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Introduction

In this workflow, we examine a subset of the RNA-seq and ATAC-seq data from Alasoo er al. (2018), a study
that involved treatment of macrophage cell lines from a number of human donors with interferon gamma (IFNg),
Salmonella infection, or both treatments combined. Alasoo ef al. (2018) examined gene expression and chromatin
accessibility in a subset of 86 successfully differentiated induced pluripotent stem cells (iPSC) lines, and compared
baseline and response with respect to chromatin accessibility and gene expression at specific quantitative trait loci
(QTL). The authors found that many of the stimulus-specific expression QTL were already detectable as chromatin
QTL in naive cells, and further hypothesize about the nature and role of transcription factors implicated in the response
to stimulus.

We will perform a much simpler analysis than the one found in Alasoo er al. (2018), using their publicly availa-
ble RNA-seq and ATAC-seq data (ignoring the genotypes). We will examine the effect of IFNg stimulation on gene
expression and chromatin accessibility, and look to see if there is an enrichment of differentially accessible (DA)
ATAC-seq peaks in the vicinity of differentially expressed (DE) genes. This is plausible, as the transcriptomic response
to IFNg stimulation may be mediated through binding of regulatory proteins to accessible regions, and this binding
may increase the accessibility of those regions such that it can be detected by ATAC-seq.

Throughout the workflow (Figure 1), we will use existing Bioconductor infrastructure to understand these datasets.
In particular, we will emphasize the use of the Bioconductor packages p/yranges and rximeta. The plyranges package
fluently transforms data tied to genomic ranges using operations like shifting, window construction, overlap detection,
etc. It is described by Lee er al. (2019) and leverages underlying core Bioconductor infrastructure (Lawrence ef al.,
2013; Huber et al., 2015) and the tidyverse design principles Wickham ez al. (2019).

The tximeta package described by Love er al. (2019) is used to read RNA-seq quantification data into R/Bioconductor,
such that the transcript ranges and their provenance are automatically attached to the object containing expression
values and differential expression results.

Import data coldata

tximeta()

Model assays

7

| ImFit() + eBayes() |

DESeq()

‘ de_genes ‘ ‘ da_peaks ‘
T

Integrate ranges

| de_genes || boot_genes |

join_overlap_lefi()

Key

| reduce_ranges_directed() |

| gene_peak_all_thresholds |
| E—

| origin_peak_all_thresholds |

Figure 1. An overview of the fluent genomics workflow. First, we import data as a SummarizedExperiment object,
which enables interoperability with downstream analysis packages. Then we model our assay data, using the existing
Bioconductor packages DESeq2 and limma. We take the results of our models for each assay with respect to their
genomic coordinates, and integrate them. First, we compute the overlap between the results of each assay, then
aggregate over the combined genomic regions, and finally summarize to compare enrichment for differentially
expressed genes to non differentially expressed genes. The final output can be used for downstream visualization or
further transformation.
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Experimental data
The data used in this workflow is available from two packages: the macrophage Bioconductor ExperimentData
package and from the workflow package fluentGenomics (Lee & Love, 2020).

The macrophage package contains RNA-seq quantification from 24 RNA-seq samples, a subset of the RNA-seq
samples generated and analyzed by Alasoo er al. (2018). The paired-end reads were quantified using Salmon
(Patro et al., 2017), using the Gencode 29 human reference transcripts (Frankish er a/l., 2019). For more details on
quantification, and the exact code used, consult the vignette of the macrophage package. The package also contains
the Snakemake file that was used to distribute the Salmon quantification jobs on a cluster (Koster &
Rahmann, 2012).

The fluentGenomics package (Lee & Love, 2020) contains functionality to download and generate a cached
SummarizedExperiment object from the normalized ATAC-seq data provided by Alasoo & Gaffney (2017). This
object contains all 145 ATAC-seq samples across all experimental conditions as analyzed by Alasoo ez al. (2018). The
data can be also be downloaded directly from the Zenodo deposition.

The following code loads the path to the cached data file, or if it is not present, will create the cache and generate
a SummarizedExperiment using the the BiocFileCache package (Shepherd & Morgan, 2019).

library (fluentGenomics)
path to se <- cache atac se()

We can then read the cached file and assign it to an object called atac.

atac <- readRDS(path to se)

A precise description of how we obtained this SummarizedExperiment object can be found in Importing ATAC-seq
data as a SummarizedExperiment object.

Import data as a SummarizedExperiment

Using tximeta to import RNA-seq quantification data

First, we specify a directory dir, where the quantification files are stored. You could simply specify this
directory with:

dir <- "/path/to/quant/files"

where the path is relative to your current R session. However, in this case we have distributed the files in the
macrophage package. The relevant directory and associated files can be located using system.file.

dir <- system.file("extdata", package="macrophage")

Information about the experiment is contained in the coldata.csv f£ile. We leverage the dplyr and readr
packages (as part of the fidyverse) to read this file into R (Wickham ez al., 2019). We will see later that plyranges
extends these packages to accommodate genomic ranges.

library (dplyr)

#4#

## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

##

## filter, lag

## The following objects are masked from 'package:base':
##

## intersect, setdiff, setequal, union

library(readr)

colfile <- file.path(dir, "coldata.csv")

coldata <- read csv(colfile) %>%
dplyr::select (

names,

Page 4 of 36


https://doi.org/doi:10.18129/B9.bioc.macrophage
https://github.com/sa-lee/fluentGenomics
https://bioconductor.org/packages/macrophage
https://zenodo.org/record/1188300#.Xj6T-7jkBQM
https://doi.org/doi:10.18129/B9.bioc.BiocFileCache

)

id = sample id,

line = line id,

condition = condition name
0/>0/

>>%

dplyr::mutate (

files = file.path(dir, "quants", names,
line = factor(line),
condition = relevel (factor (condition),
)
## Parsed with column specification:
## cols(
## names = col character(),
#4# sample id = col character(),
#4# line id = col character(),
## replicate = col double(),
## condition name = col character(),
##  macrophage harvest = col character(),
##  salmonella date = col character(),
## ng ul mean = col double(),
#4# rna_extraction = col character(),
#4 rna submit = col character(),
## library pool = col character(),
## chemistry = col character(),
##  rna_auto = col double()
## )
coldata
## # A tibble: 24 x 5
## names id line condition files
## <chr> <chr> <fct> <fct> <chr>
## 1 SAMEA1038~ diku A diku~ naive
Versions/~
## 2 SAMEA1038~ diku B diku~ IFNg
Versions/~
## 3 SAMEA1038~ diku C diku~ SL1344
Versions/~
## 4 SAMEA1038~ diku D diku~ IFNg SL13~
Versions/~
## 5 SAMEA1038~ eiwy A eiwy~ naive

Versions/~

## 6 SAMEA1038~ eiwy B eiwy~ IFNg
Versions/~

## 7 SAMEA1038~ eiwy C eiwy~ SL1344
Versions/~

## 8 SAMEA1038~ eiwy D eiwy~ IFNg SL13~
Versions/~

## 9 SAMEA1038~ fikt A fikt~ naive
Versions/~

## 10 SAMEA1038~ fikt_B fikt~ IFNg
Versions/~

## # with 14 more rows

"naive™)
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"quant.sf.gz"),

/Library/Frameworks/R.framework/
/Library/Frameworks/R.framework/
/Library/Frameworks/R.framework/
/Library/Frameworks/R.framework/
/Library/Frameworks/R.framework/
/Library/Frameworks/R.framework/
/Library/Frameworks/R.framework/
/Library/Frameworks/R.framework/
/Library/Frameworks/R.framework/

/Library/Frameworks/R.framework/

After we have read the coldata.csv file, we select relevant columns from this table, create a new column
called files, and transform the existing 1ine and condition columns into factors. In the case of condi-
tion, we specify the “naive” cell line as the reference level. The £iles column points to the quantifications for
each observation — these files have been gzipped, but would typically not have the ‘gz’ ending if used from Salmon
directly. One other thing to note is the use of the pipe operator,%>%, which can be read as “then”, i.e. first read the
data, then select columns, then mutate them.
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Now we have a table summarizing the experimental design and the locations of the quantifications. The following
lines of code do a lot of work for the analyst: importing the RNA-seq quantification (dropping inferential replicates
in this case), locating the relevant reference transcriptome, attaching the transcript ranges to the data, and fetching
genome information. Inferential replicates are especially useful for performing transcript-level analysis, but here we
will use a point estimate for the per-gene counts and perform gene-level analysis.

