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Abstract: To reveal the nonlinear mechanism of the tri-stable piezoelectric vibration energy harvester
based on composite shape beam (TPEH-C) and its influence on the system response, the nonlinear
restoring force and the nonlinear magnetic force are discussed and analyzed in this paper. The
nonlinear magnetic model is acquired by using equivalent magnetizing current theory, and the
nonlinear resilience model is obtained by fitting experimental data. The corresponding distributed
parameter model based on generalized Hamiltonian variation principle has been established.
Frequency response functions for the TPEH-C are derived according to harmonic balance expansion,
and the influence of different magnet distances and different excitation accelerations on the response
amplitude and bandwidth of the TPEH-C are investigated. More importantly, the correctness of the
theoretical analysis is verified by experiments. The results reveal that the spectrum of composite
beam shows hard characteristic and the depth of potential well is changed, which provides a new
way to ameliorate the potential well of the TPEH-C. A suitable magnet distance enables the TPEH-C
to improve the response amplitude and the effective frequency range. The results in this paper have a
theoretical guiding significance for the optimal design and engineering application of the TPEH-C.

Keywords: piezoelectric vibration energy harvesting; composite shape beam; nonlinear magnetic
force; nonlinear restoring force; harmonic balance

1. Introduction

Microelectronics and wireless sensing technology support the rapid growth of on-line monitoring
technology for coal mine machine. However, the energy supply of the sensor nodes is the bottleneck in
its development [1,2]. Environmental energy harvesting technology is widely used in power supply
and condition monitoring of micro-electronic equipment, among which vibration energy harvesting
has become a research hotspot because it is not affected by position and environment [3–7]. Thus, it
is expected to alleviate the trouble of wiring and power supply for on-line monitoring of coal mine
equipment by using the piezoelectric energy harvester to power a wireless monitoring node [8].

Generally, environmental excitation is broad band and multi-directional. In order to adapt the
energy harvester traps to these characteristics, a lot of work in structural design and theoretical
research has been done [9–12]. A kind of piezoelectric energy harvester with clamped–clamped
beams structure is introduced in [13]. This structure has a high frequency response, and broad
band during the frequency sweep test. Chen et al. [14] investigate a structure with one-dimensional
phononic piezoelectric cantilever beams, which improve the response bandwidth by adjusting the mass.
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Fu et al. [15] designed a piezoelectric vibration energy harvester for low-speed and broad band, and
the influence of different structural parameters on the output is analyzed. Paknejad et al. [16] derived
the steady-state response of piezoelectric energy harvester for various thin multilayer composite beams
under harmonic excitation, and the relationship between the natural frequency and damping ratio
has been studied. To conform to the multi-directional environment, a flexible longitudinal zigzag
structure is designed in [17,18]. This structure is capable of effective energy conversion in a wide
range of excitation directions. Yang et al. [19] proposed that arched structures have more advantages
over straight beams in the energy collection. Zhang et al. [20,21] investigated a new piezoelectric
transducer for composite beam structure based on magnetic coupling. The arc-shaped beam can satisfy
the multi-direction requirement of ambient vibration source, so it has advantages in the adaptability of
environmental vibration.

At present, the frequency-extension method using nonlinear behavior has grown up to be a
hot topic of energy harvester research. Wei et al. [22] introduced a scissor-like structure energy
harvester, which nonlinear damping improves the vibration energy collection performance. The
linear and nonlinear models of the U-shaped vibration-based piezoelectric energy harvester (U-VPEH)
are compared in [23]. It proves that the nonlinear U-VPEH shows superior performance in energy
collection. Erturk and Inman [24,25] verified experimentally that the nonlinear transition behavior
induces high-energy interwell oscillations of the bi-stable energy harvester under harmonic excitation,
which greatly improves the energy harvesting performance. The dynamic response transformation
between hardening nonlinearity and softening nonlinearity makes the energy harvester more adaptable
to environment [26]. The wideband tri-stable energy harvester based on nonlinear magnetic field
has attracted much attention since it was offered [27,28]. The relationship between potential well
depth and tri-stable energy harvester performance was numerically and experimentally studied in [29].
Cao et al. [30] investigates the load resistance of tri-stable energy harvesting from real human motion
excitation indicate that there always exists an optimum load resistance to maximize the average
output power. Zhou et al. [31] derived the nonlinear response characteristics of the asymmetric
tri-stable energy harvester to improve energy harvesting performance for more general applications.
Wang et al. [32] proved that the tri-stable energy harvester possesses a wider potential well width and a
lower barrier height, which greatly extends the operating frequency band. The tri-stable configuration
has been demonstrated to enable piezoelectric energy harvester to generate electricity in a wider
frequency range, and improve energy harvesting efficiency [33–35].

