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Abstract: ReS2 nanosheets are grown on the surface of carbon black (CB) via an efficient hydrothermal
method. We confirmed the ultra-thin ReS2 nanosheets with ≈1–4 layers on the surface of the CB
(ReS2@CB) by using analytical techniques of field emission scanning electron microscopy (FESEM)
and high-resolution transmission electron microscopy (HRTEM). The ReS2@CB nanocomposite
showed high specific capacities of 760, 667, 600, 525, and 473 mAh/g at the current densities of
0.1 (0.23 C), 0.2 (0.46 C), 0.3 (0.7 C), 0.5 (1.15 C) and 1.0 A/g (2.3 C), respectively, in conjunction with
its excellent cycling performance (432 mAh/g at 2.3 C; 91.4% capacity retention) after 100 cycles.
Such LIB performance is greatly higher than pure CB and ReS2 powder samples. These results could
be due to the following reasons: (1) the low-cost CB serves as a supporter enabling the formation of
≈1–4 layered nanosheets of ReS2, thus avoiding its agglomeration; (2) the CB enhances the electrical
conductivity of the ReS2@CB nanocomposite; (3) the ultra-thin (1–4 layers) ReS2 nanosheets with
imperfect structure can function as increasing the number of active sites for reaction of Li+ ions with
electrolytes. The outstanding performance and unique structural characteristics of the ReS2@CB
anodes make them promising candidates for the ever-increasing development of advanced LIBs.

Keywords: ultra-thin ReS2 nanosheets; carbon black (CB); lithium-ion battery (LIB)

1. Introduction

Li-ion batteries (LIBs), as an advanced energy storage system, have been employed as a main
power source of most commercially available electronics and currently emerging electric vehicles due
to their high energy density, low self-discharge, zero to low memory effect, quick charging, and longer
lifespan [1–5]. The profound investigation of novel electrode materials has been one of core research
areas to meet the ever-demanding need for high-performance LIBs. Transition metal sulfides (TMSs)
have received great attention as a highly efficient anode material owing to their multi-faceted traits
including a relatively small volume change and superior reversibility during charge–discharge cycling,
and higher electrical conductivity because of the weaker M–S bonds relative to its M–O counterparts
of transition metal oxides (TMOs) [6] with layered structures (e.g., MoS2 and WS2) [7]. TMSs possess
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their weaker van der Waals interaction between S–S interlayers, which enables an excellent buffering
against mechanical stress induced by volume change during the charge–discharge cycling process
compared with other TMO-based anode materials [8]. The above-mentioned advantages also allow
the TMDs to hold great potential as lithium-ion capacitors (LIC) [9–11].

Among the TMS-based anodes, ReS2 has recently been investigated for its enhanced Li+ ion
transport kinetics for practical LIB applications because of its unique properties of a weak S–S interlayer
binding strength and a large interlayer distance [12]. Nevertheless, the inferior LIB performance
of ReS2 at the higher current density has hindered its practical application. To overcome this
limitation, one of the most legitimate strategies is to synthesize nanocomposites of ReS2 with a variety
of morphologies (nanowalls, nanoflowers, and nanosheets) combined with the nanocarbon-based
materials (3D graphene foam, N-doped carbon nanofiber-based paper, and CNTs [12–17]). In these
nanocomposites, nanocarbon can buffer against mechanical stress caused by volume variation, enhance
an electrical and ionic conductivity, and enable the microstructural and morphological change of ReS2.
However, what has been overlooked until recently is the design and fabrication a ReS2-based anode
material for exceptional LIB performance at high current density.