The result is a SummarizedExperiment object.

suppressPackageStartupMessages (library (SummarizedExperiment) )
library (tximeta)
se <- tximeta (coldata, dropInfReps=TRUE)

## importing quantifications
## reading in files with read tsv

## 1 2 3 456 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
## found matching linked transcriptome:

## [ GENCODE - Homo sapiens - release 29 ]

## loading existing TxDb created: 2019-11-22 01:02:58

## Loading required package: GenomicFeatures

## Loading required package: AnnotationDbi

##

## Attaching package: 'AnnotationDbi'

##

## The following object is masked from 'package:dplyr':

##

## select

##

## loading existing transcript ranges created: 2019-11-22 01:06:45
## fetching genome info for GENCODE

se

## class: RangedSummarizedExperiment

## dim: 205870 24

## metadata(6): tximetaInfo quantInfo ... txomeInfo txdbInfo
## assays(3): counts abundance length

## rownames (205870): ENST00000456328.2 ENST00000450305.2

#4 ENST00000387460.2 ENST00000387461.2

## rowData names(3): tx id gene id tx name

## colnames (24): SAMEA103885102 SAMEA103885347 ... SAMEA103885308
#4 SAMEA103884949

## colData names (4) : names id line condition

On a machine with a working internet connection, the above command works without any extra steps, as the
tximeta function obtains any necessary metadata via FTP, unless it is already cached locally. The zximeta package
can also be used without an internet connection, in this case the linked transcriptome can be created directly
from a Salmon index and gtf.

makeLinkedTxome (
indexDir=file.path(dir, "gencode.v29 salmon 0.12.0"),
source="Gencode",
organism="Homo sapiens",
release="29",
genome="GRCh38",
fasta="ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 29/
gencode.v29.transcripts.fa.gz",
gtf=file.path(dir, "gencode.v29.annotation.gtf.gz"), # local version
write=FALSE
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Because tximeta knows the correct reference transcriptome, we can ask tximeta to summarize the transcript-level
data to the gene level using the methods of Soneson er al. (2015).

gse <- summarizeToGene (se)

## loading existing TxDb created: 2019-11-22 01:02:58

## obtaining transcript-to-gene mapping from TxDb

## loading existing gene ranges created: 2019-11-23 02:30:13
## summarizing abundance

## summarizing counts

## summarizing length

One final note is that the start of positive strand genes and the end of negative strand genes is now dictated by
the genomic extent of the isoforms of the gene (so the start and end of the reduced GRanges). Another alterna-
tive would be to either operate on transcript abundance, and perform differential analysis on transcript (and so avoid
defining the TSS of a set of isoforms), or to use gene-level summarized expression but to pick the most
representative TSS based on isoform expression.

Importing ATAC-seq data as a SummarizedExperiment object
The SummarizedExperiment object containing ATAC-seq peaks can be created from the following tab-delimited files
from Alasoo & Gaffney (2017):

e The sample metadata: ATAC_sample metadata.txt.gz (<IM)
e The matrix of normalized read counts: ATAC _cqn matrix.txt.gz (109M)
e The annotated peaks: ATAC peak metadata.txt.gz (5.6M)

To begin, we read in the sample metadata, following similar steps to those we used to generate the coldata table
for the RNA-seq experiment:

atac_coldata <- read tsv("ATAC sample metadata.txt.gz") %>%

select (
sample id,
donor,
condition = condition name
) $>%
mutate (condition = relevel (factor (condition), "naive"))

The ATAC-seq counts have already been normalized with cgn (Hansen e al., 2012) and log2 transformed. Loading
the cgn-normalized matrix of log2 transformed read counts takes ~30 seconds and loads an object of ~370 Mb. We
set the column names so that the first column contains the rownames of the matrix, and the remaining columns are
the sample identities from the atac_coldata object.

atac_mat <- read tsv("ATAC cgn matrix.txt.gz",
skip = 1,
col names =c("rownames", atac coldata[["sample id"]]))
rownames <- atac mat[["rownames"]]
atac mat <- as.matrix(atac mat[,-11])
rownames (atac _mat) <- rownames

We read in the peak metadata (locations in the genome), and convert it to a GRanges object. The as_granges ()

function automatically converts the data.frame into a GRanges object. From that result, we extract the peak_id
column and set the genome information to the build “GRCh38”. We know this from the Zenodo entry.
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library(plyranges)
peaks df <- read tsv("ATAC peak metadata.txt.gz",
col types = c("cidciicdc")

peaks gr <- peaks df %>%

as_granges (seqnames = chr) $%>%
select (peak id=gene id) %>%
set genome info (genome = "GRCh38")

Finally, we construct a SummarizedExperiment object. We place the matrix into the assays slot as a named list, the
annotated peaks into the row-wise ranges slot, and the sample metadata into the column-wise data slot:

atac <- SummarizedExperiment (assays = list(cgndata=atac mat),
rowRanges=peaks gr,
colData=atac coldata)

Model assays

RNA-seq differential gene expression analysis

We can easily run a differential expression analysis with DESeg2 using the following code chunks (Love er al., 2014).
The design formula indicates that we want to control for the donor baselines (1ine) and test for differences in gene
expression on the condition. For a more comprehensive discussion of DE workflows in Bioconductor see Love er al.
(2016) and Law et al. (2018).

library (DESeqg2)
dds <- DESegDataSet (gse, ~line + condition)

## using counts and average transcript lengths from tximeta

H Ik
IINNS

ilter out lowly expressed genes
t least 10 counts in at least 6 samples

keep <- rowSums (counts(dds) >= 10) >= 6
dds <- dds|[keep,]

The model is fit with the following line of code:

dds <- DESeq (dds)

## estimating size factors

## using 'avgTxLength' from assays(dds), correcting for library size
## estimating dispersions

## gene-wise dispersion estimates

## mean-dispersion relationship

## final dispersion estimates

## fitting model and testing

Below we set the contrast on the condition variable, indicating we are estimating the log, fold change (LFC) of IFNg
stimulated cell lines against naive cell lines. We are interested in LFCs greater than 1 at a nominal false discovery rate
(FDR) of 1%.

res <- results(dds,
contrast=c("condition","IFNg", "naive"),
l1fcThreshold=1, alpha=0.01)
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To see the results of the expression analysis, we can generate a summary table and an MA plot (Figure 2):

summary (res)

#4#

## out of 17806 with nonzero total read count
## adjusted p-value < 0.01

## LFC > 1.00 (up) 502, 2.8%

## LFC < -1.00 (down) 247, 1.4%

## outliers [1] 0, 0%

## low counts [2] 0, 0%

## (mean count < 3)

## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering'

DESeqg2: :plotMA (res,

argument of ?results
ylim=c(-10,10))

log fold change

1e+01 1e+02

1e+03

I I I
1e+04 1e+05

mean of normalized counts

Figure 2. Visualization of DESeq2 results as an “MA plot”.

colored red.

Genes that have an adjusted p-value below 0.01 are

We now output the results as a GRanges object, and due to the conventions of plyranges, we construct a new column
called gene_id from the row names of the results. Each row now contains the genomic region (segnames, start,
end, strand) along with corresponding metadata columns (the gene id and the results of the test). Note that
tximeta has correctly identified the reference genome as “hg38”, and this has also been added to the GRanges along the
results columns. This kind of book-keeping is vital once overlap operations are performed to ensure that plyranges is

not comparing across incompatible genomes.

suppressPackageStartupMessages (library (plyranges))

de genes <- results (dds,

contrast=c("condition","IFNg", "naive"),

lfcThreshold=1,
format="GRanges")
names_to column ("gene id")

oS0
5>%

de genes

## GRanges object with 17806 ranges and 7
## segnames ranges
## <Rle> <IRanges>
## [1] chrX 100627109-100639991

metadata columns:
strand |
<Rle> |

gene id
<character>
ENSG00000000003.14

Page 9 of 36



F1000Research 2020, 9:109 Last updated: 21 MAY 2020

#H [2] chr20 50934867-50958555 - | ENSG00000000419.12
#4 [3] chrl 169849631-169894267 - | ENSG00000000457.13
#4 [4] chrl 169662007-169854080 + | ENSG00000000460.16
#4 [5] chrl 27612064-27635277 - | ENSG00000000938.12
#H ... e .. .
i [17802] chrl0 84167228-84172093 - | ENSG00000285972.1
#H [17803] chro 63572012-63583587 + | ENSG00000285976.1
## [17804] chrlo 57177349-57181390 + | ENSG00000285979.1
#4 [17805] chr8 103398658-103501895 - | ENSG00000285982.1
#4 [17806] chrl0 12563151-12567351 + | ENSG00000285994.1
## baseMean log2FoldChange 1fcSE

i <numeric> <numeric> <numeric>

#H [1] 171.570646163445 -0.282245015065582 0.300571026277417

#4 [2] 967.751278980391 0.0391222756936352 0.0859707605047955

]
]
## [3] 682.432885098654 1.2846178585311 0.196906721741941
]
]

## [4] 262.963397841117 -1.47187616421189 0.218691645887265
## [5] 2660.10225731917 0.675478091290521 0.236053041372838
##
## [17802] 10.0474624496157 0.548451844773876 0.444318686394084
## [17803] 4586.34616821518 -0.033929582570062 0.188004977365846
## [17804] 14.2965310090402 0.312347650582085 0.522699844356108
#4 [17805] 27.7629588245413 0.994518742790125 1.58237312176743
#H [17806] 6.60408582708505 0.25399752352481 0.5957511892896
## stat pvalue padj
## <numeric> <numeric> <numeric>
## [1] 0 1 1
## [2] 0 1 1
## [3] 1.44544511235177 0.148332899695748 1
it [4] -2.15772377722715 0.0309493141635637 0.409727500369082
## [5] 0 1 1
## ..