On-line monitoring of coal mining equipment needs a kind of energy harvesting device to realize
self-power supply, which can adapt to the multi-direction and broadband characteristics of equipment.
Compared with other energy harvesting structures, the tri-stable energy harvester is relatively simple,
and has been proved to have a wider spectrum characteristic than the monostable harvester in some
excitation conditions. It can improve the energy harvesting performance, which has some advantages
in the power supply of equipment monitoring nodes. However, in general tri-stable energy harvesters,
the cantilever beam is a linear beam structure. The research on the linear-arch composite beam structure
is less, especially the nonlinear restoring force and its influence on the tri-stable energy harvester have
not been reported.

Aiming at enhancing energy harvesting from multi-direction and broadband environmental
excitations, the tri-stable piezoelectric vibration energy harvester based on composite shape beam
(TPEH-C) is proposed in this paper. The nonlinear magnetic force model of the system is established
using the equivalent magnetizing current theory, and the nonlinear restoring force is fitted by the
experimental data. The distributed parameter model based on generalized Hamiltonian variation
principle is established. Frequency response functions of the TPEH-C are derived according to the
harmonic balance method, and the influence of different magnet distances and different excitation
accelerations on the response amplitude and bandwidth of the TPEH-C are investigated. Finally, the
theoretical analysis is verified by experiments.
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2. Theoretical Modeling

The distributed parameter method based on Hamiltonian principle is more general than the
lumped parameter method because it considers the distribution quality, which was used in many
studies. However, the restoring force of the linear-arch composite beam structure is not linear and
needs to be studied and discussed to ensure the accuracy of the model. In this section, the restoring
force and the magnetic field of the beam are first separately modeled and discussed to ensure more
accurate models being obtained. Then, according to the Hamiltonian principle, the dynamic model of
the system is obtained.

2.1. The TPEH-C

In order to solve the problem of node power supply for on-line monitoring of coal mine
machineries, piezoelectric vibration energy harvesting technique is proposed. The TPEH-C can adapt
to the multi-direction and broadband external excitations. Due to the limited size of the joint power
supply equipment, the composite beam structure can provide more piezoelectric material area than the
linear structure. The piezoelectric vibration energy harvester for the linear-arch composite beam is
illustrated in Figure 1. The TPEH-C comprises of a base, a linear-arch composite beam, a Polyvinylidene
Fluoride (PVDF) piezoelectric layer, a tip magnet attachment and two external magnets. The length of
the linear-arch composite beam in the x-axis direction is L, and the piezoelectric layer is completely
attached to the matrix of the beam. The distance between the tip magnet and the middle of two external
magnets is d, and between external magnets is dBC. When the external excitation along the z axis acts
on the beam, it vibrates and deforms. PVDF, adhered to the surface of the composite beam, converts
the vibration energy into electrical energy due to the direct piezoelectricity. It is assumed that the
relative vibration displacement of the beam is u(X, t). There are two nonlinear factors in the TPEH-C:
one is the nonlinear restoring force due to the linear-arch composite beam structure; the other is the
nonlinear magnetic force generated by the external magnet in the moving space of the beam.

Figure 1. The schematic diagram of the TPEH-C.

2.2. Modeling of Nonlinear Restoring Force

Unlike the linear restoring force of a typical straight beam, the restoring force is nonlinear in the
composite beam because of the arch shape structure. Therefore, the nonlinear restoring force should be
analyzed. A dynamometer (YLK-10) was used to measure the restoring force of the composite beam in
the z-axis direction. The composite beam is mounted on the fixture, and the end of the beam is pushed
by dynamometer to record the measured data of displacement and force. After measured several times
and averaging, the curve fitting method is used to obtain the nonlinear recovery force expressions

Fr = s2u(L, t)3 + s1u(L, t) (1)

where, s2 and s1 are polynomial coefficients obtained by experiment. u(L, t) is the displacement of the
beam along the z-axis at t.
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Figure 2 is the experimental measurement and curve fitting results of nonlinear restoring force of
linear-arch composite beam. The trinomial coefficients s2 = −41, 963.4 N/m3 and one-time coefficients
s1 = −18.29 N/m. It can be observed in the diagram that the restoring force of the cantilever beam
presents a curve due to the existence of the arched part. Setting u = 0 as the equilibrium position,
and the measurement results are slightly asymmetrical. This is explained by the fact that when the
curvature of the arch part becomes larger in a certain deformation range, the force required smaller
than the curvature becomes smaller.

