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Abstract
Study Objectives: The development of ambulatory technologies capable of monitoring brain activity during sleep longitudinally is 
critical for advancing sleep science. The aim of this study was to assess the signal acquisition and the performance of the automatic 
sleep staging algorithms of a reduced-montage dry-electroencephalographic (EEG) device (Dreem headband, DH) compared to the 
gold-standard polysomnography (PSG) scored by five sleep experts.

Methods: A total of 25 subjects who completed an overnight sleep study at a sleep center while wearing both a PSG and the DH 
simultaneously have been included in the analysis. We assessed (1) similarity of measured EEG brain waves between the DH and the 
PSG; (2) the heart rate, breathing frequency, and respiration rate variability (RRV) agreement between the DH and the PSG; and (3) 
the performance of the DH’s automatic sleep staging according to American Academy of Sleep Medicine guidelines versus PSG sleep 
experts manual scoring.

Results: The mean percentage error between the EEG signals acquired by the DH and those from the PSG for the monitoring of α 
was 15 ± 3.5%, 16 ± 4.3% for β, 16 ± 6.1% for λ, and 10 ± 1.4% for θ frequencies during sleep. The mean absolute error for heart rate, 
breathing frequency, and RRV was 1.2 ± 0.5 bpm, 0.3 ± 0.2 cpm, and 3.2 ± 0.6%, respectively. Automatic sleep staging reached an 
overall accuracy of 83.5 ± 6.4% (F1 score: 83.8 ± 6.3) for the DH to be compared with an average of 86.4 ± 8.0% (F1 score: 86.3 ± 7.4) for 
the 5 sleep experts.

Conclusions: These results demonstrate the capacity of the DH to both monitor sleep-related physiological signals and process 
them accurately into sleep stages. This device paves the way for, large-scale, longitudinal sleep studies.

Clinical Trial Registration: NCT03725943.
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Statement of Significance

The development of ambulatory technologies able to monitor physiological signals during sleep at home and longitudinally is 
rising. These technologies advancements have the potential to move forward the field of sleep medicine, but the poor validation 
of current wearable technology inhibits widespread use. This validation study of a reduced-montage dry-electroencephalographic 
(EEG) device showed that this device is able to acquire EEG, heart rate, and breathing frequency and automatically analyze these 
signals using machine learning approach to provide sleep stages with an accuracy close to the consensus of five sleep scorers.
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Introduction

Sleep disorders and insufficient sleep negatively impact hundreds 
of millions of people across the world and constitute a growing 
public health epidemic with grave consequences, including in-
creased risk of cardiovascular and neurodegenerative diseases 
and psychiatric disorders [1]. The most prevalent sleep disorders 
include insomnia, which affects ~20% of the general population, 
and obstructive sleep apnea, which affects ~10% of the general 
population [2]. Despite their high prevalence, sleep disorders re-
main largely unidentified and/or untreated with less than 20% 
of patients estimated to be accurately diagnosed and treated [3].

Today, the gold standard to study or diagnose sleep dis-
orders is nocturnal polysomnography (PSG). A PSG sleep study 
is typically a single overnight assessment, usually taking place 
in a sleep center, during which physiological signals including 
electroencephalographic (EEG), electromyographic (EMG), and 
electrooculographic (EOG) activity, breathing effort, airflow, 
pulse, and blood oxygen saturation are recorded. Analysis of 
these signals relies on trained sleep experts to visually inspect 
and manually annotate and recognize specific EEG, EOG, EMG 
patterns on 30-s segments (epochs) of the full PSG recording to 
score sleep stages (Wake, sleep stages 1 [N1], 2 [N2], and 3 [N3], 
and REM sleep), according to the American Academy of Sleep 
Medicine’s (AASM) guidelines [4].

However, the gold-standard PSG suffers from several limi-
tations. From a practical standpoint, a PSG is complicated and 
time-consuming to set-up, requiring up to 1  h to install by a 
trained sleep technician; it is also quite expensive (typically 
$1,500–$2,000 per night in the United States). Furthermore, a 
clinical PSG may not reliably capture a patient’s typical sleep be-
cause it is cumbersome, and the clinical setting often generates 
stress for the patient. Moreover, because a PSG is generally per-
formed over only one night, it does not capture intra-individual 
variability across nights and the final diagnosis is often ren-
dered on an unrepresentative night of sleep [5, 6]. From a clinical 
standpoint, performing a PSG exam requires extensive training, 
it is time-consuming, and the sleep staging suffers from low 
inter-rater reliability. For instance, one study conducted on the 
AASM ISR data set found that sleep stage agreement across ex-
perts averaged 82.6% using data from more than 2,500 scorers, 
most with 3 or more years of experience, who scored 9 record 
fragments, representing 1,800 epochs (i.e. more than 3,200,000 
scoring decisions). The agreement was highest for the REM 
sleep stage (90.5%) and slightly lower for N2 and Wake (85.2% 
and 84.1%, respectively), while the agreement was far lower for 
stages N3 and N1 (67.4% and 63.0%, respectively), placing con-
straints on the reliability of manual scoring [7]. Critically, studies 
also indicate that agreement varies substantially across dif-
ferent sleep pathologies and sleep centers [7, 8].