## [17802] 0 1 1
## [17803] 0 1 1
#4 [17804] 0 1 1
#H [17805] 0 1 1
## [17806] 0 1 1
#H o -

## seqginfo: 25 sequences (1 circular) from hg38 genome

From this, we can restrict the results to those that meet our FDR threshold and select (and rename) the metadata
columns we’re interested in:

de genes <- de genes %>%
filter(padj < 0.01) %>%
select (gene id, de 1og2FC = log2FoldChange, de padj = padj)

We now wish to extract genes for which there is evidence that the LFC is not large. We perform this test by specifying
an LFC threshold and an alternative hypothesis (a1l tHypothesis) that the LFC is less than the threshold in absolute
value. To visualize the result of this test, you can run results without format="GRanges", and pass this object
to plotMA as before.

We label these genes as other genes and later as “non-DE genes”, for comparison with our de _genes set.

other genes <- results(dds,
contrast=c("condition","IFNg", "naive"),
1fcThreshold=1,
altHypothesis="lessAbs",
format="GRanges") %>%
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filter(padj < 0.01) %>%
names_to column ("gene id") %>%
dplyr::select (gene_id,
de 1og2FC = log2FoldChange,
de padj = padj)

ATAC-seq peak differential abundance analysis
The following section describes the process we have used for generating a GRanges object of differential peaks from
the ATAC-seq data in Alasoo et al. (2018).

The code chunks for the remainder of this section are not run.

For assessing differential accessibility, we run limma (Smyth, 2004), and generate the a summary of LFCs and
adjusted p-values for the peaks:

library(limma)

design <- model.matrix(~donor + condition, colData (atac))
fit <- 1lmFit (assay(atac), design)

fit <- eBayes(fit)

idx <- which (colnames (fitScoefficients) == "conditionIFNg")
tt <- topTable(fit, coef=idx, sort.by="none", n=nrow(atac))

We now take the rowRanges of the SummarizedExperiment and attach the LFCs and adjusted p-values from limma,
so that we can consider the overlap with differential expression. Note that we set the genome build to “hg38” and
restyle the chromosome information to use the “UCSC” style (e.g. “chrl”, “chr2”, etc.). Again, we know the genome
build from the Zenodo entry for the ATAC-seq data.

atac peaks <- rowRanges (atac) %>%
remove names () %>%
mutate (
da log2FC = ttS$logFC,
da padj = ttSadj.P.val
) $>%

set genome info(genome = "hg38")
seqlevelsStyle (atac _peaks) <- "UCSC"
The final GRanges object containing the DA peaks is included in the workflow package and can be loaded as follows:

library(fluentGenomics)

peaks

## GRanges object with 296220 ranges and 3 metadata columns:

#4 segnames ranges strand | peak id
#4# <Rle> <IRanges> <Rle> | <character>
## [1] chrl 9979-10668 o ATAC peak 1
## [2] chrl 10939-11473 * ATAC peak 2
## [3] chrl 15505-15729 * ATAC peak 3
## [4] chrl 21148-21481 * ATAC peak 4
#4 [5] chril 21864-22067 * ATAC peak 5
## c. .. .. .. Ce.
## [296216] chrX 155896572-155896835 * | ATAC peak 296216
## [296217] chrX 155958507-155958646 * | ATAC peak 296217
## [296218] chrX 156016760-156016975 * | ATAC peak 296218
## [296219] chrX 156028551-156029422 * | ATAC peak 296219
#4# [296220] chrX 156030135-156030785 * | ATAC peak 296220
## da log2FC da_padj

## <numeric> <numeric>

## [1] 0.266185396736073 9.10672732956434e-05
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4 [2] 0.32217712436691 2.03434717570469e-05
## [3] -0.574159538548115 3.41707743345703e-08
## [4] -1.14706617895329 8.22298606986521e-26
#4# [5] -0.896143162633654 4.79452571676397e-11
##
## [296216] -0.834628897017445 1.3354605397165e-11
4 [296217] -0.147537281935847 0.313014754316915

## [296218] -0.609732301631964 3.62338775135558e-09
B4 [296219] -0.347678474957794 6.94823191242968e-06
## [296220] 0.492442459200901 7.07663984067763e-13
S

## seginfo: 23 sequences from hg38 genome; no seglengths

Integrate ranges

Finding overlaps with plyranges

We have already used plyranges a number of times above, to filter, mutate, and select on GRanges objects,
as well as ensuring the correct genome annotation and style has been used. The plyranges package provides a gram-
mar for performing transformations of genomic data (Lee er al., 2019). Computations resulting from compositions of
plyranges “verbs” are performed using underlying, highly optimized range operations in the GenomicRanges package
(Lawrence et al., 2013).

For the overlap analysis, we filter the annotated peaks to have a nominal FDR bound of 1%.

da peaks <- peaks %>%
filter(da padj < 0.01)

We now have GRanges objects that contain DE genes, genes without strong signal of DE, and DA peaks. We are
ready to answer the question: is there an enrichment of DA ATAC-seq peaks in the vicinity of DE genes compared
to genes without sufficient DE signal?

Down sampling non-differentially expressed genes

As plyranges is built on top of dplyr, it implements methods for many of its verbs for GRanges objects. Here we can
use slice to randomly sample the rows of the other genes. The sample.int function will generate random
samples of size equal to the number of DE-genes from the number of rows in other genes:

size <- length (de genes)
slice (other genes, sample.int(n(), size))
## GRanges object with 749 ranges and 3 metadata columns:

## segnames ranges strand | gene id
#4# <Rle> <IRanges> <Rle> | <character>
4 [1] chrl 26890488-26900466 - | ENSG00000198746.12
## [2] chr4 141220887-141234697 + | ENSG00000109445.10
## [3] chrl2 112160188-112382439 - | ENSG00000173064.12
## [4] chrl3 31134974-31162388 - | ENSG00000120694.19
## [5] chrl?7 37514797-37609496 - | ENSG00000275066.4
4 [745] chr20 3045945-3048254 + | ENSG00000125901.5
## [746] chrle 70346829-70373383 + | ENSG00000168872.16
#i [747] chrl9 18831938-18868236 + | ENSG00000005007.12
## [748] chrl? 6666477-6689572 - | ENSG00000126746.17
#4 [749] chr? 3575205-3580920 + | ENSG00000171863.14
## de log2FC de padj

#4# <numeric> <numeric>

#H [1 0.16909882503824 1.36439677663303e-15

## [2 -0.110147580079407 2.08542530094741e-11

]
]
## [3] 0.144029835606733 1.68431882130248e-07
]
]

#4# [4 -0.023454391472986 0.000530800735408018
## [5 0.252722313137111 2.0839123931282e-11
#H
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[745] -0.424589720947925 0.00440766986950405
[746] 0.0726651236153919 2.26389160906564e-09
## [747] -0.0847460249226525 7.4089673378162e-29
[
[

#4# 748] 0.0158683098473536 1.15330450566857e-13
#4# 749] -0.416796080579922 1.83298968911328e-08
L A

## seqginfo: 25 sequences (1 circular) from hg38

genome

We can repeat this many times to create many samples via replicate. By replicating the sub-sampling multiple
times, we minimize the variance on the enrichment statistics induced by the sampling process.

# set a seed for the results
set.seed (2019-08-02)
boot genes <- replicate (10,

slice (other genes, sample.

simplify = FALSE)

int(n(), size)),

This creates a list of GRanges objects as a list, and we can bind these together using the bind ranges function.
This function creates a new column called “resample” on the result that identifies each of the input GRanges objects:

boot genes <- bind ranges(boot genes, .id = "resample")

Similarly, we can then combine the boot genes GRanges, with the DE GRanges object. As the resample column

was not present on the DE GRanges object, this is given a missing value which we recode to a 0 using mutate ()

all genes <- bind ranges (
de=de_ genes,
not de = boot genes,
.id="origin"

) 2>%

mutate (
origin = factor(origin, c("not de", "de")),
resample = ifelse(is.na(resample), 0L,as.integer (resample))

)

all genes

## GRanges object with 8239 ranges and 5 metadata
## segnames ranges strand |
## <Rle> <IRanges> <Rle> |
## [1] chrl 196651878-196747504 +
## [2] chro 46129993-46146699 + |
#4# [3] chr4 17577192-17607972 + |
#4# [4] chr7 150800403-150805120 + |
#4# [5] chr4 15778275-15853230 +
## .. ..
## 8235 chrl? 43527844-43579620 -
## 8236 chrl? 18260534-18266552