Figure 2. The nonlinear restoring force of linear-arch composite beam.

2.3. Modeling of the Nonlinear Magnetic Force

Building an accurate theoretical model is the basis of theoretical research. Compared with the
magnetic dipole model, the magnetizing current method describes more accurately when the magnetic
distance is not large [36]. The position and geometry of the magnet in the TPEH-C are given in Figure 3.
The midpoint O’ between magnet B and magnet C is taken as coordinate origin. The length, width and
height of the three magnets are la, lb, lc, ha, hb, hc, wa, wb, wc, respectively. When the magnet A is in the
horizontal position, the distance from the point O’ is d. The length from A to O is L+ la/2, and the angle
between the cantilever beam and horizontal direction is ϕ. From the geometric relation, sinϕ = u

L+la/2

and cosϕ =
√

1− sin2ϕ can be obtained. The u(L, t) is simply written as u.

Figure 3. The nonlinear magnetic force of the TPEH-C.
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Assuming that the magnetic field generated by the magnet is evenly distributed in space.
According to the magnetizing current method [37], the magnetic forces on magnet A in z direction due
to the magnetic field produced by magnets B and C. The magnetic force is given by:

Fm = µ0MASHb2
(
d− ha

2 ·sinϕ, 0, u− ha
2 ·cosϕ− dBC

2

)
− . . .

Hb1
(
d + ha

2 ·sinϕ, 0, u + ha
2 ·cosϕ− dBC

2

)
+ . . .

Hc2
(
d− ha

2 ·sinϕ, 0, u− ha
2 ·cosϕ+

dBC
2

)
− . . .

Hc1
(
d + ha

2 ·sinϕ, 0, u + ha
2 ·cosϕ+

dBC
2

) (2)

where, S is the top or bottom surface area of magnet A. Hb1 and Hb2 are the magnitudes of the
magnetic field strength generated by magnet B at the centers of magnet A’s top and bottom surfaces in
x direction. Similarly, Hc1 and Hc2 are the magnitudes of the magnetic field strength generated by
magnet C.

The expressions are:

Hb = MB
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√
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(
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X
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)
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where, zb1 = u + hB
2 , zb2 = u− hB

2 , yb1 = y + wB
2 , yb2 = y− wB

2 .

Hc =
MC
4π

[
tan−1

(
zc1 yc1

X
√

zc1
2+yc1

2+X2

)
+ tan−1

(
zc2 yc2

X
√

zc22+yc22+X2

)
− . . .

tan−1
(

zc2 yc1

X
√

zc22+yc1
2+X2

)
− tan−1

(
zc1 yc2

X
√

zc1
2+yc22+X2

)
]

(4)

where, zc1 = u + hc
2 , zc2 = u− hc

2 , yc1 = y + wc
2 , yc2 = y− wc

2 .
Using the curve fitting method, the magnetic expression is reduced to a polynomial expression

about displacement u(L, t):

Fm = k3u5(L, t) + k2u3(L, t) + k1u(L, t) (5)

where, the coefficients k1, k2 and k3 are obtained by curve fitting the results of the magnetic force
Fm calculation.

To verify the accuracy of the nonlinear magnetic force model, a dynamometer was used to measure
the magnetic force of three groups of different magnetic distances d. The two magnets were fixed on the
base and they have a center distance of dBC = 20 mm. The free magnet was fixed on the dynamometer’s
push rod. At a different distance d, we can use the dynamometer to push the free magnet along the
z-axis direction, and record the displacement and the force. The experimental measurements are
compared with the magnetic curves obtained from the model, as shown in Figure 4. It can be found
from the diagram that the theoretical calculation results are in accordance with experimental results,
which means that the nonlinear magnetic field model is established in this paper accurately. The reason
why the magnetic force measurement results are slightly larger than the calculated results is that the
force in the x-axis direction is neglected in the calculation. As can be seen from the curve in observation
Figure 4, the tri-stable magnetic force presents two peaks and two troughs. There are five points of
the magnetic force Fm = 0, which constitute the inflection point in the potential energy (as shown in
Figure 5).
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Figure 4. The comparison of the magnetic force between calculations and experimental measurement.

