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ABSTRACT

Disease-associated SNPs detected in large-scale
association studies are frequently located in non-
coding genomic regions, suggesting that they may
be involved in transcriptional regulation. Here we
describe a new strategy for detecting regulatory
SNPs (rSNPs), by combining computational and
experimental approaches. Whole genome ChIP-
chip data for USF1 was analyzed using a novel
motif finding algorithm called BCRANK. 1754 bind-
ing sites were identified and 140 candidate rSNPs
were found in the predicted sites. For validating
their regulatory function, seven SNPs found to be
heterozygous in at least one of four human cell
samples were investigated by ChIP and sequence
analysis (haploChIP). In four of five cases where
the SNP was predicted to affect binding, USF1
was preferentially bound to the allele containing
the consensus motif. Allelic differences in binding
for other proteins and histone marks further
reinforced the SNPs regulatory potential. Moreover,
for one of these SNPs, H3K36me3 and POLR2A
levels at neighboring heterozygous SNPs indicated
effects on transcription. Our strategy, which is
entirely based on in vivo data for both the predic-
tion and validation steps, can identify individual
binding sites at base pair resolution and predict
rSNPs. Overall, this approach can help to pinpoint
the causative SNPs in complex disorders where the
associated haplotypes are located in regulatory

regions. Availability: BCRANK is available from Bio-
conductor (http://www.bioconductor.org/).

INTRODUCTION

Human genetic variation underlies a majority of phenoty-
pic differences between individuals, including susceptibility
to disease. The most common form of genetic variation are
the single nucleotide polymorphisms (SNPs), of which
there are 9-10 million variants with minor allele frequency
MAF >0.05, in the human genome (1). Large international
efforts, like the HapMap project, have identified and gen-
otyped 25-35% of these common SNPs in several popula-
tions (1). A significant fraction of human genes display
differences in expression between individuals and between
populations (2,3). Furthermore, gene expression patterns
are heritable and their variation is genetically determined
both in cis and trans (2,4-6). Some of the observed differ-
ences could arise due to environmental or physiological,
rather than genetic factors, but by comparing alleles within
the same cellular context, clear allele-specific gene expres-
sion differences have been observed (7,8).

Quantitative differences in gene expression are at least
partially responsible for phenotypic variation between
individuals, including susceptibility to disease and drug
responsiveness. A common characteristic among disease-
associated SNPs in complex diseases is that there are
several predisposing loci, preferentially in non-coding
intronic or intragenic sequences, each with a small effect
(9). In some instances, differences in gene expression of a
nearby gene have been observed between the predisposing
and the other allele (10). This implies that quantitative
rather than qualitative differences in gene expression
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could be important in common diseases, further suggest-
ing that causative genetic variants may occur within the
regulatory sequences.

Functional sequences not coding for proteins can
be divided in various groups, e.g. non-coding RNAs,
sequences regulating splicing, and with a significant frac-
tion corresponding to those devoted to transcriptional reg-
ulation i.e. promoters, enhancers, silencers, etc. (11,12).
Our understanding of the human transcriptional regula-
tory sequences is rather limited, but the recent large-
scale technologies ChIP-chip (13) and ChIP-seq (14)
have dramatically increased our knowledge of the non-
coding fraction of our genome (11,15,16). However,
the impact of normal genetic variation in transcriptional
regulatory sequences is largely unknown and very few
studies have used unbiased in vivo approaches to investi-
gate this issue (17-19).

Large amounts of information concerning the location
of common genetic variants and regulatory sequences
have accumulated in recent years, but no clear strategies
to combine them are currently available. Here we present
novel methods both for prediction and validation of
DNA-binding sites. For binding site prediction we have
developed a novel algorithm called ‘predicting Binding
site. Consensus from RANKed sequences’ (BCRANK).
BCRANK identifies short consensus sequences that
occur more frequently among the top scoring regions,
when compared to regions with lower enrichment. The
algorithm is based on a heuristic search strategy that
requires an initial guess as input, and it can either be
used for scoring of known motifs or for ab initio predic-
tion of DNA-binding sites. Here we applied the method to
whole genome ChIP-chip data for USFI1 (16) to predict
TF-binding sites. The BCRANK predictions were com-
pared to results of two other motif search programs,
MDscan (20) and DRIM (21), which also take the rank
of DNA sequences into account. Our results show that
BCRANK has advantages over the other methods,
the most important being that it does not require the
motif length to be known a priori. A further advantage
is that BCRANK is available from Bioconductor,
which makes it easy to use and to include into various
analysis pipelines.