+ o+ o+ o+

[ ]
( ]
## [8237] chr20 63895182-63936031
[ ]
[ ]

columns:
gene id
<character>
ENSG0O0000000971.15
ENSG00000001561.6
ENSG00000002549.12
ENSG00000002933.8
ENSG00000004468.12

ENSG00000175832.12
ENSG00000177427.12
ENSG00000101152.10

#4# 8238 chrl 39081316-39487177 ENSG00000127603.25

## 8239 chrs8 41577187-41625001 | ENSG00000158669.11

## de log2FC de padj resample origin
## <numeric> <numeric> <integer> <factor>
## [1] 4.98711071930695 1.37057050625117e-13 0 de
## [2] 1.92721595378787 3.1747750217733e-05 0 de
#4# [3] 2.93372501059128 2.0131038573066e-11 0 de
## [4] 3.16721751137972 1.07359906028984e-08 0 de
## [5] 5.40894352968188 4.82904694023763e-18 0 de
## ce . c. c. .
## [8235] -0.240918426099239 0.00991611085813261 10 not de
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## [8236] -0.166059030395757 9.1205141062356e-05 10 not de
## [8237] 0.250538999517482 1.74084544559733e-09 10 not de
## [8238] -0.385053503003028 0.00265539384929076 10 not de
## [8239] 0.155922038318879 2.9637514745875e-17 10 not_de
##H -

#H seqginfo: 25 sequences (1 circular) from hg38 genome

Expanding genomic coordinates around the transcription start site
Now we would like to modify our gene ranges so they contain the 10 kilobases on either side of their transcription start
site (TSS). There are many ways one could do this, but we prefer an approach via the anchoring methods in plyranges.
Because there is a mutual dependence between the start, end, width, and strand of a GRanges object, we define anchors
to fix one of start and end, while modifying the width. As an example, to extract just the TSS, we can anchor by
the 5” end of the range and modify the width of the range to equal 1.
all genes <- all genes %>%
anchor 5p() %>%
mutate (width = 1)

Anchoring by the 5’ end of a range will fix the end of negatively stranded ranges, and fix the start of positively
stranded ranges.

We can then repeat the same pattern but this time using anchor center () to tell plyranges that we are making the
TSS the midpoint of a range that has total width of 20 kb, or 10 kb both upstream and downstream of the TSS.

all genes <- all genes %>%
anchor center () %>%
mutate (width=2*1e4)

Use overlap joins to find relative enrichment

We are now ready to compute overlaps between RNA-seq genes (our DE set and bootstrap sets) and the ATAC-seq
peaks. In plyranges, overlaps are defined as joins between two GRanges objects: a left and a right GRanges object. In
an overlap join, a match is any range on the left GRanges that is overlapped by the right GRanges. One powerful aspect
of the overlap joins is that the result maintains all (metadata) columns from each of the left and right ranges which
makes downstream summaries easy to compute.

To combine the DE genes with the DA peaks, we perform a left overlap join. This returns tous the a1l genes ranges
(potentially with duplication), but with the metadata columns from those overlapping DA peaks. For any gene that has
no overlaps, the DA peak columns will have NA’s.

genes olap peaks <- all genes %>%
join overlap left (da peaks)
genes olap peaks

## GRanges object with 27766 ranges and 8 metadata columns:

## segnames ranges strand | gene_ id
#4 <Rle> <IRanges> <Rle> | <character>
#4 [1] chrl 196641878-196661877 + | ENSG00000000971.15
#4 [2] chro 46119993-46139992 + | ENSG00000001561.6
#4 [3] chr4 17567192-17587191 + | ENSG00000002549.12
#4 [4] chr4d 17567192-17587191 + | ENSG00000002549.12
## [5] chr4 17567192-17587191 + | ENSG00000002549.12
#4 [27762] chrl 39071316-39091315 + | ENSG00000127603.25
## [27763] chrl 39071316-39091315 + | ENSG00000127603.25
#4 [27764] chr8 41567187-41587186 + | ENSG00000158669.11
#4# [27765] chr8 41567187-41587186 + | ENSG00000158669.11
## [27766] chr8 41567187-41587186 + | ENSG00000158669.11
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#4# de log2FC de padj resample origin
#4# <numeric> <numeric> <integer> <factor>
## [1] 4.98711071930695 1.37057050625117e-13 0 de
## [2] 1.92721595378787 3.1747750217733e-05 0 de
## [3] 2.93372501059128 2.0131038573066e-11 0 de
## [4] 2.93372501059128 2.0131038573066e-11 0 de
#4# [5] 2.93372501059128 2.0131038573066e-11 0 de
## . . ce ce e
## [27762] -0.385053503003028 0.00265539384929076 10 not de
## [27763] -0.385053503003028 0.00265539384929076 10 not de
## [27764] 0.155922038318879 2.9637514745875e-17 10 not de
## [27765] 0.155922038318879 2.9637514745875e-17 10 not de
## [27766] 0.155922038318879 2.9637514745875e-17 10 not de
#4# peak id da_ log2FC da padj
## <character> <numeric> <numeric>
## [1] ATAC peak 21236 -0.546582189082724 0.000115273676444232
## [2] ATAC peak 231183 1.45329684862127 9.7322474682763e-17
## [3] ATAC peak 193578 0.222371496904895 3.0093900571998%e-11
#4# [4] ATAC peak 193579 -0.281615137872819 7.99888515457195e-05
## [5] ATAC peak 193580 0.673705317951604 7.60042918890061e-15
## . A ce e
## [27762] ATAC peak 5357 -1.05823584693303 3.69051674661467e-16
## [27763] ATAC peak 5358 -1.31411238041643 6.44280493172654e-26
## [27764] ATAC peak 263396 -0.904080135059089 8.19576651692093e-13
#4# [27765] ATAC peak 263397 0.364737985368599 2.08834835864614e-08
#4# [27766] ATAC peak 263399 0.317386691052334 1.20088116314111e-08
##H -

## seginfo: 25 sequences (1 circular) from hg38 genome

Now we can ask, how many DA peaks are near DE genes relative to “other” non-DE genes? A gene may appear
more than once in genes_olap peaks, because multiple peaks may overlap a single gene, or because we have
re-sampled the same gene more than once, or a combination of these two cases.

For each gene (that is the combination of chromosome, the start, end, and strand), and the “origin” (DE vs not-DE) we
can compute the distinct number of peaks for each gene and the maximum peak based on LFC. This is achieved via
reduce_ranges_directed, which allows an aggregation to result in a GRanges object via merging neighboring
genomic regions. The use of the directed suffix indicates we’re maintaining strand information. In this case, we are
simply merging ranges (genes) via the groups we mentioned above. We also have to account for the number of
resamples we have performed when counting if there are any peaks, to ensure we do not double count the same peak:

gene peak max 1fc <- genes olap peaks %>%

group by (gene id,

origin)

reduce ranges directed/(

)

peak count =
peak max 1fc =

sum(!is.na(da_padj))
max (abs (da

oS0
5>%

1log2FC))

/ n_distinct (resample),

We can then filter genes if they have any peaks and compare the peak fold changes between non-DE and DE genes
using a boxplot (Figure 3):

library(ggplot2)
gene peak max 1fc %>%

filter (peak count > 0)
as.data.frame ()

oo
5>%

>%

ggplot (aes (origin, peak max 1fc)) +
geom boxplot ()

Page 15 of 36



F1000Research 2020, 9:109 Last updated: 21 MAY 2020

pea
N

k_max_Ifc
w
4ENERENEND 6 ® o0 ¢
—_G @ 080

not_de de
origin
Figure 3. A boxplot of maximum LFCs for DA peaks for DE genes compared to non-DE genes where genes have
at least one DA peak.

In general, the DE genes have larger maximum DA fold changes relative to the non-DE genes.

Next we examine how thresholds on the DA LFC modify the enrichment we observe of DA peaks near DE or
non-DE genes. First, we want to know how the number of peaks within DE genes and non-DE genes change as
we change threshold values on the peak LFC. As an example, we could compute this by arbitrarily chosen
LFC thresholds of 1 or 2 as follows:

origin peak lfc <- genes olap peaks $>%
group by (origin) %>%
summarize (
peak count = sum(!is.na(da padj)) / n _distinct(resample),
1fcl peak count =sum(abs(da log2FC) > 1, na.rm=TRUE) / n distinct (resample),
1fc2 peak count = sum(abs(da log2FC) > 2, na.rm=TRUE)/ n distinct (resample)
)

origin peak 1fc

## DataFrame with 2 rows and 4 columns

#4# origin peak count 1lfcl peak count 1lfc2 peak count
## <factor> <numeric> <numeric> <numeric>
## 1 not de 2391.8 369.5 32.5
## 2 de 3416 1097 234

Here we see that DE genes tend to have more DA peaks near them, and that the number of DA peaks decreases as
we increase the DA LFC threshold (as expected). We now show how to compute the ratio of peak counts from DE
compared to non-DE genes, so we can see how this ratio changes for various DA LFC thresholds.