Figure 5. (a) The magnetic potential functions at different magnet distances; (b) The nonlinear restoring
force potential functions of TPEH-C.

Figure 5a shows the magnetic potential functions at different magnet distances, and Figure 5b is
the nonlinear restoring force potential functions of the TPEH-C. It can be found by comparison that the
potential functions in Figure 5a are deeper than in Figure 5b, while the one in the middle is slightly
shallower than that in Figure 5b. It proves that the restoring force of the composite beam has an effect
on the depth of potential wells of the TPEH-C. The reason for this phenomenon is the interaction
between the restoring force and the magnetic force. When the composite beam is in a huge deformed
position, where the restoring force and the magnetic force cancel each other out, the potential well
becomes shallow. When it in a small deformation position the restoring force and the magnetic force
superimpose each other, the potential wells deepen.

In Figure 5b, the moving space of the tip magnet is divided into three parts due to the interaction
between the magnetic force and the restoring force. The three steady-state correspond to the three
positions depicted in Figure 1. When the magnet distance is d = 4 mm, the potential well is the deepest.
If the TPEH-C is to produce a considerable motion between wells, it needs to consume a lot of energy
over the barrier. Therefore, if the external excitation cannot provide enough energy to ensure that the
TPEH-C crosses the barrier, the system can only carry out a small movement in the vibration process.
As the magnet distance d increases, the potential well becomes shallower. When the magnet distance d
> 10 mm, the system is close to the monostable system, at which time there is only one potential well.
When the magnet distance d = 8 mm or 10 mm, the TPEH-C is reaching a critical point of tri-stable
versus monostable state. the TPEH-C not only retains the tri-stable characteristics, but the barrier is
also obviously reduced, which is the ideal motion state of the energy harvester system.
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2.4. Modeling of the TPEH-C

According to the generalized Hamiltonian variational principle, the variation of Lagrange function
of the TPEH-C is equal to 0 in any time period t1 and t2. That is, the system satisfies the equation

V.I. =

∫ t2

t1
[δ(T∗ −W∗) + δWnc + δUm]dt = 0 (6)

where δ is the variational symbol. T∗, W∗, Wnc and Um respectively represent the kinetic, potential
energy, virtual work of external forces and magnetic potential.

Suppose u(X, t) is the displacement of a point on a cantilever along the z-axis at t, and the
beam satisfies the Rayleigh–Ritz principle. The vibrational displacement u(X, t) of the beam can be
discretized into a combination of modes of each order

u(X, t) =
n∑

i = 1

ψi(X)ri(t) (7)

where ψi(X) represents the ist-order modal mode functions of the beam. ri(t) is the modal coordinates.
For the boundary conditions where one end is free and one end is clamped, the allowable function can
be expressed as:

ψi(X) = 1− cos
[
(2i− 1)πx

2L

]
(8)

Under low frequency excitations, the vibration of the composite beam is mainly concentrated in
the first-order mode. So, only the first-order mode is considered, that is, i = 1.

According to Euler–Bernoulli beam theory, piezoelectric constitutive equation and Kirchhoff’s law,
the dynamic expression of the TPEH-C is obtained by combining Equations (1), and Equations (5)–(7).

M
..
r + C

.
r + Fr − θv− Fm = Hs

..
y(t) (9)

θ
.
r + Cp

.
v +

v
R

= 0 (10)

where Fr is the nonlinear restoring force of linear-arch composite beam. Fm is nonlinear magnetic
force. M is the modal mass, and the expression of M is obtained by treating the end block as a
concentrated mass.