Automatic PSG analysis in sleep medicine has been explored 
and debated for some time but has yet to be widely adopted 
in clinical practice. In recent years, dozens of algorithms have 
been published that achieve expert-level performance for auto-
mated analysis of PSG data [9–12]. Indeed, scientists and en-
gineers have used artificial intelligence methods to develop 
automated sleep stage classifiers and EEG pattern detectors, 
thanks to open access sleep data sets such as the National Sleep 
Research Resource (https://sleepdata.org). Regarding sleep sta-
ging, Biswal et al. proposed the SLEEPNET algorithm [13], a deep 
recurrent neural network trained on 10,000 PSG recordings from 

the Massachusetts General Hospital Sleep Laboratory. The algo-
rithm achieved an overall accuracy comparable to human-level 
performance of 85.76% (N1: 56%, N2: 88%, N3: 85%, REM: 92%, 
and Wake: 85%). Another important collaborative study recently 
published an algorithm validated on ~3,000 normal and ab-
normal sleep recordings [12]. They showed that their best model 
using a deep neural network performed better than any indi-
vidual scorer (overall accuracy: 87% compared to the consensus 
of 6 scorers). The problem of low interscorer reliability of sleep 
stages is addressed by using a consensus of multiple trained 
sleep scorers instead of relying on a single expert’s interpret-
ation [8, 12, 14]. Regarding the topic of sleep EEG event detection, 
deep learning methods have shown state-of-the-art perform-
ance for automatic detection of sleep events such as spindles 
and k-complexes in PSG records [15].

With the rise of wearable technology over the last decade, 
consumer sleep trackers have seen exponential growth [16]. 
For many years, these devices used only movement analysis, 
called actigraphy, before incorporating measures of pulse oxim-
etry. Actigraphy has been extensively used in sleep research for 
sleep–wake cycle assessment at home. However, this measure 
has very low specificity for differentiating sleep from motionless 
wakefulness, resulting in an overestimation of total sleep time 
(TST) and underestimation of wake after sleep onset (WASO) 
time [17, 18]. Thus, actigraphy is still quite far from being a re-
liable alternative to PSG for sleep staging. And though the add-
ition of pulse oximetry improves analysis over actigraphy alone, 
it still only enables rough estimations of sleep efficiency (SE) and 
stages. This is because the essential component of monitoring 
brain electrical activity with EEG sensors was still lacking.

More recently, a new group of devices has emerged for 
home sleep monitoring that uses EEG electrodes to measure 
brain activity. These include headbands [19–22] and devices 
placed around the ear [23, 24]. These compact devices are 
usually cheap, less burdensome, designed to be worn for mul-
tiple nights at home to enable longitudinal data collection, 
and require minimal or no expert supervision. However, as 
a recent International Biomarkers Workshop on Wearables 
in Sleep and Circadian Science reported: “Given the state of 
the current science and technology, the limited validation 
of wearable devices against gold standard measurements is 
the primary factor limiting large-scale use of wearable tech-
nologies for sleep and circadian research” [25]. Indeed, only a 
few of these device makers have published their performance 
compared to PSG; and those that have often only report aggre-
gated metrics rather than raw data, and do not permit open 
access to the data set so that results can be independently 
verified.

In this study, we introduce the Dreem headband (DH) which 
is intended as an affordable, comfortable, and patient-friendly 
EEG-reduced montage with a high level of accuracy regarding 
both physiological signal acquisition and automatic sleep stage 
analysis using a deep learning algorithm along with five dry-
EEG electrodes (O1, O2, FpZ, F7, and F8), a 3D accelerometer, and 
a pulse oximeter embedded in the device. To this end, we re-
corded data from 31 subjects over a single night using the DH 
and a clinical PSG simultaneously. We assessed: (1) the ability 
of the DH to monitor brain sleep frequencies during the night; 
(2) the accuracy of heart rate, breathing frequency, and respir-
ation rate variability (RRV) during sleep; and (3) the perform-
ance of the automatic sleep stage classification algorithm of 

https://sleepdata.org
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the DH compared to a consensus of five sleep experts’ manual 
scoring of the PSG. The data set of the current study is available 
in open access here: https://dreem-octave-irba.s3.eu-west-3.
amazonaws.com/index.html

Methods

Subjects

A total of 31 volunteers were recruited without regard to gender 
or ethnicity from the local community by study advertisement 
flyers. Volunteers were eligible if they were between the ages 
of 18 and 65 years and capable of providing informed consent. 
Exclusion criteria included current pregnancy or nursing; se-
vere cardiac, neurological, or psychiatric comorbidity in the last 
12  months; morbid obesity (BMI ≥ 40); or use of benzodiazep-
ines, non-benzodiazepines (Z-drugs), or γ-hydroxybutyrate on 
the day of the study.

Each participant provided one night of data; with the excep-
tion of two participants who completed a second night each due 
to data loss related to PSG battery issues on their first nights of 
study making a total of 33 nights. Finally, eight nights of data 
were excluded from the final analysis data set: five due to poor 
signal or system malfunction including battery issues on PSG, 
two due to the discovery of asymptomatic Apnea–Hypopnea 
Index (AHI) > 5 during the course of the study, and one due to an 
unusually short TST (4.5 h).

The final analysis data set consisted of one-night record 
from each of 25 participants; demographics are summarized 
in Table 1. The sample included individuals with self-reported 
sleep quality ranging from no complaints to sub-threshold in-
somnia symptoms, according to the Insomnia Severity Index 
(ISI) [26] and moderate to severe daytime sleepiness, according 
to the Epworth Sleepiness Scale (ESS) [27]. Only one met the 
Insomnia Symptom Questionnaire diagnostic threshold of in-
somnia. All had at worst mild symptoms of anxiety, according 
to the Generalized Anxiety Disorder-7 scale [28] or depression 
according to the Patient Health Questionnaire-9 (PHQ-9) [29]. 
Most reported moderate consumption of alcohol (less than a 
drink per day) and caffeine (less than 2 coffee per day), mod-
erate frequency of exercise (1–3 sessions per week), and only 
occasional naps. Six were current nicotine users, 14 reported 
using nicotine less than 100 times total, and 1 was a former 
nicotine user.