Recently, generation of in vivo transcription factor
binding maps has received great attention (11,22,23).
In most cases, downstream analysis has focused on iden-
tifying or inferring the genes regulated by a given tran-
scription factor. However, we believe such transcription
factor binding maps are valuable resources to increase
our knowledge of the effects of genetic variation at regu-
latory sequences and its impact on gene expression and
human disease. To the best of our knowledge, the
method presented here represents the first attempt to
directly use in vivo transcription factor binding data as a
source for predicting regulatory SNPs (rSNPs).

More specifically, our strategy to verify the predicted
binding sites and to identify potential rSNPs consists
of haploChIP experiments to detect allelic differences in
protein—DNA interactions. We identify heterozygous
SNPs in our predicted binding sites and discriminate
between the alleles, using the two alleles as internal
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controls for each other. In this approach, binding to the
distinct sequence in each allele is just affected by the
sequence itself and not by trans effects or environmental
differences. By performing the same experiments for var-
ious other proteins, we do not only fulfill the initial aim to
validate predicted binding sites at base pair resolution, but
also investigate how other proteins may be correlated with
the binding event. Furthermore, we examine how USF1
binding can affect transcription.

METHODS
ChIP-chip data

USF1 ChIP-chip data was obtained from an experiment
using the Affymetrix GeneChip Human Tiling 2.0R Array
set (seven arrays set). The raw microarray data is available
from ArrayExpress with accession number E-TABM-314.
BCRANK works best when used on a relatively large
number of regions where DNA-binding sites are much
more frequently occurring in the top of the list when com-
pared to the bottom. Therefore, we relaxed the cut-offs, as
compared to the previous study (16), to obtain the top
5211 regions and extended each region to 1500 bp centered
on a peak in the ChIP-chip data.

BCRANK

BCRANK is implemented in R and available as an
open source package from Bioconductor (http://www.
bioconductor.org/). BCRANK performs a breadth-first
search through the space of consensus sequences to
detect a solution that is optimal with respect to a scoring
function. Optionally the search steps can be omitted,
which is useful when the aim is to rank previously estab-
lished motifs by their BCRANK scores. The behavior
of the algorithm is mainly determined by the scoring
function, the definition of neighborhood (sequences simi-
lar to a consensus sequence) and by the initial starting
point for the search. Moreover, two optional penalties,
Pl and P2, can give relatively higher scores to motifs
that are believed to be more important. P1 penalizes con-
sensus sequences with many redundant bases, i.e. other
bases than A, C, G or T. P2 ensures that the resulting
consensus will not be frequently occurring as a repetitive
element in the enriched regions. For implementation
details, see Supplementary Data.

Sequencing

From the 140 candidate SNPs, we selected those with
heterozygosity above 0.1. This stringent cut-off was used
due to our limited number of samples, which makes it
unlikely to detect heterozygous cases for SNPs with low
heterozygosity values. There were 23 SNPs above the
threshold and all of them were sequenced in our four
samples (HepG2, HT29, Colonl and Colon2). Seven of
these SNPs were found to be heterozygous in at least
one of the samples. For each of the seven SNPs, ChIPs
and genomic DNAs were obtained as previously described
(24). Predicted USF1-binding sites containing SNPs
were selected and regions spanning such sites were PCR
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amplified, using ChIP and genomic DNAs as templates.
PCR products were purified by ExoSap (USB, General
Electrics) and used for sequencing reactions according
to ABI Prism BigDye Terminator 3.1 Kit (Applied
Biosystems) instructions. Sequences were obtained on an
ABI 3700 automated sequencer (Applied Biosystems).
Electrophenograms were visualized using Sequence
Scanner v1.0 (Applied Biosystems).