Page 16 of 36



F1000Research 2020, 9:109 Last updated: 21 MAY 2020

For all variables except for the origin column we divide the first row’s values by the second row, which will be the
enrichment of peaks in DE genes compared to other genes. This requires us to reshape the summary table from long
form back to wide form using the tidyr package. First, we pivot the results of the peak count columns into name-
value pairs, then pivot again to place values into the origin column. Then we create a new column with the relative
enrichment:

or

##
##
##
#HH
H
ki

igin peak lfc %>%
as.data.frame () %>
tidyr::pivot longe
tidyr::pivot wider
mutate (enrichment

o

o
o

o

r(
(n

de / not_de)

# A tibble: 3 x 4
name not de de enrichment
<chr> <dbl> <dbl> <dbl>
1 peak count 2392. 3416 1.43
2 1fcl peak count 370. 1097 2.97
3 1fc2 peak count 32.5 234 7.2

The above table shows that relative enrichment increases for a larger LFC threshold.

cols = -origin) %>%
ames from = origin, values from = value)

o) o)
5>%

Due to the one-to-many mappings of genes to peaks, it is unknown if we have the same number of DE genes partici-
pating or less, as we increase the threshold on the DA LFC. We can examine the number of genes with overlapping
DA peaks at various thresholds by grouping and aggregating twice. First, the number of peaks that meet the
thresholds are computed within each gene, origin, and resample group. Second, within the origin column, we com-
pute the total number of peaks that meet the DA LFC threshold and the number of genes that have more than zero
peaks (again averaging over the number of resamples).

ge

#HH
H
ki
##
##

nes olap peaks %>%

group by (gene id, origin, resample) %>%
reduce ranges directed(

1fcl = sum(abs(da_
1fc2 = sum(abs(da
) $>%

group by (origin) $%>%
summarize (
1fcl gene count
1fcl peak count =
1fc2 gene count =
1fc2 peak count =

log2FC)
1og2FC)

, nha.rm=TRUE) ,

> 1
> 2, na.rm=TRUE)

sum(lfcl > 0) / n distinct (resample)
sum(lfcl) / n distinct (resample),
sum(lfc2 > 0) / n distinct (resample)
sum(lfc2) / n distinct (resample)

14

’

<numeric>
32.5

DataFrame with 2 rows and 5 columns
origin 1fcl gene count 1fcl peak count 1fc2 gene count 1fc2 peak count
<factor> <numeric> <numeric> <numeric>
1 not de 271.2 369.5 30.3
2 de 515 1097 151

234

To do this for many thresholds is cumbersome and would create a lot of duplicate code. Instead we create a single
function called count above threshold that accepts a variable and a vector of thresholds, and computes
the sum of the absolute value of the variable for each element in the thresholds vector.

count if above threshold <- function(var, thresholds) ({

}

lapply (thresholds, function(.) sum(abs(var) > ., na.rm =

TRUE) )
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The above function will compute the counts for any arbitrary threshold, so we can apply it over possible LFC
thresholds of interest. We choose a grid of one hundred thresholds based on the range of absolute LFC values in the
da_peaks GRanges object:

thresholds <- da peaks %>%

mutate (abs 1fc = ab
with (
seq(min (abs 1fc), max(abs 1fc),

s(da log2FC)) %>%

length.out

100)

The peak counts for each threshold are computed as a new list-column called value. First, the GRanges object has
been grouped by the gene, origin, and the number of resamples columns. Then we aggregate over those columns,
so each row will contain the peak counts for all of the thresholds for a gene, origin, and resample. We also maintain
another list-column that contains the threshold values.

genes peak all thresholds <- genes olap peaks %>%
group by (gene id, origin, resample) 3%>%
reduce ranges_directed(
value
threshold

)

count if above threshold(da log2FC,

= list(

thresholds)

genes peak all thresholds

## GRanges object with 8239 ranges and 5 metadata

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[8235]
[8236]
[8237]
[8238]
[8239]

[8235]
[8236]
[8237]
[8238]
[8239]

[8235]

S

<

O O O O O

egnames
<Rle>
chrl
chr6
chri4
chr?7
chr4
chrl?
chrl?7
chr20
chrl
chr8

resample

integer>

O O O O o

10
10
10
10

.0658243
.0658243
.0658243
.0658243
.0658243

.0658243

ranges strand

<IRanges>
196641878-196661877
46119993-46139992
17567192-17587191
150790403-150810402
15768275-15788274

43569620-43589619
18250534-18270533
63885182-63905181
39071316-39091315
41567187-41587186
value
<IntegerList>
1,1,1,...

106359027,0.118483961449043,0.
106359027,0.118483961449043,0.
106359027,0.118483961449043,0.
106359027,0.118483961449043,0.
106359027,0.118483961449043,0.

106359027,0.118483961449043,0.

<Rle>
+

+ + + +

+ + + +

thresholds),

columns:
gene id origin
<character> <factor>
ENSG00000000971.15 de
ENSG0O0000001561.6 de
ENSG00000002549.12 de
ENSG00000002933.8 de
ENSG00000004468.12 de
ENSG00000175832.12 not de
ENSG00000177427.12 not de
ENSG00000101152.10 not de
ENSG00000127603.25 not de
ENSG00000158669.11 not de
threshold
<NumericList>
171143612262182, ...
171143612262182, ...
171143612262182, ...
171143612262182, ...
171143612262182, ...
171143612262182, ...
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## [8236] 0.0658243106359027,0.118483961449043,0.171143612262182, ...
## [8237] 0.0658243106359027,0.118483961449043,0.171143612262182, ...
## [8238] 0.0658243106359027,0.118483961449043,0.171143612262182, ...
## [8239] 0.0658243106359027,0.118483961449043,0.171143612262182, ...
##H -

#4 seginfo: 25 sequences (1 circular) from hg38 genome

Now we can expand these list-columns into a long GRanges object using the expand ranges () function. This
function will unlist the value and threshold columns and lengthen the resulting GRanges object. To compute the
peak and gene counts for each threshold, we apply the same summarization as before:

origin peak all thresholds <- genes peak all thresholds %>%

>%

threshold)

expand_ranges ()

group by (origin,

summarize (
gene_ count =
peak count

sum(value >
= sum(value)

)
origin peak all thresholds

$>%

0) / n _distinct (resample),

/ n_distinct (resample)

## DataFrame with 200 rows and 4 columns

## origin threshold gene count peak count
#4 <factor> <numeric> <numeric> <numeric>
## 1 not de 0.0658243106359027 708 2391.4
## 2 not de 0.118483961449043 698.8 2320.6
## 3 not de 0.171143612262182 686.2 2178.6
#H 4 not de 0.223803263075322 672.4 1989.4
## 5 not de 0.276462913888462 650.4 1785.8
## 196 de 5.06849113788419 2 2
## 197 de 5.12115078869733 0 0
#4# 198 de 5.17381043951047 0 0
## 199 de 5.22647009032361 0 0
## 200 de 5.27912974113675 0 0

Again we can compute the relative enrichment in LFCs in the same manner as before, by pivoting the results to long
form then back to wide form to compute the enrichment. We visualize the peak enrichment changes of DE genes
relative to other genes as a line chart (Figure 4):

origin threshold counts <- origin peak all thresholds %>%

o o
5>%

as.data.frame ()
tidyr::pivot longer (cols

-c(origin, threshold),

names to = c("type", "var"),
names_sep = " ",
values to = "count") %>%
select (-var)
origin threshold counts %>%
filter (type == "peak") $>%
tidyr::pivot wider (names from = origin, values from = count) %>%
mutate (enrichment = de / not de) %>%
ggplot (aes (x = threshold, y = enrichment)) +
geom line() +
labs(x = "logFC threshold", y = "Relative Enrichment")
## Warning: Removed 4 row(s) containing missing values (geom path).
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Figure 4. A line chart displaying how relative enrichment of DA peaks change between DE genes compared to
non-DE genes as the absolute DA LFC threshold increases.

We computed the sum of DA peaks near the DE genes, for increasing LFC thresholds on the accessibility change. As
we increased the threshold, the number of total peaks went down (likewise the mean number of DA peaks per gene). It
is also likely the number of DE genes with a DA peak nearby with such a large change went down. We can investigate
this with a plot (Figure 5) that summarizes many of the aspects underlying the enrichment plot above.

origin_ threshold counts %>%
ggplot (aes (x = threshold,
y = count + 1,

color = origin,
linetype = type)) +
geom line() +

scale y 1ogl0()

1000 -
origin
—— not_de
~ 100- — de
+
kS
>
8 type
— gene
10- ==+ peak

0 1 2 3 4 5
threshold

Figure 5. A line chart displaying how gene and peak counts change as the absolute DA LFC threshold increases.
Lines are colored according to whether they represent a gene that is DE or not. Note the x-axis is on a log,, scale.
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Discussion
We have shown that by using plyranges and tximeta (with support of Bioconductor and tidyverse ecosystems) we can
fluently iterate through the biological data science workflow: from import, through to modeling, and data integration.