M =
(
ρbAb + ρpAp

) ∫ L

0
ψ2(X)dX + m0ψ

2(L) (11)

where C, θ, and Hs, are respectively the damping, the electromechanical coupling term and the
fundamental excitation coefficient. Cp is the piezoelectric element capacitance, and the external
resistance of the system is R

C = cAb

∫ L

0
ψ2(X)dX (12)

θ =
ze31Ap

hp

∫ L

0
ψ′′ (X)dX (13)

Hs =
(
ρbAb + ρpAp

) ∫ L

0
ψ(X)dX + m0ψ(L) (14)

Cp =
εS

33bpLp

hp
(15)

where, ρb and ρp are density of the substrate layer and the piezoelectric layer. Ab and Ap are cross
sectional area of composite beam and piezoelectric layer, respectively. m0 is the end block mass.
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3. Harmonic Balance Solutions

There are many approximate analytical methods for nonlinear systems. However, the harmonic
balance method is very effective to analyze the frequency response of nonlinear systems. In this paper,
the harmonic balance method is used to obtain the analytical expression of the response of the system
under base harmonic excitations. The nonlinear stiffness model and the nonlinear magnetic force
model are substituted into Equations (9) and (10)

M
..
r + C

.
r− k3r5

− (k2 − s2)r3
− (k1 − s1)r− θv = Hs

..
y(t) (16)

θ
.
r + Cp

.
v +

v
R

= 0 (17)

In order to analyze the response characteristics of TPEH-C under harmonic excitation, it is assumed
that the external excitation is

..
y(t) = Acos(ωt). The steady-state response displacement and voltage of

the system are as follows:
r(t) = a0(t) + a(t)sin(ωt) + b(t)cos(ωt) (18)

v(t) = p(t)sin(ωt) + q(t)cos(ωt) (19)

where, a0(t) is a constant term indicating the equilibrium position.
After substituting Equation (18) into Equation (16) and Equation (19) into Equation (17), balancing

the terms multiplied by sin(ωt), cos(ωt) and constant terms, the following equations are obtained:

M
..
a0 + C

.
a0 − k3(a5

0 + 5a3
0

(
a2 + b2

)
+ 15

8 a0
(
a2 + b2

)2
) − (k2 − s2)(a3

0 + . . .
3
2 a0

(
a2 + b2

)
) − (k1 − s1)a0 = 0

(20)

M
(

..
a− 2

.
bω− aω2

)
+ C

( .
a− bω

)
− k3a(5a4

0 +
15
2 a2

0

(
a2 + b2

)
+ 5

8

(
a2 + b2

)2
) − . . .

(k2 − s2)a(3a2
0 +

3
4

(
a2 + b2

)
) − (k1 − s1)a− θp = 0

(21)

M
(..
b + 2

.
aω− bω2

)
+ C

( .
b + aω

)
− k3b(5a4

0 +
15
2 a2

0

(
a2 + b2

)
+ 5

8

(
a2 + b2

)2
) − . . .

(k2 − s2)b(3a2
0 +

3
4

(
a2 + b2

)
) − (k1 − s1)b− θq−HsA = 0

(22)

θ
( .
a− bω

)
+ Cp

( .
p−ωq

)
+

1
R

p = 0 (23)

θ
( .
b− aω

)
+ Cp

( .
q +ωp

)
+

1
R

q = 0 (24)

The second derivative of the equations
..
a0 =

..
a =

..
b = 0, and first derivative

.
a0 =

.
a =

.
b =

.
p =

.
q = 0. The expressions of harmonic coefficients p and q for a and b

can be obtained from Equations (23) and (24), and the frequency response of steady-state displacement
can be obtained by substituting them into Equations (20)–(22).

k3(a5
0 + 5a3

0η
2 +

15
8

a0η
4) + (k2 − s2)(a3

0 +
3
2

a0η
2) + (k1 − s1)a0 = 0 (25)

(
−ω2M− k3(5a4

0 +
15
2 a2

0η
2 + 5

8η
4
)
− (k2 − s2)(3a2

0 +
3
4η

2) − (k1 − s1) + . . .

(
θ2ω2R2Cp

1+ω2R2C2
p
)2η2 +

(
ωC + θ2ω2R

1+ω2R2C2
p

)
η2 = (HsA)2 (26)

where the amplitude of system response displacement η =
√
(a2 + b2), and the amplitude of system

response voltage V =
√
(p2 + q2).

By solving Equations (25) and (26), the steady-state response spectrum of the system can be
obtained. Generally, the harmonic solution contains stable solution and unstable, which can be judged
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by the Jacobian matrix [38]. The maximum (high branch) and minimum (low branch) solutions
of nonlinear systems are stable, and can be verified by experiments, whereas the middle solution
is unstable.