Protocol

Potential participants first completed a brief phone screen with 
study staff followed by an in-person interview at the French 
Armed Forces Biomedical Research Institute’s (IRBA) Fatigue and 
Vigilance Unit (Bretigny-Sur-Orge, France) during which they 
provided informed consent and subsequently completed a de-
tailed demographic, medical, health, sleep, and lifestyle survey 
with a study physician to confirm eligibility. Once consented 
and eligibility was confirmed, participants were equipped by a 
sleep technologist to undergo an overnight sleep study at the 
center with simultaneous PSG and the DH recordings. The be-
ginning and the end of the PSG and DH data collection periods 
were set based on participants’ self-selected lights-off and 
lights-on times. PSG and DH data recordings were synchronized 
a posteriori by resampling the DH data on the same timestamps 
as the PSG data so that records were perfectly aligned. Following 
the sleep study, technologists removed both devices, partici-
pants were debriefed and interviewed to identify any adverse 
events, and any technical problems were noted. All partici-
pants received financial compensation commensurate with 
the burden of study involvement. The study was approved by 
the Committees of Protection of Persons (CPP), declared to the 
French National Agency for Medicines and Health Products 
Safety, and carried out in compliance with the French Data 
Protection Act and International Conference on Harmonization 
(ICH) standards and the principles of the Declaration of Helsinki 
of 1964 as revised in 2013.

Polysomnographic assessment

The PSG assessment was performed using a Siesta 802 
(Compumedics Limited, Victoria, Australia) with the following 
EEG derivations: F3/M2, F4/M1, C3/M2, C4/M1, O1/M2, O2/M1; 
256 Hz sampling rate with a 0.03–35 Hz bandpass filter; bilat-
eral EOG, electrocardiographic (EKG), submental and bilateral 
leg electromyographic recordings were also performed. Airflow, 
thoracic movements, snoring, and oxygen saturation were also 
monitored. EEG cup-electrodes of silver-silver chloride (Ag–
AgCl) were attached to participants’ scalps with EC2 electrode 
cream (Grass Technologies, Astro-Med, Inc., West Warwick, RI, 
USA), according to the international 10–20 system for electrode 
placement. Auto-adhesive electrodes (Neuroline 720, Ambu A/S, 
Ballerup, Denmark) were used for EOG and EKG recordings.

Study device

The DH device is a wireless headband worn during sleep which 
records, stores, and automatically analyzes physiological data 
in real time with-out any connection (e.g. Bluetooth, Wi-Fi, 
etc.). Following the recording, the DH connects to a mobile de-
vice (e.g. smart phone and tablet) via Bluetooth to transfer ag-
gregated metrics to a dedicated mobile application and via 
Wi-Fi to transfer raw data to the sponsor’s servers. Five types of 
physiological signals are recorded via three types of sensors em-
bedded in the device: (1) brain cortical activity via five EEG dry 
electrodes yielding seven derivations (FpZ-O1, FpZ-O2, FpZ-F7, 
F8-F7, F7-O1, F8-O2, FpZ-F8; 250 Hz with a 0.4–35 Hz bandpass 
filter); (2–4) movements, position, and breathing frequency via a 
3D accelerometer located over the head; and (5) heart rate via a 
red-infrared pulse oximeter located in the frontal band. The EEG 

Table 1. Demographics of the sample

Mean ± SD Min–Max

#Female/male 6/19  
Age 35.32 ± 7.51 23–50
BMI (kg m−2) 23.81 ± 3.43 17.44–31.6
ISI 5.00 ± 3.67 0–14
ESS 7.76 ± 3.77 1–19
PHQ-9 1.84 ± 1.95 0–6
GAD-7 2.00 ± 2.57 0–10
N Naps/week 0.79 ± 1.13 0–4
N Exercise/week 1.77 ± 1.72 0–6

BMI, body mass index; GAD, general anxiety disorder; ESS, Epworth Sleepiness 

Scale; PHQ-9, Patient HealthQuestionnaire-9; ISI, Insomnia Severity 

Questionnaire.

https://dreem-octave-irba.s3.eu-west-3.amazonaws.com/index.html
https://dreem-octave-irba.s3.eu-west-3.amazonaws.com/index.html
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electrodes are made of high consistency silicone with soft, flex-
ible protrusions on electrodes at the back of the head enabling 
them to acquire signal from the scalp through hair. An audio 
system delivering sounds via bone conduction transducers is in-
tegrated in the frontal band but was not active in this study. The 
DH is composed of foam and fabric with an elastic band behind 
the head making it adjustable such that it is tight enough to be 
secure, but loose enough to minimize discomfort. Additional de-
tails have been published previously in [19].

Data analysis

We divided data analysis into three parts: (1) EEG signal quality; 
(2) heart rate, breathing frequency, and RRV agreement; and 
(3) Automatic Sleep Stage classification of the DH compared to 
scorers’ consensus on the PSG.

Assessing EEG brain wave similarity

Following Sterr et al. [23] proposed to use the relative spectral 
power (RSP) computed in frequency bands relevant for sleep 
analysis as a proxy for assessing the capacity of the DH to 
monitor EEG waves. We did not expect the RSP from the DH and 
the one from the PSG to be strictly equal but they should follow 
the same trends as the subjects evolve through sleep states. RSP 
was computed in the λ (0.5–4 Hz), θ (4–8 Hz), α (8–14 Hz), and 
β (15–30 Hz) bands, every 30 s using Fast Fourier Transform on 
both devices. Exponential smoothing with α = 0.7 was applied 
to the resulting RSP to avoid abrupt transitions. As a measure 
of concordance between the DH and the gold standard PSG RSP 
trends, the mean percentage error (MPE) was computed on the 
resulting RSP for each 30 s window and averaged for each record. 
To maximize the time of the night with good signal quality on 
the DH, we developed a procedure to select a virtual channel 
which corresponds to the EEG frontal-occipital channel (FpZ-
O1, FpZ-O2, F7-O1, or F8-O2) with the best quality signal at any 
given epoch throughout the night; previously described in [19]. 
We assessed RSP on the virtual channel for the DH. We excluded 
periods in which the virtual channel could not be computed on 
the DH signal because of bad signal quality on all channels of 
the DH (2.1% of the windows on average across all the record-
ings). For a fair comparison, we created and used a similar deriv-
ation on the PSG: F3-O1 to compute the RSP and hence the final 
MPE between the DH and the PSG. As a baseline for the order of 
magnitude of MPE to expect with the same device but using a 
different electrodes locations (but also frontal occipital), we also 
computed the MPE between the RSP of the PSG F3-O1 PSG der-
ivation and the PSG F4-O2 derivation for each frequency band 
using the same process.