There are several further steps that would be interesting to perform in this analysis; for example, we could modify
window size around the TSS to see how it affects enrichment, and vary the FDR cut-offs for both the DE gene and DA
peak sets. We could also have computed variance in addition to the mean of the bootstrap set, and so drawn an interval
around the enrichment line.

Finally, our workflow illustrates the benefits of using appropriate data abstractions provided by Bioconductor such as
the SummarizedExperiment and GRanges. These abstractions provide users with a mental model of their experimental
data and are the building blocks for constructing the modular and iterative analyses we have shown here. Consequently,
we have been able to interoperate many decoupled R packages (from both Bioconductor and the tidyverse) to construct
a seamless end-to-end workflow that is far too specialized for a single monolithic tool.

Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Software availability
plyranges is available from Bioconductor: https://doi.org/doi:10.18129/B9.bioc.plyranges.

tximeta is available from Bioconductor: https://doi.org/doi:10.18129/B9.bioc.tximeta.

Source code and all workflow materials are available at: https://github.com/sa-lee/fluentGenomics.
Archived source code at time of publication: https://doi.org/10.5281/zenodo0.3633505 (Lee & Love, 2020).
License: MIT License.

The development version of the workflow and all downstream dependencies can be installed using the
BiocManager package by running:

# development version from Github
BiocManager: :install ("sa-lee/fluentGenomics")
# version available from Bioconductor
BiocManager::install ("fluentGenomics")

This article and the analyses were performed with R (R Core Team, 2019) using the rmarkdown (Allaire et al., 2019),
and knitr (Xie, 2019; Xie, 2015) packages.

Session Info
sessionInfo ()

## R version 3.6.1 (2019-07-05)
## Platform: x86 64-apple-darwinl5.6.0 (64-bit)
## Running under: macOS Mojave 10.14.6

##
## Matrix products: default
## BLAS: /System/Library/Frameworks/Accelerate. framework/Versions/A/Frameworks/

vecLib. framework/Versions/A/1ibBLAS.

## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
#4#

## locale:

## [1] en AU.UTF-8/en AU.UTF-8/en AU.UTF-8/C/en AU.UTF-8/en AU.UTF-8

##

## attached base packages:

## [1] parallel stats4 stats graphics grDevices utils datasets

## [8] methods base
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##

## other attached packages:

## [1] ggplot2 3.3.0.9000 plyranges 1.7.8

#4 [3] DESeg2 1.26.0 GenomicFeatures 1.38.0

## [5] AnnotationDbi 1.48.0 SummarizedExperiment 1.16.0

## [7] DelayedArray 0.12.1 BiocParallel 1.20.0

## [9] matrixStats 0.55.0 Biobase 2.46.0

## [11] GenomicRanges 1.38.0 GenomeInfoDb 1.22.0

## [13] IRanges 2.20.1 S4Vectors 0.24.1

## [15] BiocGenerics 0.32.0 readr 1.3.1

## [17] dplyr 0.8.3 tximeta 1.4.2

## [19] fluentGenomics 0.0.5 rmarkdown 2.0

##

## loaded via a namespace (and not attached):

## [1] colorspace 1.4-1 rprojroot 1.3-2 htmlTable 1.13.3
## [4] XVector 0.26.0 base64enc 0.1-3 rstudioapi 0.10
## [7] farver 2.0.3 bit64 0.9-7 fansi 0.4.1

## [10] xml2 1.2.2 splines 3.6.1 tximport 1.14.0
## [13] geneplotter 1.64.0 knitr 1.27 zeallot 0.1.0

## [16] Formula 1.2-3 jsonlite 1.6 Rsamtools 2.2.1
## [19] annotate 1.64.0 cluster 2.1.0 dbplyr 1.4.2

## [22] png 0.1-7 compiler 3.6.1 httr 1.4.1

## [25] backports 1.1.5 assertthat 0.2.1 Matrix 1.2-18

## [28] lazyeval 0.2.2 cli 2.0.1 acepack 1.4.1

## [31] htmltools 0.4.0 prettyunits 1.1.0 tools 3.6.1

## [34] gtable 0.3.0 glue 1.3.1 GenomeInfoDbData 1.2.2
## [37] rappdirs 0.3.1 Rcpp 1.0.3 vetrs 0.2.1

#4 [40] Biostrings 2.54.0 rtracklayer 1.46.0 xfun 0.12

## [43] stringr 1.4.0 lifecycle 0.1.0 ensembldb 2.10.2
## [46] XML 3.99-0.3 zlibbioc 1.32.0 scales 1.1.0

## [49] hms 0.5.3 ProtGenerics 1.18.0 AnnotationFilter 1.10.0
## [52] RColorBrewer 1.1-2 yaml 2.2.0 curl 4.3

## [55] memoise 1.1.0 gridExtra 2.3 biomaRt 2.42.0

## [58] rpart 4.1-15 hunspell 3.0 latticeExtra 0.6-29
## [61] stringi 1.4.5 RSQLite 2.2.0 genefilter 1.68.0
## [64] checkmate 1.9.4 rlang 0.4.2 pkgconfig 2.0.3
## [67] commonmark 1.7 bitops 1.0-6 evaluate 0.14

## [70] lattice 0.20-38 purrr 0.3.3 labeling 0.3

## [73] GenomicAlignments 1.22.1 htmlwidgets 1.5.1 bit 1.1-15.1

## [76] tidyselect 0.2.5 here 0.1 magrittr 1.5

## [79] bookdown 0.16 R6 2.4.1 spelling 2.1

## [82] Hmisc 4.3-0 DBI 1.1.0 withr 2.1.2

## [85] pillar 1.4.3 foreign 0.8-73 survival 3.1-8

## [88] RCurl 1.98-1.1 nnet 7.3-12 tibble 2.1.3

## [91] crayon 1.3.4 utf8 1.1.4 BiocFileCache 1.10.2
## [94] Jpeg 0.1-8.1 progress 1.2.2 locfit 1.5-9.1

## [97] grid 3.6.1 data.table 1.12.8 blob 1.2.1

## [100] digest 0.6.23 xtable 1.8-4 tidyr 1.0.0

## [103] openssl 1.4.1 munsell 0.5.0 askpass_ 1.1
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The authors describe a workflow to perform exploratory analysis of biological data. This paper also
highlights the importance of using tools that facilitate the application of essential concepts of exploratory
data analysis: reproducibility and code readability.

Major comments:

1. I was not able to successfully complete the protocol myself, failing at the second step. | tried three
different environments:

- R 8.4.4 on Ubuntu 18.04.4 LTS/Windows Subsystem for Linux WSL1/Windows 10 1909 18363.836
(BiocManager refuses to install fluentGenomics on the system R for what is currently the latest version of
Ubuntu available for general availability Windows users).
- R 4.0.0 x86 on Windows 10 1909 18363.836

- BiocManager::install("fluentGenomics")

- BiocManager::install("sa-lee/fluentGenomics")

R version 4.0.0 (2020-04-24) -- "Arbor Day"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
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Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(fluentGenomics)
> path_to_se <- cache_atac_se()
Error in retrieve_cache() :

Please install rappdirs to set cache directory
> detach("package:fluentGenomics", unload=TRUE)
> BiocManager::install("sa-lee/fluentGenomics")
Bioconductor version 3.11 (BiocManager 1.30.10), R 4.0.0 (2020-04-24)
Installing github package(s) 'sa-lee/fluentGenomics'
Error: package 'remotes' not installed in library path(s)

C:/Users/mhoffman/R/win-library/4.0
C:/Program Files/R/R-4.0.0/library

install with 'install("remotes")’
> install.packages("remotes")
[...]
> BiocManager::install("sa-lee/fluentGenomics")
> path_to_se <- cache_atac_se()
Error in retrieve_cache() :

Please install rappdirs to set cache directory
> sessionInfo()
R version 4.0.0 (2020-04-24)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:

[1]1 LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C LC_TIME=English_United States.1252

attached base packages:
[1]stats graphics grDevices utils datasets methods base

other attached packages:
[1] fluentGenomics_0.99.3

loaded via a namespace (and not attached):
[11Rcpp_1.0.4.6 BiocManager_1.30.10 compiler_4.0.0 pillar_1.4.4
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[5] GenomelnfoDb_1.24.0 XVector_0.28.0 remotes_2.1.1 bitops_1.0-6

[9] tools_4.0.0 zlibbioc_1.34.0 tibble_3.0.1 lifecycle_0.2.0

[13] lattice_0.20-41 pkgconfig_2.0.3 rlang_0.4.6 Matrix_1.2-18

[17] DelayedArray_0.14.0 parallel_4.0.0 GenomelnfoDbData_1.2.3  rtracklayer_1.48.0
[21] dplyr_0.8.5 hms_0.5.3 plyranges_1.8.0 Biostrings_2.56.0

[25] S4Vectors_0.26.1 veirs_0.3.0 IRanges_2.22.1 stats4_4.0.0

[29] grid_4.0.0 tidyselect_1.1.0 glue_1.4.1 Biobase_2.48.0

[33] R6_2.4.1 XML_3.99-0.3 BiocParallel_1.22.0 readr_1.3.1

[37] purrr_0.3.4 magrittr_1.5 Rsamtools_2.4.0 matrixStats_0.56.0

[41] ellipsis_0.3.1 BiocGenerics_0.34.0 GenomicRanges_1.40.0
GenomicAlignments_1.24.0

[45] assertthat_0.2.1 SummarizedExperiment_1.18.1 RCurl_1.98-1.2 crayon_1.3.4

Minor comments:

2. It is unclear who the audience for this paper is. As written it seems to presume a lot of technical
knowledge about Bioconductor, R, and specific Bioconductor packages. It would not make a good
starting point for someone who doesn’t have large familiarity with all of the above. This is too bad because
it has the bones of something that could be useful to people with less expertise if some additional
explanatory text were provided and clearer choices made about naming variables. There is also a danger
that this will be used as a cookbook without understanding.

| have marked some examples of things that could use more explanation but this is non-exhaustive. It
would be worthwhile for the authors to examine the manuscript again and ask whether all of the large
number of concepts, jargon, and names introduced are explained.