Herein, to address this issue, we, for the first time, fabricated ReS2 nanosheets with ultra-thin
thickness comprising ~1–4 layers grown on CB through a hydrothermal synthesis method.
The synthesized nanocomposite has unique properties to achieve high Li+ ion transport kinetics,
especially at high current density, including [17,18]: (1) excellent combination between ReS2 and CB;
(2) the ReS2 nanosheets’ sufficient space for reaction with electrolytes; (3) small size (≈20 nm), ultra-thin
thickness (≈1–4 layers) and defect structure of the ReS2 nanosheets to accelerate the Li+ ion transport
and buffer against mechanical stress induced by volume variation during the cycling process. With these
unique physico-chemical characteristics, as-synthesized ReS2@CB nanocomposites shows high specific
capacities of 760, 667, 600, 525, and 473 mAh/g at current densities of 0.1 (0.23 C), 0.2 (0.46 C), 0.3 (0.7 C),
0.5 (1.15 C), and 1.0 A/g (2.3 C), respectively, along with its excellent capacity retention of 91.4% with a
high capacity of 432 mAh/g at 1.0 A/g (2.3 C) after 100 cycles. Such excellent rate capability and superior
cycling stability could open up new, challenging prospects in this ever-increasing development of
TMS-based anode materials for advanced LIBs.

2. Materials and Methods

2.1. Synthesis of ReS2@CB and ReS2 Powder

We fabricated ReS2@CB through a simple hydrothermal synthesis process [17]. In typical synthesis,
0.3 g of NH4ReO4, 0.8 g of CS(NH2)2, 0.35 g HONH3Cl, and 20 mg of CB were dissolved into 30 mL
of deionized (DI) water and then sonicated for 30 minutes to make a homogeneous solution using a
sonicator (UC-10, Lab Companion, Seoul, Korea). Afterwards, the solution was transferred to a 50 mL
Teflon-lined stainless-steel autoclave in air atmosphere; subsequently, the autoclave was pressurized at
180 ◦C for 30 hours in electrical furnace (C-22P, Hantech, Gunpo-si, Korea). After synthesis, we purified
the as-synthesized ReS2@CB particulate sample via centrifugation at 7000 rpm (CF-10, Daihan Scientific,
Seoul, Korea) with ethanol and deionized (DI) water for three times, respectively. For comparison,
ReS2 powder was prepared with the same process without adding CB. Finally, the purified ReS2@CB
and ReS2 were dried at 80 ◦C overnight in a drying oven. Figure 1 schematically depicts each synthesis
procedure for the ReS2@CB structure.
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Figure 1. The schematic diagram illustrating each synthesis process for ReS2@CB structure. 

2.2. Structural Analysis of ReS2@CB, ReS2, and CB 

The crystal structures of the as-synthesized ReS2@CB and ReS2 samples were identified using an 
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microscope (HR-TEM) (JEM-2100F, JEOL, Tokyo, Japan). The chemical composition, electronic states, 
and purity of the ReS2@CB and ReS2 samples were investigated using X-ray photoelectron 
spectroscopy (XPS) (MultiLab 2000 system, Thermo Scientific, Waltham, MA, USA). The specific 
surface area and pore volume of the ReS2@CB and CB were measured using Brunauer–Emmett–Teller 
(BET) equipment (Micromeritics, Norcross, GA, USA; ASAP2020). We used Horvath–Kawazoe (HK) 
and Barrett–Joyner–Halenda (BJH) methods to acquire micropore and meso-/macro-pore size 
distributions, respectively. 