4. Analysis

Depending on the analysis in Section 2, the restoring force of the linear-arch composite beam is
nonlinear. Therefore, the dynamic response is discussed when the system does not contain magnetic
force only considering the nonlinear restoring force. The spectrum response of the system is obtained
by making k3 = k2 = k1 = 0 in Equations (25) and (26). Select the excitation acceleration A = [0.5
g, 0.8 g, 1 g] to get the response spectrum under different excitation acceleration seen in Figure 6. It
can be seen that the spectrum characteristic of the linear-arch composite beam at A = 0.5 g is similar
to that of the linear system. However, as the excitation level increases, the curve gradually bends in
the direction of increasing frequency, showing a harden characteristic. There are multiple solutions
in a certain frequency range, where the dashed line part is unstable solution and the solid line part
is stable solution. It indicates that the linear-arch composite beam is nonlinear, and the nonlinear
spectrum characteristic becomes more obvious with the increase of the external excitation amplitude.
Compared with the response spectrum characteristics of the linear system, the nonlinear system has a
large amplitude in a wide frequency range.

Figure 6. The amplitude-frequency response of the TPEH-C.

Figure 7 shows the response spectrum of the TPEH-C with different magnetic distance. Select
excitation A = 1 g, magnet distance d = [4 mm, 8 mm, 10 mm, 12 mm]. Figure 7a is the response
spectrum of the TPEH-C at d = 4 mm, at which point the figure contains the high-energy interwell
oscillations and the low-energy intrawell motion. When η > 20 mm, the system does the interwell
motion. In practice, if the barrier between wells is deep enough, the motion needs to be excited by
external force or large enough external excitation. Figure 7b,c is the system response spectrum when
d = 8 mm and d = 10 mm, respectively. It can be seen that the curve first bends in the low frequency
direction and then in the high frequency direction, forming the “S” shape. Furthermore, a broadband
with a larger response is formed when bending to the high frequency side. The bandwidth at d = 8
mm is about 7.5 Hz and d = 10 mm is about 5.5 Hz. This indicates that the nonlinear magnetic force
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will affect the response bandwidth of the system in a certain range of magnet spacing, and the width
decreases as the magnetic distance increases. Figure 7d is the response spectrum at d = 12 mm. The
spectrum of the system is already close to the response spectrum under the magnet-free condition
illustrated in Figure 6. It indicates that the magnetic distance has reached the critical point of failure
range of the magnetic force. Furthermore, if the distance exceeds the distance of 12 mm, the system is
equivalent to no magnetic condition.

Figure 7. The response frequency spectrum of the TPEH-C with different magnetic distance: (a)
d = 4 mm; (b) d = 8 mm; (c) d = 10 mm; (d) d = 12 mm.

Figure 8 indicates the displacement response spectrum of the TPEH-C at different excitation
acceleration. Select the distance of the magnet d = 8 mm, excitation A = [0.1 g, 0.5 g, 1 g, 2 g]. Figure 8a
shows the system displacement response spectrum for A = 2 g. It can be seen that the system has a
large interwell response in the range of 15~25 Hz. Whereas, with the weakening of the excitation (the
excitation in Figure 8b,c are 1 g and 0.5 g, respectively), and the response band becomes narrower and
the amplitude decreases. When the excitation A = 0.1 g, as shown in Figure 8d, the response spectrum
of the system presents as the linear system, and the response amplitude is reduced by 10 times. The
excitation is not enough to make the system cross the barrier, and the system does the small intrawell
motion. Therefore, the magnitude of the external excitation not only affects the response amplitude of
the TPEH-C, but also affects the effective frequency bandwidth.
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Figure 8. The response frequency spectrum of TPEH-C under excitation acceleration: (a) A = 2 g; (b)
A = 1 g; (c) A = 0.5 g; (d) A = 0.1 g.

5. Experimental Verification

In this section, the potential energy values of the TPEH-C in each position are obtained by using the
experimental results of the magnetic force and the restoring force, and the potential energy-displacement
curve is plotted in Figure 9. Figure 9a shows the magnetic potential energy at different magnet distances,
and Figure 9b is the nonlinear restoring force potential energy of the TPEH-C. Compared with the
potential energy-displacement curve obtained from the theoretical analysis, the basic law of experiment
results is consistent. That is, as the magnet distance d increases, the potential well depth gradually
decreases. The restoring force of the composite beam shallows the depth of the potential well on both
sides of the TPEH-C and deepens the depth of the potential well in the middle. In addition, another
new effect has been found. The potential wells in Figure 9b show asymmetry due to the unsymmetrical
of the experimental results of the composite beam restoring forces, which is mentioned in Section 2.2.