Assessing heart rate, breathing frequency, and RRV 
agreement

The agreement of DH measurements of heart rate frequency 
(beats per minute) and breathing frequency (in cycle per 
minute) with PSG measurements of the same variables was also 
assessed. To do so, values were computed every 15  s (on 30-s 
sliding windows) on DH data and compared to the respective 

PSG values using an average of the mean absolute error (MAE) 
computed for each record. An analogous method was employed 
to assess the capacity of the DH to retrieve RRV (in percentage), 
as described in [30].

Heart rate

Heart rate measurement was computed from the oximeter and 
provided directly by the PSG device in the recorded data. On the 
DH, heart rate was computed a posteriori. It was derived from 
the pulse oximeter infrared signal using the following process:

(1) Infrared signal was filtered between 0.4 and 2 Hz and zero 
crossing was applied to compute the mean heart rate fre-
quency fs.

(2) Infrared signal was filtered between fs/1.25 and fs*1.25 and 
zero crossing was applied to compute the minimum and 
maximum heart rate frequencies fsmin and fsmax.

(3) Infrared signal was filtered between α = 0.3 was applied on 
both the DH and PSG heart rates to avoid brutal transitions.

This standard method provides a robust measure of heart rate 
frequency during sleep. However, it would probably be ill-suited 
for waking measurement where artifacts and noise are more 
likely to occur. Of note, one record was excluded from heart rate 
analyses because the PSG heart rate measurement remained at 
the same value for the entire duration of the record and was 
therefore assumed to be inaccurate.

Breathing frequency

Breathing frequency was computed from the z-axis of the ac-
celerometer on the DH and from the external pressure signal 
on the PSG. To compute breathing frequency, an analogous 
three-step process to that for the heart rate computation was 
followed, using a filter between 0.16 and 0.3 Hz in the first step 
on both the PSG and the DH.

Respiration rate variability

The RRV was computed with the exact same methodology than 
the one described in [30], except that the method employed here 
computed RRV throughout the entire night instead of on steady 
sleep windows. For the PSG, the method was applied to the ex-
ternal pressure channel. For the DH, the RRV was computed on 
the three axes of the accelerometer and the minimum value be-
tween the three was kept for each computed value to reduce 
noise.

Assessing sleep stages classification performance

Due to known inter-rater variance among even expert sleep 
scorers [31], using a single rater as the reference point ren-
ders comparison vulnerable to unintended bias. Thus, each 
PSG records were independently scored by five trained and ex-
perienced registered sleep technologists from three different 
sleep centers following the guidelines of the AASM [4]. The 
DH data was scored by the embedded automatic algorithm 
of the DH.
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Scoring performance metrics

Accuracy (ratio of correct answers) and Cohen’s Kappa, 
κ = (pj − pe)/(1− pe), where pj is the scorer accuracy and pe is the 
baseline accuracy, are provided to measure agreement between 
two hypnograms on a record. The F1 score was also computed 
because it takes into account both Precision and Recall, as well 
as class imbalance, making it a rigorous metric for evaluating 
performance [32]. It is computed as:

F1 score = 2 ∗
ï
Pr ∗ Re
Pr+ Re

ò

with precision [TP/(TP+ FP)] and recall [TP/(TP+ FN)], where TP, 
FP, and FN are the number of true positives, false positives, and 
false negatives, respectively. This score is computed per-class 
and averaged taking the weight of each class into account. For 
“overall” analyses, the average of the respective values from 
each individual record is calculated.

Scoring performance metrics evaluation. To evaluate scoring 
performance metrics and benefit from the multiple sleep ex-
perts scorings, a similar methodology to [12] was used. Indeed, 
to evaluate the performance metrics for each scorer, the scoring 
from each individual scorer was compared to the consensus 
scoring of the four other scorers. To evaluate the performance 
metrics of the DH automatic approach, the automatic scoring 
from the DH was compared to the consensus scoring of the four 
top-ranked scorers. This method ensures that both the indi-
vidual scorers and the automatic algorithm running on the DH 
data were evaluated against a consensus of exactly four scorers. 
The idea behind using a consensus scoring instead of doing one-
by-one evaluations is that a consensus is a more robust point of 
comparison than a single scorer thanks to the majority vote, es-
pecially on epochs that are difficult to score. Performance met-
rics computed from one-by-one comparison are also provided.

Building a consensus scoring from multiple scorings. Thus, 
we developed a way to build a unique consensus scoring from 
multiple scorings on a record. For each epoch, the majority 
opinion across scorers is chosen. In case of a tie, the sleep stage 
scored by the top ranked scorer is used (scorer ranking pro-
cedure described below, as Soft-Agreement); ties occurred on 
7.3 ± 2.4% of the epochs on average across all the records.

Scorer ranking

The previous section highlights the need to rank scorers in order 
to build a valid consensus scoring. The ranking of a scorer is 
based on his level of agreement with all the other scorers. To 
measure this, we introduce below an agreement metric between 
one scoring against multiple other scorings. We call this metric 
“Soft-Agreement” as it takes all the scorings into account and 
does not require any thresholding.

Notations

Let yj ∈ [[4]]Tbe the sleep staging associated to scorer J taking 
values in {0, 1, 2, 3, 4} standing, respectively, for Wake, N1, N2, 
N3 and REM with size T epochs. Let N be the number of scorers. 