2.3. Lithium Ion Battery Performance of ReS2@CB, ReS2 Powder, and CB Anode Structures 
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wt%), Carbon Black (CB) (Thermo Fisher Scientific, Waltham, MA, USA) (10 wt%) as a conducting 
agent, and polyvinylidene difluoride (PVDF) (Sigma-Aldrich, Saint Louis, MO, USA) (10 wt%) as a 
binder in the solvent of n-methyl-2-pyrrolidone (Sigma-Aldrich, Saint Louis, MO, USA). For the CB 
anode sample, the weight ratio of CB and PVDF was 8:2. Subsequently, the slurry was uniformly 
pasted onto a copper foil as a current collector to produce the anode samples, which were then dried 
at 80 °C in a drying oven overnight. In a dry room, the coin-type of cells were assembled with the 
ReS2@CB, ReS2 powder, and CB as working electrodes; a monolayer polypropylene (PP) film 
(Celgard, 2400, Charlotte, NC, USA) as a separator; 1 M LiPF6 in ethylene carbonate (EC):dimethyl 
carbonate (DMC) (volume ratio of 1:1) as an electrolyte (Soulbrain, Seongnam-si, Republic of Korea); 
and lithium foil as counter and reference electrodes. With these assembled cells, the galvanostatic 
charge and discharge cycling test was carried out within a voltage window of 0.01 to 3 V versus Li+/Li 
by using a multi-channel battery testing unit (Maccor, Series 4000, Tulsa, OK, USA). The cyclic 
voltammetry (CV) for the ReS2@CB anode sample was conducted using a multi-channel potentiostat 
(VMP3, Bio Logic, Seyssinet-Pariset, France) in the same voltage window at scan rates of 0.1, 0.2, 0.4, 
0.6, 0.8, 1.0 mV/s. Electrochemical impedance spectroscopy (EIS) was performed on the 
electrochemical workstation (Bio Logic Science instrument-VSP) in the frequency range from 100 kHz 
to 0.1 Hz with an alternative current (AC) voltage amplitude of 5.0 mV.  

Figure 1. The schematic diagram illustrating each synthesis process for ReS2@CB structure.

2.2. Structural Analysis of ReS2@CB, ReS2, and CB

The crystal structures of the as-synthesized ReS2@CB and ReS2 samples were identified using
an X-ray diffractometer (XRD) (Miniflex 600, Rigaku, Tokyo, Japan). The morphological and
microstructural features of the samples were analysed using field emission scanning electron
microscopy (FESEM) (JSM-6701F, JEOL, Tokyo, Japan) and high-resolution transmission electron
microscope (HR-TEM) (JEM-2100F, JEOL, Tokyo, Japan). The chemical composition, electronic
states, and purity of the ReS2@CB and ReS2 samples were investigated using X-ray photoelectron
spectroscopy (XPS) (MultiLab 2000 system, Thermo Scientific, Waltham, MA, USA). The specific
surface area and pore volume of the ReS2@CB and CB were measured using Brunauer–Emmett–Teller
(BET) equipment (Micromeritics, Norcross, GA, USA; ASAP2020). We used Horvath–Kawazoe
(HK) and Barrett–Joyner–Halenda (BJH) methods to acquire micropore and meso-/macro-pore size
distributions, respectively.

2.3. Lithium Ion Battery Performance of ReS2@CB, ReS2 Powder, and CB Anode Structures

The electrode slurry was fabricated by mixing active materials (ReS2@CB and ReS2 powder)
(80 wt%), Carbon Black (CB) (Thermo Fisher Scientific, Waltham, MA, USA) (10 wt%) as a conducting
agent, and polyvinylidene difluoride (PVDF) (Sigma-Aldrich, Saint Louis, MO, USA) (10 wt%) as a
binder in the solvent of n-methyl-2-pyrrolidone (Sigma-Aldrich, Saint Louis, MO, USA). For the CB
anode sample, the weight ratio of CB and PVDF was 8:2. Subsequently, the slurry was uniformly pasted
onto a copper foil as a current collector to produce the anode samples, which were then dried at 80 ◦C
in a drying oven overnight. In a dry room, the coin-type of cells were assembled with the ReS2@CB,
ReS2 powder, and CB as working electrodes; a monolayer polypropylene (PP) film (Celgard, 2400,
Charlotte, NC, USA) as a separator; 1 M LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC)
(volume ratio of 1:1) as an electrolyte (Soulbrain, Seongnam-si, Korea); and lithium foil as counter and
reference electrodes. With these assembled cells, the galvanostatic charge and discharge cycling test
was carried out within a voltage window of 0.01 to 3 V versus Li+/Li by using a multi-channel battery
testing unit (Maccor, Series 4000, Tulsa, OK, USA). The cyclic voltammetry (CV) for the ReS2@CB
anode sample was conducted using a multi-channel potentiostat (VMP3, Bio Logic, Seyssinet-Pariset,
France) in the same voltage window at scan rates of 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 mV/s. Electrochemical
impedance spectroscopy (EIS) was performed on the electrochemical workstation (Bio Logic Science
instrument-VSP) in the frequency range from 100 kHz to 0.1 Hz with an alternative current (AC)
voltage amplitude of 5.0 mV.
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3. Results and Discussion