Allele quantification and statistical test

The heights of two peaks (peak signal) corresponding to
a heterozygous SNP were obtained using Sequence
Scanner v1.0 in several replicates for each SNP and
ChIP or genomic DNA. Direct sequencing has previously
been used for quantitative genotyping and quantitative
measurement of allelic specific gene expression (25,26).
If s/ and s2 are the peak signals for the two alleles of
a SNP, then the allele signal s//(s/ + s2) is a value mea-
suring the relative allele abundance ranging from 0 (homo-
zygous for allele2) to 1 (homozygous for allelel). We
consistently selected s/ to be the allele containing the
predicted USFI1-binding sequence. For each SNP, allele
signals were calculated as above for all of the replicates.
Each sample was examined using at least three biological
replicates. A two tailed ¢-test was used to determine
whether the allele signals were significantly different for
ChIP and genomic DNA.

RESULTS
BCRANK predicts TF-binding sites

BCRANK takes a list of genomic regions ranked by
ChIP-enrichment as input and, using a heuristic search
strategy, outputs short DNA sequences that are overre-
presented among the top scoring regions. The workflow is
outlined in Figure 1. First a scoring function is applied to
an initial short consensus, about 10 bases or so, typically
generated by random sampling of IUPAC nucleotide sym-
bols. Then all consensus sequences with similarity to the
start guess are evaluated using the same function and the
one with highest score is kept as the starting point for
the next iteration. Once the algorithm can no longer find
any higher scoring similar consensus, the algorithm termi-
nates and the locally optimal consensus is reported as a
result. In order to increase the chance of detecting the
globally optimal solution, the algorithm may be restarted
several times using different random starting points.
BCRANK is described in more detail in “Methods’ section
and Supplementary Data.

We ran BCRANK with 25 random restarts on a set
of 5211 regions ranked by USF1 ChIP-chip signal from
a whole-genome experiment on the human liver cell
HepG2 (16), and the results are presented in Figure Sla.
The highest scoring consensus was CACGTGAC, which
is similar to what has been previously reported as
USF1-binding motif by us and others (24,27,28).
Interestingly, we detected CGGAAG as the second high-
est scoring consensus. This is similar to the binding
sequence for GABPA, a protein we previously showed
by ChIP to frequently bind USF1 positive regions (16),
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Figure 1. Overview of the BCRANK algorithm. A file containing DNA
sequences, ranked by ChIP-enrichment, is given as input. Then a con-
sensus sequence is generated, either at random or by manual selection,
and its BCRANK score is computed. Optionally, BCRANK can be
used to assign scores to previously known consensus sequences, and
in such case the algorithm stops here, indicated by dotted line in the
figure. Otherwise the algorithm will continue to optimize the consensus
by constantly moving to a similar consensus with a higher BCRANK
score until no further improvement is possible and a locally optimal
solution is reported. The chance of finding the globally optimal solution
can be increased by re-starting BCRANK several times with different
random start guesses.

suggesting that BCRANK is capable of detecting binding
sites also for transcription factors cooperating with the
investigated protein. Usually the local optimum is found
after a quite small number of search steps. For the top
scoring result, 12 iterations were required to move from
the start guess GDYBYCTKDK and arrive at the result-
ing CACGTGAC (see Figure S1b), and the maximum
number of iterations required throughout all 25 restarts
was 14. As with any heuristic search method it is not pos-
sible to know that a global optimum has been found, but a
very strong indicator is that the same top-scoring motif is
found from different random restarts.