Let ŷj ∈ {0, 1}5×T  be the one hot encoding of yj. For each epoch 
t ∈ [[T]] its value is 1 for the scored stage and 0 for the other 
stages. 

First, we define a probabilistic consensus ẑj as

ẑj[t] =

∑N
i=1; i�=j ŷi[t]

max
∑N

i=1; i�=j ŷi[t]
∀t,

where ẑjtakes values in [0, 1]5×T. For each epoch t ∈ [[T]] the value 
for each sleep stage is proportional to the number of scorers who 
scored that sleep stage. A value of ‘1’ is assigned if the chosen 
stage matches the majority sleep stage or any of the sleep stages 
involved in a majority tie. We then define the Soft-Agreement 
for scorer j as:

Soft-agreementj =
1
T

T∑
t=0

ẑj[yj].

A Soft-agreement of 1 means that for all epochs, scorer 
J scored the same sleep stage as the majority and, in case of 
tie, he scored one of the sleep stages involved in the tie. A Soft-
Agreement of 0 would happen if scorer J systematically scores 
a different stage than all of the other scorers. To rank the five 
scorers in this study, the Soft-agreement was computed for each 
scorer against the four others on each record and then averaged 
across all the records. Based on these values, we are able to build 
unique consensus scorings for comparison with each scorer. To 
build the consensus scorings for comparison with the DH auto-
matic algorithm, scorings from the top-four scorers were used.

Performance assessment of sleep variables

The following standard sleep variables were calculated: time in 
bed (TIB), as the number of minutes from lights-out to lights-on; 
TST (min); SE (%), as TST/TIB×100; sleep onset latency (SOL), as 
the number of minutes from lights-out to the first three con-
secutive epochs of any sleep stage; WASO, as the number of min-
utes awake following the first three consecutive epochs of any 
sleep stage; and the time (min) and percentage of TST spent in 
each sleep stage (N1, N2, N3, and REM).

DH algorithm

The DH embedded automatic algorithm works in two stages: 
(1) feature extraction and (2) classification. It is able to provide 
real-time sleep staging predictions. (1) Feature extraction is 
performed for each new epoch of 30 s. Features extracted from 
the various sensors are concatenated to go through the classi-
fication layer. EEG features include power frequency in the λ, α, 
θ, and β bands and ratio of relative powers as described in 23. 
Sleep patterns (e.g. slow oscillations, α rhythm, spindles, and 
K-complexes) are detected using an expert approach. The accel-
erometer provides breathing, movement, and position features. 
The pulse oximeter provides cardiac features. A total of 79 fea-
tures are extracted from each raw DH record. (2) The classifica-
tion module is built from two layers of Long-Short Term Memory 
[33] and a Softmax function outputting the final probability pre-
diction that the epoch belongs to each sleep stage. It relies on 
the features extracted from the last 30 epochs to predict the cur-
rent one. Hence, it takes into account the past temporal context 
to make a prediction, as a sleep expert would do. This classi-
fication module is trained using backpropagation. The training 
has been done on a dataset composed of previously recorded 
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internal Dreem records. A  total of 423 records were used for 
training and presented several times to the network. A total of 
213 validation records from other subjects were used to stop the 
training when the performance metrics computed on this val-
idation set were not improving anymore. None of the records 
of the current study were used to train or validate the network. 
We used the framework provided by Pytorch [34] and trained on 
a single Nvidia Titan X GPU (∼1 h of training, ∼1 s for inference).

Results
EEG Brain Waves Similarity. The quality of the EEG signal as-
sessed through the MPE of the relative spectral power between 
DH and PSG for α, β, λ, and θ frequencies is presented in Table 2. 
Results indicate a MPE around 15% for α, β, and λ and 10% for 
θ between the DH and PSG. As expected, the MPE between the 
DH and the PSG are higher than the baseline MPE between the 
two derivations from the same PSG record (F3-O1 and F4-O2) 
which are around 7%–8% for all the frequency bands. Figure 1 
shows a sample of raw signals recorded by the DH and a PSG on 
the same record during each sleep stage (N1, N2, N3, REM, and 
Wake). Figure 2 shows the relative spectral power between DH 
and PSG for each EEG frequency examined throughout a repre-
sentative record as well as the corresponding MPE.

Heart rate and breathing agreement

The agreements of heart rate, breathing frequency, and respira-
tory rate variability measured by the DH are not statistically dif-
ferent as the one measured by the PSG are presented (Table 3).

Figure 2 shows an example of heart rate, breathing frequency, 
and RRV measured on the PSG throughout the night.

Sleep stage classification

Results show a soft-Agreement scores of 88.6%, 90.7%, 91.7%, 
84.2%, and 91.6% for scorers 1, 2, 3, 4, and 5, respectively (overall 
soft-agreement score  =  89.4  ± 2.79%). With these values, we 
were able to develop consensuses with which to compare each 
scorer and the predictions of the DH automatic algorithm for 
the purpose of evaluating the metrics presented in Table 4. The 
overall accuracy of the five scorers is of 86.4 ± 7.4%, with scorer 
1 = 86.3 ± 10.5%, scorer 2 = 88.2 ± 4.2%, scorer 3 = 88.9 ± 5.1%, 
scorer 4 = 82.0 ± 8.1%, and scorer 5 = 88.9 ± 4.6%. Notably, these 
accuracies are above the average performance of other certified 
scorers reported in the literature [8], indicating the scorers in 
this study were well-trained. Across the manual scorers, ac-
curacy was highest for REM sleep (87.8  ± 13.6%) and followed 

closely by N2 (85.9 ± 10.7%) and N3 sleep stages (84.2 ± 20.6%). 
The accuracy for wake was slightly lower (82.5 ± 17.5%). The ac-
curacy was the lowest for N1 (54.2 ± 16.8%).