3.1. Schematic Synthesis Process of ReS2@CB and Morphological Properties of ReS2@CB, ReS2 Powder, and CB

As shown in the Figure 1, to have a homogeneous state, the solution went through ultrasonic
treatment for 30 minutes. Through a hydrothermal synthetic process with the homogeneous solution,
we fabricated the ultra-thin ReS2 nanaosheets on CB. The morphology of the as-synthesized ReS2@CB
structure was analyzed using the FESEM images. Figure 2a,b show uniformly distributed ultra-thin
ReS2 structures grown on the surface of CB using the hydrothermal method. The as-purchased CB
exhibited its small size (<100 nm) with a smooth surface (see Figure 2c,d) and the ReS2 powder
showed highly agglomerated characteristics (see Figure 2e,f), thus indicating the critical effect of the CB
template on the morphology of ReS2. These CB sheets facilitated the electrical conductivity of the ReS2

and served as a buffering agent against mechanical stress induced by the large volume variation of the
ReS2 during cycling [19]. The ReS2 on the CB could also enhance the active surface area utilization
compare with the pure ReS2 powder showing its aggregation tendency, which is advantageous for
accommodating a large amount of Li+ ions into the host structure of the ReS2 [20].
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3.2. Structural Property of ReS2@CB, ReS2 Powder, and CB

Figure 3a demonstrates the XRD pattern showing the presence of the ReS2 phase with characteristic
peaks (JCPDS No. 89-0341) [13], thus proving the ReS2 was successfully grown on CB through the
hydrothermal process without any side products. The broad peak appearing at 14.5◦ corresponds to
the ReS2 (002) plane, suggesting its low crystallinity [21]. Consistent with the aforementioned FESEM
analysis, TEM images shown in Figure 3 demonstrate the well-distributed ReS2 nanoparticles on CB.
Random space between the interlayers of the ReS2 was produced in the composite as shown in Figure 3b.
Interplanar distances in the box were measured to be ≈0.61 nm, corresponding to the (002) crystalline
plane of ReS2, which is agreement with the standard JCPDS card (No. 89-0341). The d-spacing (0.61 nm)
for the (002) plane of the ReS2@CB sample also proved the vertical orientation of the ReS2 nanosheets
on CB, which was consistent with the FESEM images shown in Figure 2a. According to the HR-TEM
images of the nanocomposite, we could identify the few-layered (e.g., ~1–4 layers) nanosheet property.
We also observed the discontinuous arrays of the ReS2 layers. These defect structures may be beneficial
for realizing a high capacity in the LIB performance as they can provide more active sites for Li+ ion
accommodation, thus enhancing LIB performance [22]. Alternatively, the CB showed an interlayer
spacing of ~0.34 nm measured using the HR-TEM image. We found the BET surface area of the
ReS2@CB was 39.4 m2/g according to the N2 adsorption–desorption isotherms (see Figure S1).
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3.3. X-ray Photoelectron Spectroscopy (XPS) Analysis of ReS2@CB

We also investigated the bonding interactions between different components of the ReS2@CB
nanocomposite sample using XPS. Figure 4a shows a full scan of the composite, proving the presence
of the Re, S, and C elements. Characteristic peaks arising from Re 4f7/2 and Re 4f6/2 orbitals are located
at 41.9 and 44.2 eV [14], respectively, indicating the dominance of Re(V) in the ReS2 product (Figure 4b).
In Figure 4c, the S 2p scan also displayed two main peaks at 162.5 and 163.9 eV [23,24] corresponding
to the 2p3/2 and 2p1/2, respectively. The peak at 168.5 eV corresponds to the 6+ oxidation state of
sulfur [25–27].
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S 2p (c).