3. The goal of the paper appeared to be clear after reading the paper. The introduction, figure 1, and
following sections, however, leave the impression that the authors tried to reproduce results from another
publication which is not the case. The paper would benefit from clarifying this toward the end of the
introduction.

4. Abstract: it is not clear which problem does the workflow solve and why is it important to solve it. For
example, how does the import, model, and integrate structure increases result reproducibility? Is this
structure new? Why would someone use it? We think that the abstract would benefit from more
justification and moving the text specific to the tools used (tximeta, SummarizedExperiment) to the
introduction.

5. Abstract: The sentence “Using tximeta, ...” and the following can be confusing. Why is it only using of
RNA-seq in the first sentence, and both RNA-seq and ATAC-seq in the following one?

6. p3: Figure 1: The meaning of some of the objects is not immediately apparent. For example: coldata,
se, dds, boot_genes. This figure does not make a great introduction for someone who is not already
familiar with this workflow because so many of the details are mystifying. You should either simplify or
explain more.

7. p3: Figure 1: Text in boxes is blurry.

8. p3: meaning of “fluent” should be described briefly here and not assumed

9. Introduction: This section would benefit from a more thorough description of the tools used in the
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workflow and explain why they are important. For example: What is Bioconductor? Why is plyranges
relevant for this analysis? What are tidyverse design principles and why are they relevant here?

10. Introduction: Authors should also explain in the introduction why the “import, model, integrate”
structure benefits users.

11. The authors should consistently use the same tense (we examine ... we will ...).
12. Why ignoring genotypes?

13. It would be useful to note that "genomic ranges" are often referred to as intervals elsewhere such as in
BEDTools.

14. Please cite Tximeta at the first occurrence.

15. Experimental data: Here and in the following sections, the authors describe alternatively what the
workflow does and what the workflow can do. For example: “The following code loads the path to the
cached data file, or if it is not present, will create the cache and generate

a SummarizedExperiment using”. We think that it would be clearer if these sections with code examples
focus on what exactly the code does, like in a protocole paper. Describing what the tools can do should
appear either in the introduction or in a separate paragraph. For the example above, the paragraph would
explain how users would benefit from this behavior: save time?

16. “A subset of the RNA-seq ...”, Why use only a subset?

17. Typo: “be also be downloaded”

18. p4: “"GENCODE” not “Gencode”

19. p4: Specify whether basic or comprehensive gene set used

20. p4: Unclear what “Importing ATAC-seq data as a SummarizedExperiment object” refers to

21. Import data as SummarizedExperiment: Authors should briefly describe what methods Soneson et al.
use to summarize transcripts at gene level, and justify why they are doing it.

22. p4: Unclear where the “coldata.csv' file is or what that name refers to. “file” should not be in
monospace text

23. p4: Placement of “Wickham et al., 2019” makes it appear to be a citation for R rather than tidyverse.

24. p5: Many things here unclear to the uninitiated: what is the scary message when you load dplyr? What
is a factor and relevel? What is a tibble? What do the ~ mean?

25. p5: Meaning of “but would typically not have the ‘gz’ ending if used from Salmon directly” unclear
26. p5: Should note the “files” column is going to be different for different users

27. p6: What is suppressPackageStartupMessages?
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28. p6: What is a Salmon gtf?

29. p6: Lots of unexplained details in the two transcripts on this page.

30. p7: “iximeta knows the correct reference transcription”. How?

31. p7: GRanges not described or cited

32. p7: Unclear why only the start of + genes and not also their end is affected

33. p7: The sentence starting “Another alternative would be” is complex and its meaning unclear
(alternative to what?)

34. Last paragraph of "Import data as SummarizedExperiment": authors describe alternative ways of
summarizing genes and using their representative TSS. Is the point to explain that GRanges make these
operations easier? We think a potential user would like to know how to perform precisely these
operations. Otherwise move this to an earlier paragraph describing what the tool is capable of doing.

35. p7: What does “109M” refer to? Please use Sl or IEC units here and elsewhere

36. p7: Should be “370 MB” or “370 MiB” not “~370 Mb”

37. p7: It's not clear how to actually get the tab-delimited files, a departure from what is otherwise detailed
step-by-step instructions

38. p7: Why skip=1? Why [,-1]?

39. p7: It would be better if instead of just saying “we know this from the Zenodo entry” you instruct the
workflow user to *check* the Zenodo entry to find out what genome assembly is used. A screenshot of
that part of the Zenodo entry might be helpful.

40. p7: Citation for Genome Reference Consortium needed

41. p8: what is col_types? How do you know that this is what the col_types should be?

42. p8: This is the first instance of a convention of using comments in monospace text for explanatory
notes. | would avoid this and stick to notes in proportional text.

43. p8: what is a “nominal”’ FDR?

44. p8: greater than 1 or greater-than/equal? Suggest using > or >= for greater clarity
45. Why 1%?

46. p9: “MA” needs expansion, citation, and ideally brief explanation

47. p9: Figure 2 caption has insufficient detail. Should describe what each point represents, and how
many points there are. Should describe what method is used to adjust p-values. Please describe triangles
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versus circles. Explain the red horizontal line. Please indicate that “log fold change” means log2. Describe
what “normalized counts are”

48. p9: “due to the convention of plyranges”™—meaning unclear
49. p9: “This kind of book-keeping” = ?
50. p9: Not everyone reading this will work on human genomics and know that hg38 = GRCh38

51. p9: The authors should consistently put explanations of transcripts either below the transcript or
above and not switch back and forth. (I think below is probably more helpful.)

52. p10: please make clear that the altHypothesis here gets ALL of the other genes, that there are no
problems with the edge case at LFC = threshold

53. p11: Lots unexplained in the limma transcript

54. p12: What is a “seqlength”?

55. “genes without strong signal of DE”, are these “non-DE” genes? Would be better if used consistently.
56. p12: Down sampling -> “Downsampling”

57. p12: Unclear why one would want to downsample. The description only mentions that one can.

58. p13: Please explain why one would want to set a seed.

59. p13: “This creates a list of _GRanges_ objects as a list”. It would be clearer to say that this creates a
_list_ of 10 _GRanges_ objects.

60. What are "verbs" for GRanges
61. p13: The importance of doing the bootstrap procedure here is really unclear

62. p14: Why is there a circular sequence? | assume this is the mitochondrial chromosome? Does its
presence in the background disturb the analysis at all?

63. p14: "Now we would like to modify our gene ranges so they contain..." Why?
64. p14: should be 5 prime not 5 apostrophe

65. p15: the significance of the clarification that each “gene” is just a tuple of chromosome, start, end,
strand is unclear

66. p15: A lot of na.rm or is.na from here outward. Would be worth explaining why this is.
67. p16: Figure 3: This figure needs descriptive labels instead of references to variables used in the code.

68. p19: Explain why there are missing values
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69. p20: Should comment on why Figure 4 is non-monotonic

70. p20: Saying the x-axis is on a log10 scale is a bit confusing because the y-axis is also on a log10
scale. It is better to make log scales more obvious by having non-uniform tick marks and grid lines. Also |
don’t think the x-axis is on a log10 scale, log fold change here is measured with log2. (This would be more
obvious if in the text you called it \log2 fold change consistently instead of the ambiguous “LFC”.)

71. p21: It is unfortunate that the main point of this paper is to show that you can do something “fluently”,
while what that means is never discussed or justified in the paper.

72. p21: “There are several further steps that would be interesting to perform”, Are these steps easy to
implement with the tools you described? If so, can you explain how easier it is with your approach?

73. p21: “Finally, our workflow illustrates the benefits of using appropriate data abstractions”, This is
probably obvious for R power users but not for other readers. Can you point at a specific section that
shows that a user will benefit from using your approach?