The overall accuracies of the DH automated algorithm using 
the DH data for sleep staging compared to the scorer consen-
suses are presented in Table 4 (overall accuracy = 83.8 ± 6.8%). 
The classification accuracy per stage of the DH parallels the 
order of the manual scorers using PSG data: highest accuracy 
for REM sleep (84.5  ± 13.3%) followed by N2 (82.9  ± 8.1%) and 
N3 sleep stages (82.6 ± 20.6%). The accuracy for wake was lower 
(74.0  ± 18.1%) with the lowest accuracy similarly obtained for 
the N1 sleep stage (47.7 ± 15.6%). Performance metrics computed 
using one-by-one comparison are presented in supplementary. 
They do not impact the relative performance of the scorers and 
the DH but present lower values and higher variance. This con-
firms the assumption that evaluation against a consensus is a 
more robust way of measuring performance than comparing 
one-by-one.

The confusion matrices (Figure  3) show the classifications 
per stage of both the DH and scorer averages versus the re-
spective consensuses. According to the matrices, both in the 
case of the DH and the PSG scoring, Wake is most often mis-
classified as N1 (12.4% and 10.5% of epochs, respectively), and 
N3 is most often misclassified as N2 (16.4% and 20.5% of epochs 
for DH and PSG, respectively). Figure 4 shows five representative 
hypnograms computed from the DH classifications and the cor-
responding scorer consensus hypnograms.

Table 2. Mean percentage error for α, β, λ, and θ EEG relative spectral 
power between the DH and PSG1 (F3–O1)

DH/PSG F3–O1 PSG F3–O1/PSG F4–O2

Alpha 15 ± 3.5 7.7 ± 2.4
Beta 16 ± 4.3 8.6 ± 3.7
Delta 16 ± 6.1 7.2 ± 2.7
Theta 10 ± 1.4 7.4 ± 2.1

Values are also provided for PSG1 (F3–O1) versus PSG2 (F4–O2) as a baseline.

Figure 1. 20-s samples of raw signals recorded by DH (pink) and PSG (black) on 

the same record during each sleep stages (N1, N2, N3, REM, and Wake). The der-

ivations are F7–O1 for the DH and F3–O1 for the PSG. The signals are presented 

between −150 and 150 μV.
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The averages of sleep variables are not statistically different 
when comparing the consensus (top-four ranked scorers), the 
DH, the differential DH (average per-record difference observed 
between the DH and the scorer consensus), and the overall dif-
ferential scorers (average per-record difference observed be-
tween each scorer and the scorer consensus formed by the four 
other scorers; Table 5).

The evaluation of the agreements between the DH and ex-
perts scoring on the PSG for each sleep stage are reported by the 

Figure 2. Relative spectral power (α, β, λ, and θ frequencies, AU), heart rate (beats per minute, BPM), breathing frequency (cycles per minute, CPM), and respiratory rate 

variability (RRV, %) for a representative record (i.e. with a MPE similar to the mean of the group). These signals are presented for a whole record for both the DH (pink) 

and PSG (black).

Table 3. The DH and PSG columns presents mean values ± SD com-
puted across all records for heart rate, breathing frequency, and 
respiratory rate variability (RRV) for both devices. Average mean ab-
solute error (MAE) by record is given in the last column.

PSG DH MAE

Heart rate (bpm) 61.3 ± 6.8 60.6 ± 6.5 1.2 ± 0.5
Breathing (cpm) 14.9 ± 1.9 14.8 ± 1.8 0.3 ± 0.2
RRV (%) 53.5 ± 2.2 52.2 ± 2.8 3.2 ± 0.6
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Table 4. Performance metrics for each scorer and the automatic approach of the DH computed by comparison against their consensus

DH Overall scorers Scorer 1 Scorer 2 Scorer 3 Scorer 4 Scorer 5

All F1 (%) 83.8 ± 6.3 86.8 ± 7.4 86.3 ± 10.5 88.2 ± 4.2 88.9 ± 5.1 82.0 ± 8.1 88.9 ± 4.6
Accuracy (%) 83.5 ± 6.4 86.4 ± 8.0 85.7 ± 12.1 87.5 ± 4.5 88.9 ± 4.6 81.2 ± 8.8 88.9 ± 4.2
Cohen Kappa (%) 74.8 ± 10.4 79.8 ± 11.4 78.9 ± 15.7 81.2 ± 7.0 83.2 ± 7.2 72.5 ± 13.2 83.0 ± 7.2

Wake F1 (%) 76.7 ± 14.3 84.1 ± 13.6 85.9 ± 10.1 86.5 ± 12.3 87.6 ± 9.9 74.9 ± 18.0 85.6 ± 11.9
Accuracy (%) 74.0 ± 18.1 82.5 ± 17.5 80.2 ± 14.0 78.1 ± 19.3 90.2 ± 12.9 82.4 ± 21.0 81.6 ± 16.5
Cohen Kappa (%) 74.1 ± 15.2 82.2 ± 15.0 84.4 ± 10.7 85.2 ± 12.6 86.3 ± 10.4 71.1 ± 20.5 84.1 ± 12.8

N1 F1 (%) 46.5 ± 12.4 49.7 ± 14.5 49.3 ± 13.8 51.2 ± 11.4 53.7 ± 13.7 39.7 ± 16.3 54.5 ± 11.6
Accuracy (%) 47.7 ± 15.6 54.2 ± 16.8 58.2 ± 14.7 60.3 ± 12.6 59.1 ± 14.4 38.3 ± 15.5 54.9 ± 16.3
Cohen Kappa (%) 43.5 ± 12.6 47.0 ± 15.1 46.6 ± 14.0 48.5 ± 11.8 51.4 ± 13.9 36.4 ± 17.3 52.3 ± 12.1