We compared the results of BCRANK to two other
de novo motif search methods, MDscan (20) and DRIM
(21), that also take ranked DNA sequences as input.
BCRANK starts from a motif with an initial length that
can then be extended or shortened throughout the search
steps. MDscan and DRIM do not extend and shorten
motifs in the same way as BCRANK. MDscan only
searches for motifs of a specified length and DRIM per-
forms an exhaustive search on all sequences of an initial
length and then uses promising motifs as seeds that may
be expanded or shortened. We ran the methods with three
different length parameters, 6, 8 and 10 bases. To evaluate
the predictions we considered how frequent the E-box
(CACGTG), the previously established USFI1-binding
sequence, occurred in the predicted sites. We also
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investigated how many of the bindings were in the 2518
stringent and 3771 relaxed USF1 regions as defined in our
previous study (16). The results are summarized in
Supplementary Data and Supplementary Table SI.
BCRANK predicts CACGTGAC as the USF1-binding
sequence regardless of the length of the start guess,
while the results from the other methods are highly depen-
dent on length parameter used. When certain length
parameters are used the other methods performed equally
well as BCRANK, according to the criteria above, but
never better. Our results demonstrate that BCRANK is
a method that can successfully identify binding motifs
from whole-genome experimental data. Furthermore,
BCRANK does not require the motif length to be
known a priori, which we believe is a great benefit. All
three methods output a number of alternative motifs
that may be relevant. For example, the second highest
scoring consensus predicted BCRANK has high similarity
to a GABPA-binding motif, a protein shown to frequently
bind to USFI1 enriched regions (23). MDscan instead
reports variations of the USFI-binding sequence and
DRIM detects CG rich sequences (see Supplementary
Table S1). For DRIM, the run time grows rapidly with
the motif length because of the exhaustive search for motif
seeds.

We matched our 1757 BCRANK predicted USFI-
binding sites to build 126 of dbSNP (29) and found 114
SNPs within two bases of a CACGTGAC sequence.
Another 26 SNPs were detected by considering such
cases where the reference genome contains the non-
consensus allele of a USFI-binding site, yielding a total
of 140 SNPs inside or just outside a predicted USF1-
binding sequence. They are all presented in a Supplemen-
tary Data file. Of our 140 candidate regulatory SNPs,
86 (61%) and 110 (79%) were included in the USF1 strin-
gent and relaxed regions, respectively. Supplementary
Figure S2a shows that 29% of these SNPs are within
1kb of a transcription start site (TSS) of a protein
coding gene, and that more than half of the SNPs are
close to the TSS of a less well defined transcript. We
also observed that many of the 140 candidate SNPs are
located in the CG dinucleotide of the USF1 consensus
binding sequence (Supplementary Figure S2b). In most
of these cases the alternative allele of C/G is a T/A, sug-
gesting that during evolution some of the cytosines at
these CG dinucleotides were methylated and therefore
more prone to mutation by deamination (30).

USF1 allele-specific binding validates BCRANK predictions

Of our 140 SNPs, we identified 23 SNPs with average
heterozygosity above 0.1 and all of them were sequenced
in the four different cell samples (see ‘Methods’ section).
Seven SNPs were heterozygous in at least one of the sam-
ples, and these were named SNP1 through SNP7. All of
them were in the USF1 stringent data set except one,
SNP4, which was in the relaxed set. Five of them were
located inside the predicted core binding sequence CAC
GTGAC. The two remaining (SNP2 and SNPS5) were
located just outside the core sequence. They can be seen
as negative controls in this experiment since we
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Table 1. Seven heterozygous SNPs in USF1 bound regions

Name SNP label Sequence® Heterozygous in
SNP1 rs1867760 AA[T/CIACGTGACCC HepG2, HT29
SNP2 s2754775 A[C/A]CACGTGACCA HepG2

SNP3 rs16875109  CTCA[T/CJGTGACCT Colonl

SNP4 rs1544702 CTCAC|G/A]ITGACAT Colon2

SNP5 rs4787645 AGCACGTGAC[G/A]T  Colonl

SNP6 rs11696955 GAC[A/G]JCGTGACTT HepG2

SNP7 r$9920753 TTCACGTGIA/TICAA Colon2

“The underlined bases are predicted USFIl-binding sites. The last
column indicates the samples where the SNP was heterozygous.
Additional information about these SNPs, including ChIP-analysis
results, is available in Supplementary Table S2.

hypothesize that a base change at those positions should
not affect USF1 binding. qPCR analysis of USF1 and
USF2 binding for all seven SNPs was in good agreement
with the ChIP-chip data. We observed more than a 2-fold
USF1 and USF2 ChIP signal over background in all
cases, with the exception of SNP4 (see Supplementary
Figure S3). As indicated above, this SNP did not pass
our stringent ChIP-chip cut off, and accordingly the
gPCR enrichments were 1.3—1.5-fold.