Figure 9. (a) The magnetic potential curves at different magnet distances; (b) the nonlinear restoring
force potential curves of the TPEH-C.

In checking to see the correctness of the dynamic analysis, the experiment was conducted, which is
consist of digital oscilloscope, multi-channel vibration controller, power amplifier, computer, vibration
exciter and the TPEH-C. The response of linear-arch composite beam with no magnet is tested. Select
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excitation acceleration A = [0.5 g, 1 g], and the sweep frequency obtains the frequency-voltage diagram
shown in Figure 10a. It can be observed that the variation of output voltage with frequency is
consistent with the simulation results. The system presents nonlinear hard characteristic and the
bandwidth becomes wider with the increase of excitation amplitude. The output positive and negative
voltage of the system is asymmetrical, which is caused by the deformation of the piezoelectric layer
is asymmetrical due to the horizontal and longitudinal deformation of the arch structure during the
deformation process. Figure 10b selects the magnetic distance d = 10 mm to contrast the response
of the system under two external excitation conditions. It shows that the magnitude of the external
excitation will affect the amplitude and bandwidth of the system response. As the excitation increases,
the amplitude of the system response increases and the frequency band becomes wider.

Figure 10. The sweep voltage diagram under two excitations: (a) no magnet; (b) TPEH-C.

Select the magnetic distance d = [4 mm, 8 mm, 10 mm] to test the output voltage of TPEH-C
when the excitation a is 1 g and 0.5 g, respectively. Figure 11a is the output voltage sweep of external
excitation A = 1 g and Figure 11b shows the result at A = 0.5 g. It can be seen that it is consistent with
the simulation results. When the magnetic distance is smaller, the system presents a small intrawell
motion, and the response output voltage is smaller. The peak voltage in Figure 10a is about 1.8 V
and in Figure 11b is about 1 V. As the distance of the magnet increases, the tri-stable barrier becomes
shallower and the system moves across different potential energy wells. The system output voltage
reaches a maximum of 5 V in Figure 11a and 3 V in Figure 11b.

Figure 11. The sweep voltage diagram with different magnetic distances: (a) A = 1 g; (b) A = 0.5 g.

Figure 12 compares the output voltages of the TPEH-C and the non-magnetic harvester (monostable
one) under A = 0.5 g. The base acceleration for Figure 12 is same, which is realized by using the
controlling system to make the shaker output some excitation. The frequency band of a magnet-free
system is narrow about 1 Hz, while that of a TPEH-C is about 3 Hz. This means the bandwidth of
the TPEH-C is wider than the non-magnetic harvester. Therefore, the TPEH-C achieves broadband
characteristics frequency.
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Figure 12. Comparison of output voltage between TPEH-C and non-magnetic system.

6. Conclusions

In this paper, a distributed parameter model of the tri-stable piezoelectric energy harvester for
linear-arch composite beam is established. By solving the harmonic balance solution of the system
dynamics equation, the nonlinear response characteristics are discussed. The influence of different
magnetic distances and different external excitations on the response of the TPEH-C is revealed. Finally,
the numerical results are verified by experiments, and the following conclusions can be made.

(a) The arched part of the composite beam makes the cantilever be a nonlinear structure. The
existence of the nonlinear restoring force makes the response spectrum curve of the composite beam
bend in the direction of increasing frequency, showing the hard characteristic. Furthermore, the
restoring force of the composite beam also influences the potential well depth of the tri-stable system,
which could be a new way to ameliorate the potential well depth in cases where size is limited.

(b) Changing the magnet distance enables the system to switch between tri-stable and monostable
states, and the appropriate magnet distance d enables the system to achieve a “wideband”. Different d
needs to be considered in the design of the TPEH-C, which will make the response expand to the low
frequency. Therefore, the design of the composite beam can extend to the high frequency according to
the actual vibration source characteristic.

(c) Response bandwidth and amplitude of the TPEH-C are affected by external excitations. The
frequency bandwidth of different magnet distances under the same excitation is changed, therefore, the
optimal magnet distance corresponding to different excitation range should be considered in design.
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