N2 F1 (%) 87.5 ± 5.5 89.0 ± 7.3 88.2 ± 11.8 90.3 ± 4.6 90.7 ± 4.1 84.3 ± 6.9 91.3 ± 3.5
Accuracy (%) 82.9 ± 8.1 85.9 ± 10.7 87.8 ± 13.6 87.6 ± 8.7 89.3 ± 6.0 75.8 ± 10.9 89.0 ± 5.7
Cohen Kappa (%) 75.4 ± 10.8 78.8 ± 13.2 77.5 ± 20.5 81.1 ± 8.6 81.5 ± 8.5 71.1 ± 12.9 82.9 ± 7.1

N3 F1 (%) 76.4 ± 22.9 78.3 ± 23.8 81.0 ± 24.1 79.6 ± 22.8 76.8 ± 25.0 75.2 ± 22.1 78.9 ± 24.7
Accuracy (%) 82.6 ± 20.6 84.2 ± 20.6 89.1 ± 14.0 89.1 ± 11.1 66.9 ± 27.6 92.7 ± 12.0 84.1 ± 21.3
Cohen Kappa (%) 74.0 ± 22.6 76.6 ± 23.1 79.2 ± 24.1 77.2 ± 22.8 74.8 ± 25.0 74.9 ± 17.9 76.8 ± 24.3

REM F1 (%) 82.9 ± 12.3 90.9 ± 10.2 85.0 ± 17.0 91.4 ± 4.2 94.4 ± 4.6 91.5 ± 8.8 92.1 ± 8.1
Accuracy (%) 84.5 ± 13.3 87.8 ± 13.6 76.3 ± 19.4 85.8 ± 6.5 92.1 ± 9.5 89.5 ± 13.6 95.3 ± 3.1
Cohen Kappa (%) 79.0 ± 13.7 89.0 ± 11.1 82.5 ± 17.6 89.4 ± 5.3 93.1 ± 5.1 89.7 ± 10.5 90.5 ± 8.9

Overall column presents mean ± SD observed for the five scorers. Results are given for each sleep stages.

Figure 3. Confusion matrix for the DH versus PSG scoring consensuses (top) and the overall confusion matrix for scorers versus the other scorers’ consensuses 

(bottom). Values are normalized by row with the number of epochs in parentheses.
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Bland Altman plots (Figure 5). This figure shows an evenly dis-
persion around the mean with no value beside the significance 
threshold.

Discussion
While considerable value could be derived from longitudinal 
sleep EEG monitoring, until recently, (wet) EEG electrodes were 
too impractical to be easily used on a regular basis and without 

assistance. In broader domains than sleep, it has been shown 
that emerging technologies using dry electrodes were able to 
accurately monitor EEG, paving the way to meaningful physio-
logical monitoring at home under various conditions [35, 36].

In this study, we first showed that the DH that includes dry-
EEG electrodes embedded in a headband could measure EEG fre-
quencies in a similar way than a PSG.

It has to be noted that typical EEG patterns such as α rhythm 
spindles, λ waves, or K complexes have not been analyzed here. 

Figure 4. Hypnograms for the five first participants showing both the consensuses of the four top-ranked scorers (gray) and the DH automated sleep stage classifica-

tions. Accuracies are presented as average obtained by the five scorers on the consensus hypnogram, and scores obtained for the DH versus the consensuses.
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This could be integrated in future work where a trained human 
could both score the DH and the PSG.

HR and breathing frequency are two key physiological 
signals that are closely looked at in PSG recordings. These 
two signals are critical for deeper phenotyping of healthy 
and pathological sleep and might therefore be of interest 
in broader longitudinal sleep studies. Therefore, these data 
were analyzed and presented in this article. We showed that 
the method used for detecting breathing frequency and RRV 
using an accelerometer had strong agreement with the gold 
standard. The position of the 3D accelerometer, located over 
the head, appeared to be a sensitive location for detecting 
small movements. The agreement for heart rate is similar to 
other studies showing that an infrared pulse oximeter posi-
tioned against the forehead can be used to reliably monitor 
heart rate. However, we were unable to provide a heart rate 
variability on most of the records due to insufficient reso-
lution, similar to other studies [37].

Finally, we showed that the DH was able to perform real-
time sleep staging using data collected by the DH with an 
accuracy in the range of individual scorers using PSG data 
and comparable to the accuracy between PSG scorers in 
other studies [8, 31]. To our knowledge, this performance on 
a dry-EEG wearable has never been achieved with another 
device. Sleep variables are macro-metrics computed on the 
hypnogram and are less impacted than sleep staging metrics 
by local differences. For instance, wake is slightly underesti-
mated but that does not significantly impact sleep variables 
related to wake (WASO, sleep latency, and sleep efficiency). 
Even though the inter-scorer reliability achieved with PSG by 
our 5 scorers was high, it highlights the need for such valid-
ation studies to rely on a consensus of multiple sleep experts 
when analyzing sleep staging performance [31]. Mixing sleep 
experts from different sleep centers provides a more realistic 
analysis than is typically obtained in a standard clinical sleep 
study where records are scored by only a single individual, 

which strengthens our results. To evaluate these individual 
scorers, we introduced an objective methodology to build a 
consensus from the other scorers. This enables a fair evalu-
ation of both individual scorers and the automated algo-
rithmic approach of the DH.

The main limitation of this study is that the sample was 
somewhat small and homogeneous in age and sleeper pro-
file; even though this is consistent with the majority of similar 
validation studies [20, 22, 23]. A larger sample of more diverse 
sleepers would have provided more reliability and generaliz-
ability to the general population. Therefore, further studies 
should be run with this investigational device on specific 
sub-populations (e.g. patients with sleep apnea, psychiatric 
or neurodegenerative diseases, etc.) either to confirm the per-
formance of the automatic sleep stage algorithm but also to 
evaluate the ease of use of the device and comfort in these 
specific targeted populations.