74. p21: The data availability statement is confusing. Clearly not all data are part of the article, they are
part of external packages or articles (some specified without a particular URL or accession number, just
reference to a paper).

75. p21: instructions for installing BiocManager would be helpful, as would listing the *minimum* version
of R or any other relevant packages. Also should mention that you need to library(BiocManager) first

76. p21: It is unclear why you would want the development version, especially since it seems to be an
older version number than what’s on Bioconductor

77.p23: Iltems in the bibliography are not consistently referenced with specificity in a visible way. DOI
should be provided for all Zenodo entries not just some. Some other documents that are not referenced
via traditional publishing (journal volume and page number, or monograph from a publisher) should
probably have DOI or URL specified also.

Discretionary recommendations:

78. p4: "path_to_se’ is a poor name for a variable. It is not orthogonal to the other variable names used
here and has little explanatory power. | recommend "atac_filename’

79. p4: "dir" also is not descriptive. | recommend "quant_dirname’.

80. p4: Would suggest more descriptive names than colfile/coldata, orthogonal to whatever naming
scheme you use (which means either changes to names here or to use variations of the names | used
above)

81. p5: This transcript is a lot to digest, and it’s hard to know which parts of the explanatory text refer to
which part of the transcript, which has multiple commands that go back a page previous. | suggest
breaking it up more with explanatory text to the extent possible. Piping is convenient for a programmer but
not for explanation. This comment applies to many of the subsequent transcripts too
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82. p5: Get the display of coldata so that it doesn’t exceed one line per row

83. p6: It's not a good idea to call your experiment object merely “se” when it is one of multiple
SummarizedExperiments here

84. p6: Please use a consistent style for spacing around = in R code

85. p7: | suggest not giving the same name to different objects (‘atac_mat’ is first something like a
data.frame and then a matrix.

86. p7: Suggest not shadowing built-in functions with variable names like ‘rownames’.

87. p7: “We know this” antecedent unclear

88. p8: | suggest running all the R code in here through a linter. This will ensure you have consistent style.
89. p8: res is not a specific variable name

90. p10: Why switch between “other genes” and “non DE genes”? Just call them "not_de_genes’ from the
start. (Or switch to 'genes_de" and "genes_not_de’.)

91. p11: Why is library(fluentGenomics) loaded again?

92. p11: Using library(fluentGenomics) adds a data object called “peaks’ to your environment? This
seems undesirable

93. p12: The text would be a bit more readable if you eschewed the abbreviations “DA”, “DE”, and “LFC”
in the main text.

94. p13: here and elsewhere: integer literals (e.g. 10L) should be used instead of float literals for integers
95. p14: why "2*1e4°? 20000L would be clearer

96. p16: Figure 3: Please specify what the components of the box plot mean. There is no universal box
plot.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
No

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
No
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Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: computational genomics

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however we have significant
reservations, as outlined above.

Reviewer Report 30 April 2020

https://doi.org/10.5256/f1000research.24553.r61441

© 2020 McCarthy D et al. This is an open access peer review report distributed under the terms of the Creative
Commons Atiribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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Lee, Lawrence and Love present a workflow article about using a group of well-constructed Bioconductor
packages for fluent genomic analysis that integrates both RNA-seq and ATAC-seq analysis results from
the same samples (baseline and stimulus).

The workflow provides instructions for obtaining differentially accessible (DA; peaks from ATAC-seq) and
differential expression (DE; from RNA-seq) data objects, and more importantly a convenient way of
integrating the ranged genomic features produced, while taking care of matching reference genome
builds and other crucial “bookkeeping” tasks in the process.

The authors have demonstrated analysis can be performed to check whether DA peaks are enriched in
the vicinity of DE genes guided by the principle that transcriptomic response to IFNg stimulation may be
mediated through binding of regulatory proteins to accessible regions, and these bindings can be
detected by ATAC-seq if they increase the accessibility of these regions.

The following steps are involved in the workflow:

1. Downloading peaks data and RNA-seq data
2. Perform DE and DA analysis
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3. Integrate ranges of DE and DA
4. Test enrichment of DA in DE gene vicinity versus non-DE genes with various thresholds

Major comments:

1. The process of 'resampling’ subsets of non-DE genes from the pool of non-DE genes should be
clarified to explain the purpose of doing such 'resampling'. In particular, whether it can be
considered 'bootstrapping' should be addressed. Our understanding is that the resampling here is
done without replacement from DE results, whereas for bootstrapping we expect to sample data
records with replacement and recompute statistics of interest from them.

2. Interpretation of the enrichment results or more discussion on the caveats of doing enrichment
analysis like this are required.

Minor comments:

1. The workflow was built with R-3.6.1 which results in a discrepancy with the current package's
requirement of R >=4.0.0. However, this is understandable since we are near the new release of
Bioconductor but be reminded to re-compile the workflow with released version.

2. A code chunk for checking that all required packages have been installed prior to other analysis in
the environment would make the execution smoother for a user wanting to run the workflow.

3. The downloading function "cache_atac_se() raised an error when running on Windows. It can be
fixed by setting mode = "wb" explicitly in the "download.file() .

4. Figure 1 which summaries the workflow could be improved by incorporating colored blocks for
each package module and more descriptive elements companying the actual function calls or data
objects. The caption also needs to provide more complete description of the elements of the figure
for it to be comprehensible. These changes will give readers who are not familiar with all these
packages more information.

5. The optional code chunks (such as the Importing ATAC-seq data as a SummarizedExperiment
object) could be moved down to appendix to make it clearer to the readers which things are core
parts of the workflow and which are included for full transparency/reproducibility/data provenance.

6. As for calculating the relative enrichment of peaks in DE versus non-DE, the description "For all
variables except for the origin column we divide the first row’s values by the second row," was
inaccurate and could corrected to "divide the DE row with the non-DE row"

7. It might worth emphasizing more on the contribution of this work in the abstract and introduction,
maybe by stating explicitly the most attractive aspect of this work. For example, a guideline on
integrating the ranged genomic features.

Make the sub-headings consistent. Importing ATAC-seq, Import data.

9. Some minor comments: library(fluentGenomics) appeared three times and library(plyranges) twice
in the workflow. If this was to avoid namespace clashes, the function could be called explicitly
plyranges:: instead of loading the packages multiple times?

10. You could just use limma for the DE analysis as well and save yourself the loading of the DESeq2
package (joking!)
Is the description of the method technically sound?
Partially. The “resampling” procedure needs a bit more explanation such as clarifying how and whether
this is considered a bootstrapping method.

©

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly
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Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Statistics, bioinformatics, genomics, transcriptomics

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however we have significant
reservations, as outlined above.

Reviewer Report 10 March 2020

https://doi.org/10.5256/f1000research.24553.r60092

© 2020 Dunning M. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Mark Dunning
Sheffield Bioinformatics Core, University of Sheffield, Sheffield, UK

Lee et al. present a case study of using Bioconductor packages to recapitulate an existing analysis. The
analysis is performed without the need to worry too much about genome versions and using tools from
tidyverse which were previously incompatible with standard Bioconductor methodologies. | see this being
a useful reference for experienced users on how to run a modern RNA-seq analysis and perform data
integration.

| am pleased to say that | could re-run the code and reproduce the results presented. | can think of a few
potential changes to increase its utility for beginner Bioconductor users.

The article assumes quite a lot of knowledge of tidyverse and GenomicRanges to understand the code
chunks. Some pointers to where people can get more help on these packages would be useful. Some
code chunks explicitly call methods from dplyr (dplyr::mutate), but not all. It would be good to be maintain
consistency when calling dplyr methods, as the user would know where to get help.

The authors go straight from creating the DESeq dataset to running the differential analysis. In reality, one
would never do this without performing adequate QC checks. I'm sure the authors must have done this
(as indeed the original study authors must have). But showing the code to generate a PCA would be
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useful; along with interpretation of the results

The code is shown to remove genes with low counts prior to the DESeq analysis. | thought this was no
longer necessary as DESeq2 incorporates it's own filtering. Or is this a memory-saving exercise? Some
justification of why 10 counts and 6 samples was chosen would be beneficial to those new to
Bioconductor and RNA-seq.

The authors use Genomic ranges to facilitate the integration of different assay types. Whilst it is critical to
keep the data in this form for analysis, ultimately collaborators will want the results in spreadsheet format
with recognisable gene names. It would be useful if the authors could include an example code snippet to
annotate the overlapping regions (e.g. with gene symbols) and exporting as a csv.

It is my understanding that the authors present a simpler approach than that of Alasoo et al (2018) " in

order to illustrate the utility of Bioconductor infrastructure. Nevertheless, some commentary on whether
the same results and biological insights are revealed by their approach would be beneficial.

References

1. Alasoo K, Rodrigues J, Mukhopadhyay S, Knights AJ, et al.: Shared genetic effects on chromatin and
gene expression indicate a role for enhancer priming in immune response.Nat Genet. 50 (3): 424-431
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Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes
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