with another by several kinds of
potential forces. Steward and ornton [3] indicated that a
single 𝛽𝛽-strand was still able to recognize a noninteracting 𝛽𝛽-
strand with greater accuracy than that in the case of between
two random sequences. e potential forces include hydro-
gen bonds, van der Waals forces, electrostatic interaction,
ionic bonds, hydrophobic effects, and so forth. Parisien and
Major [38] revealed that among all the forces, the most
important one was the construction of a hydrophobic face.
It is conceivable that one residue of a 𝛽𝛽-strand prefers to
pair with the residue of another resulting in a stable state of
hydrophobic effects. Optimizing such interactions may result
in extensions, which could be the second reason, since more
oen than not the “terminal alignment” is not the case of
optimized pairing style.

A third possible reason could be due to the nucleation
events that initiate the 𝛽𝛽-sheet folding. Amino acids in the
central part could pair �rstly and then fold to extend to
terminals.

Another reason is the roles of the nonpaired terminal
amino acids in stabilizing the 𝛽𝛽-sheet structure. Several other
studies have identi�ed their key roles in modulating protein
folding rates, stability, and folding mechanism [39–43].
erefore, the 𝛽𝛽-strand terminals could also be important
factors for a 𝛽𝛽-sheet formation.

3.4. Ratio Rule of Pairing Strand Alignment. To quantify the
pairing common part of paired 𝛽𝛽-strands, we calculated the
cumulative percent of variables R, 𝑅𝑅𝑅𝑅1, and 𝑅𝑅𝑅𝑅2 and depicted
them in Figure 4.

From Figure 4, it can be seen that when 𝑅𝑅𝑅𝑅1 ≥ 40% and
𝑅𝑅𝑅𝑅2 ≥ 40%, the cumulative percentages reach 94.26% and
95.98%, respectively, while when 𝑅𝑅 𝑅𝑅𝑅𝑅  only 89.89%.
When 𝑅𝑅 𝑅𝑅 𝑅𝑅, the cumulative percentages reach up to
96.97%. erefore, a rule can be made of the alignment of
𝛽𝛽-strand pair as follows:

𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑖𝑖 ≥ 40%, 𝑖𝑖 𝑖𝑖𝑖𝑖  𝑖 (3)

Almost all samples (above 94%) obey this rule.
In a 𝛽𝛽-strand alignment prediction algorithm, all possible

pairings should be examined and scored; it is a time-
consuming task. Kato et al. [44] stated that prediction of
planar 𝛽𝛽-sheet structures was NP-hard in the present state
of our knowledge (http://en.wikipedia.org/wiki/NP-hard).
However, this previous rule should be used as a constraint
of the relative positions in 𝛽𝛽-strand alignment to reduce
the computational searching space, which could be used to
develop high-speed𝛽𝛽-strand topology prediction algorithms.

4. Conclusion

At the most straightforward level, full “identi�cation” of a
𝛽𝛽-strand pair could consist of (i) �nding the interacting
partner 𝛽𝛽-strand(s), (ii) predicting the relative orientation
(i.e. parallel or antiparallel), and (iii) shiing the relative
positions of the two interacting 𝛽𝛽-strands [15, 16]. In this
study, we focused on the third aspect. e formation of
protein structure and protein folding mechanism are very
complex, and the mechanisms of 𝛽𝛽-sheet formation are
unclear [45]. However, simple rules could contribute to
developing new algorithms in the step of full prediction of
𝛽𝛽-sheet and understanding of protein folding pathways in
ongoing research.

In this study, to go one step further, we studied 𝛽𝛽-sheets
on the strand level instead of amino acid level. Statistical
analyses of the terminal extensions of paired 𝛽𝛽-strands were
performed and a simple rule “𝑅𝑅 𝑅𝑅 𝑅𝑅 and 𝑅𝑅𝑅𝑅𝑖𝑖 ≥ 40%,
𝑖𝑖 𝑖𝑖𝑖𝑖  ” was made. Steward and ornton [3] developed
an information theory approach to predict the relative offset
positions by shiing one 𝛽𝛽-strand up to 10 residues either
side of that observed. Such a rule could be used in similar
studies. We certainly believe that the conclusions presented
in this study could contribute to predict protein structures
and to develop 𝛽𝛽-sheet prediction methods.
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