In this study, 2.1% of the windows were excluded on average 
across all the recordings because the virtual channel could not be 
computed on the DH signal due to bad signal quality on every 
channel. Since the DH was wore as long as with the PSG, in the 
lab setting. It can then be argued that in the home-environment, 
a more important proportion of the signals would have been of 
bad quality due to the negligence of the subject. However, it has 
to be put in line with the fact that in a home setting, it would 
have been possible to run multiple nights, which is not easy to 
do in the lab with a PSG. Also, this issue can be easily coped with 
an appropriate training of the subject to use the device. Also, 
this study includes only one night of data per subject with no 
habituation night, which may lead to a non-reliable representa-
tion of typical sleep in the natural home environment, and par-
ticularly because sleeping with a full PSG in a clinical sleep lab, 
which often leads to sleep being shorter and more fragmented. 
However, our sample did achieve 87% SE on average, suggesting 
that sleep was not substantially disrupted on a wide scale in 
this study.

Table 5. The consensus column presents sleep variables computed with the scorer’s consensus of the top-four ranked scorers

Consensus DH Differential DH Overall differential scorers

TST (min) 430.4 ± 66.8 [402.2, 458.5] 431.8 ± 68.4 [402.9, 460.6] 1.4 ± 19.0 [−6.6, 9.4] −2 ± 28.5 [−7.1, 3.0]
Sleep efficiency (%) 87 ± 8.1 [83.5, 90.4] 87.3 ± 8.4 [83.8, 90.8] 0.3 ± 4.0 [−1.4, 2.0] −0.4 ± 5.6 [−1.4, 0.6]
SOL (min) 18.9 ± 18.7 [11.0, 26.8] 20 ± 18.2 [12.4, 27.7] 1.2 ± 3.6 [−0.4, 2.7] −1.7 ± 15.6 [−4.5, 1.1]
WASO (min) 44.1 ± 27.8 [32.4, 55.8] 41.5 ± 31.7 [28.1, 54.9] −2.6 ± 19.5 [−10.8, 5.7] 3.7 ± 28.4 [−1.3, 8.8]
Stage wake  

duration (min)
61.8 ± 38.8 [45.5, 78.1] 60.2 ± 40.7 [43.0, 77.3] −1.7 ± 19.1 [−9.7, 6.4] 2 ± 28.5 [−3.1, 7.0]

Stage Wake (%) 12.8 ± 8.1 [9.4, 16.2] 12.4 ± 8.3 [8.9, 15.9] −0.4 ± 4.0 [−2.1, 1.3] 0.4 ± 5.6 [−0.6, 1.4]
Stage N1  

duration (min)
31 ± 14.4 [25.0, 37.1] 31.9 ± 17.9 [24.4, 39.4] 0.8 ± 12.9 [−4.6, 6.3] 6 ± 25.2 [1.5, 10.5]

Stage N1 (%) 6.3 ± 2.9 [5.1, 7.5] 6.5 ± 3.7 [5.0, 8.1] 0.2 ± 2.6 [−0.9, 1.3] 1.2 ± 4.4 [0.4, 1.9]
Stage N2  

duration (min)
244.3 ± 59.2 [219.4, 269.2] 227.9 ± 57.0 [203.9, 251.9] −16.4 ± 21.8 [−25.5, −7.2] −9.7 ± 38.7 [−16.6, −2.8]

Stage N2 (%) 49.2 ± 9.3 [45.3, 53.1] 46.1 ± 9.9 [41.9, 50.2] −3.1 ± 4.3 [−5.0, −1.3] −1.8 ± 7.5 [−3.2, −0.5]
Stage N3  

duration (min)
61.4 ± 30.4 [48.6, 74.2] 70.5 ± 37.1 [54.8, 86.1] 9.1 ± 19.5 [0.8, 17.3] 6.3 ± 32.8 [0.5, 12.1]

Stage N3 (%) 12.5 ± 6.1 [9.9, 15.0] 14.2 ± 6.9 [11.3, 17.1] 1.7 ± 3.8 [0.1, 3.3] 1.3 ± 6.1 [0.2, 2.3]
REM sleep  

duration (min)
93.6 ± 32.3 [80.0, 107.2] 101.5 ± 41.7 [83.9, 119.1] 7.9 ± 24.9 [−2.5, 18.4] −4.7 ± 16.7 [−7.7, −1.7]

REM sleep (%) 19 ± 6.2 [16.4, 21.6] 20.5 ± 7.9 [17.1, 23.8] 1.5 ± 5.0 [−0.6, 3.6] −1 ± 3.3 [−1.5, −0.4]

The DH column present the sleep variables computed on the DH. Differential DH column presents the average per-record difference observed between the DH and 

the scorer consensus. Overall Differential Scorers presents the average per-record difference observed between each scorer and the scorer consensus formed by the 

four other scorers. Results are presented as Mean ± SD [0.95CI].
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Conclusion
In this study, we showed that using an ambulatory wireless 
dry-EEG device, the DH, it was possible to: (1) acquire EEG sig-
nals that correlate with the EEG signals recorded with a PSG; (2) 

reliably measure breathing frequency and heart rate continu-
ously during sleep; and (3) perform automatic sleep staging clas-
sification according to AASM criteria with performance similar 
to that of a consensus of five scorers using medical-grade 
PSG data.

Figure 5. Bland Altman plots for each sleep variable measures by the DH versus the consensus sleep metrics computed for each record.
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These results, together with the price, ease of use and the 
availability of raw signals, pave the way for such a device to be 
an ideal candidate for high-quality large-scale longitudinal sleep 
studies in the home or laboratory environment. As such, this 
technology can enable groundbreaking advancements in sleep 
research and medicine. For instance, the resulting database can 
ultimately be integrated with other types of data collection de-
vices and used to identify unknown patient subgroups, detect 
early disease biomarkers, personalize therapies, and monitor 
neurological health and treatment response.
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