3.4. Electrochemical Performance of ReS2@CB, ReS2 Powder, and CB

The ReS2@CB nanocomposite anode was used for a coin-type cell to evaluate its LIB performance
(Figure 5). We used cyclic voltammetry (CV) with the anode at a scan rate of 0.1 mV/s in the voltage
range of 0.01 to 3.0 V (Figure 5a). The curves were well superimposed and reversible, which meant a
good cycling stability of the anode. The strong peak appearing at ~1.2 V during cathodic sweep due
to the formation of LixReS2 (where 0 < x < 1) [17], which was caused by the intercalation of Li+ ion
into ReS2@CB [1,10,11]. The transformation occurs at the peak of ~0.7 V along with solid electrolyte
interphase (SEI) formation and the complete reduction from Re4+ to Re0 in the Re region embedded in
a Li2S phase [28,29]. During anodic sweep, the peaks that occurred at ~1.85 and 2.3 V were closely
related to the oxidation reaction of Li2S [17,30].

All the curves were well-superimposed, thus showing the reversible conversion reaction between
ReS2 and Li. Figure 5b shows the galvanostatic discharge/charge profiles of ReS2@CB in the initial four
cycles. During the first discharge, the significant voltage plateaus at around 0.7 V are observed, which
corresponds well to the cathodic peak in the CV curves and in the subsequent charge, where the clear
plateau at ~2.3 V agrees well with the anodic peak during the CV scan, which is consistent with the
previous reports of ReS2-based anodes [14]. ReS2 is a semiconducting material with a band gap of
1.35 eV and suffers from the volume expansion/contraction to cause detrimental pulverization problems.
To overcome this limitation, CB is incorporated with ReS2 to facilitate electrical conductivity and guard
the volume variation during charge and discharge cycles [31]. This principle is proven by the higher
LIB performance of ReS2@CB compared to those of pure CB and ReS2 samples. For the ReS2@CB,
the specific capacity decreased from 840 mAh/g for the first cycle to 761 mAh/g for the fifth cycle,
whereas coulombic efficiency increases from 60 to 93%, meaning enhanced capacity reversibility with
cycling. The initial capacity loss was mainly attributed to irreversible processes such as the inevitable
formation of a solid electrolyte interphase (SEI) film on the electrode surface and side-reactions
between Li+ ion and the active material [17,28]. The ReS2@CB nanocomposite shows a high specific
capacity of 760, 667, 600, 525, and 473 mAh/g at the current densities of 0.1, 0.2, 0.3, 0.5, and 1.0 A/g,
respectively; these values were higher than those of CB (82 mAh/g @ 1A/g) and ReS2 powder (13 mAh/g
@ 1A/g) as shown in Figure 5c. We performed cycling stability test up to 100 cycles for the three
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different samples of ReS2@CB, CB, and ReS2 powder at 1 A/g. Such excellent cycling stability with
a high specific capacity of 432 mAh/g for ReS2@CB anode sample was closely attributed to the CB,
as well as the vertical orientation with a defect property which offered high electrical conducting
pathways and accelerated Li+ ion diffusion rate, thus improving the kinetic efficiency of Li-storage [32].
The coulombic efficiency reached 98.8% over the entire 100 cycles. In contrast, the pure ReS2 anode
sample shows a negligible capacity of ~3 mAh/g at 1 A/g, confirming the crucial role of CB to enhance
LIB performance. Furthermore, the pure CB anode sample exhibited a specific capacity of ~92 mAh/g
after 100 cycles. According to these results, we can interpret that the higher specific capacities stemmed
from the crucial role of the incorporated CB to promote electrical conducting pathways for ReS2,
buffer against a large volume change of ReS2 during cycling and enable the ultrathin thickness of the
ReS2@CB to expose more active sites, thereby improving Li+ ion kinetics.
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Figure 5. (a) CV curve of the ReS2@CB, (b) galvanostatic charge/discharge (GCD) process of the
ReS2@CB in the initial four cycles; (c) rate capability of the as-prepared samples at different current
densities; and (d) cycling performance of each sample at 1 A/g and the corresponding coulombic
efficiency of the ReS2@CB.

Electrochemical impedance spectroscopy (EIS) measurement were performed with our samples
to evaluate the charge transfer resistance of the ReS2@CB and ReS2 powder samples (see Figure 6a).
Significantly, the diameter of the semicircle for the ReS2@CB (139 Ω) in the high-medium frequency
region was smaller than that of the ReS2 powder (460 Ω), which indicates that ReS2@CB possessed the
lower contact and charge-transfer resistances (Rct) and the slope of the ReS2@CB in the low frequency
region is also higher than the ReS2 powder. These EIS results prove that the ReS2@CB architecture
showed a high electrical conductivity of the overall electrode and enhanced the Li+ ion diffusion of the
ReS2 anode during cycling process.

To understand the deep insight into the improved electrochemical performance, we investigated
the capacitive effect of the battery system by testing CV curves of the ReS2@CB at the different sweep
rates from 0.2 to 1.0 mV/s (Figure 6b). The capacitive contribution to the battery system was calculated
according to the following equations [33,34]:
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i = avb (1)

log i = b× log v + log a (2)

where i and v are the current density and scan rate, respectively, and a and b are adjustable parameters.
In general, when the b-value is close to 1, the system was mainly controlled by surface-controlled
process or capacitance behavior. In contrast, when the b-value was close to 0.5, the system was mainly
dominated by a diffusion-controlled process [34]. As displayed in the inset table in Figure 6c, the higher
b values of the cathodic an d anodic peaks (0.89 and 0.72 for peak 1 and 3, respectively) suggest the
more favored capacitive kinetics of the ReS2@CB electrode, which could be due to the ultra-thinness
and imperfect crystallinity of the ReS2@CB. Compared with the published values, our data show the
superior specific capacity and cycling performance at 1 A/g as shown in Figure 6d [13,15,16].
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Figure 6. (a) EIS data of the ReS2@CB and ReS2 powder samples, (b) CV curves of the ReS2@CB
electrode at the different scan rates, (c) correlation between logarithmic peak current (cathodic and
anodic peaks) versus logarithmic voltage scan rate, and (d) comparison of capacity at the different
current densities for the ReS2@CB with those of reported ReS2-based composite anodes.

4. Conclusions

In summary, we synthesized the ReS2@CB anode structure with ultra-thinness (~1–4 layers) and
low-degree crystallinity through the hydrothermal process. When employed in the LIB performance,
the synthesized ReS2@CB (473 mAh/g @ 1 A/g) showed a higher rate capability and higher capacity
than the CB (82 mAh/g @ 1 A/g) and ReS2 powder (13 mAh/g @ 1 A/g), as well as an excellent cycling
retention of 91.4% (@ 1 A/g), even after 100 cycles. The improved electrochemical performance of our
ReS2@CB nanocomposite anode was closely attributed to the decisive roles of CB on the enhanced
electrical conductivity of ReS2 and the ultrathin nanosheets with a defect structure to facilitate the Li+

ion diffusion rate, thus improving the kinetic efficiency of the redox reaction during the cycling process.
Furthermore, with these unique physico-chemical properties, we confirmed that the investigation on
the ReS2@CB anode would open up a new avenue of pursuing high-performance TMS-based anodes
for advanced LIBs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/9/1563/s1,
Figure S1: N2 adsorption–desorption isotherms of (a) ReS2@CB and (b) CB.

http://www.mdpi.com/1996-1944/12/9/1563/s1
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