We first sequenced ChIP material for USF1 and
detected significant allelic differences in four of the five
SNPs located in the core binding site. No allelic differences
were detected for our negative controls, SNP2 and SNP5.
To further investigate the functional effects of the
SNPs, we also sequenced ChIP material for additional
regulatory proteins (e.g. USF2, POLR2A, H3K4me3,
H3K27me3, H3ac and H3Cter) in the seven SNPs. The
overall sequencing results are summarized in Table 1,
Supplementary Table S2 and Figure 2.

Allelic differences in USFs and POLR2A binding
identifies putative regulatory SNPs

SNPI1 is heterozygous both in HepG2 and HT29 and
located in the first base of the core predicted USF1 site,
at the third base of the sequence AA[C/TJACGTGACCC.
When sequencing the same region in USF1 ChIP material
from the two cell lines we only found the C allele, which
corresponds to the consensus USF1-binding sequence
(see Figure 3A). This observation strongly indicates that
(1) USF1 binds to the exact predicted binding site both in
HepG2 and HT29 and (ii) USF1 binding occurs on the
allele with the consensus and not on the other. We
obtained the same results for two different USF1 antibo-
dies, C20 and H86. We then extended the investigations by
also examining USF2 and markers associated with chro-
matin state, H3K4me3, H3K27me3, H3ac, H3Cter and
unphosphorylated POLR2A. As seen in Figure 3A,
USF2 shows the same pattern as USF1, which is likely
explained by the established fact that USF1 and USF2
often bind their target as heterodimers (31). For the
other investigated factors, the clearest results are that
POLR2A levels are augmented on the USF1 bound
allele whereas H3K27me3 enrichment displays the
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opposite pattern with slightly increased levels for the allele
not bound by USF1 (see Figure 3A). We thus show allele
specific preference for POLR2A and H3K27me3. To get a
statistical support for these findings, we sequenced at least
three replicates of each sample and quantified the differ-
ence between the two alleles. This allowed us to compute
P-values for the signals in ChIP samples compared to
genomic DNA using a t-test (see ‘Methods’ section). We
conclude that USF1, USF2 and POLR2A ratios were sig-
nificantly increased when compared to genomic DNA
whereas the H3K27me3 ratio was significantly decreased,
all with P <0.001 (see Figure 3B). The H3K4me3 signal
showed a slight but significant decrease on the USFI
bound allele. At present we have no biological explanation
for this observation.

The lack of significant effects for some of the examined
factors could either indicate that both alleles are present in
the ChIP DNA, or that none of them is present and we are
just sequencing the background DNA. For SNP1 there is
no enrichment of H3ac (see Supplementary Figure S4) and
this explains why we get the same sequencing results for
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Figure 3. Sequencing results for SNP1 (rs1867760), which is in the sequence AA[T/CJACGTGACCC. (A) Sequencing of SNP1 in various samples
extracted from HepG?2 cells. The SNP is heterozygous in HepG2 genomic DNA since both the C-allele (blue) and T-allele (red) show a peak at the
third position (see top row). In USF1 and USF2 ChIP DNA the C-allele gives much higher signal than the T-allele. (B) Standard box-and-whisker
plots showing the allele signals for SNPI1 in HepG2 and HT29. Above each box are P-values from a t-test, indicating whether the allele signal
in ChIP DNA is significantly different from the allele signal in genomic DNA. High allele signals are obtained for samples with higher C-allele
peaks when compared to the corresponding T-allele peaks. See ‘Methods’ section for descriptions of allele signals and statistical testing. (C)

Quantification of sequencing results for two SNPs at
indicate the average allele signal for SNP1 in each sample.

—91 (red boxes) and + 1987 (blue boxes) bases from SNPI, respectively. The orange lines
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H3ac ChIP and genomic DNA. In general, we expect
H3ac to be enriched at some distance from USF1 since
we have previously seen that USF1 binds at promoters of
genes while the H3ac peaks are located about 500 to 1kb
downstream of the TSS. H3K4me3 has been shown to
display a similar signal around TSSs (11,14), which
could explain why it does not either give any significant
effect for most of the examined SNPs.

Accurate prediction of transcription factor binding
sites facilitates distinction between potential
regulatory SNPs

We hypothesize that SNPs in proximity of a functional
SNP could also show allele specific binding if located
close enough to the truly causative SNP. If this is the
case, the binding site information could help in selecting
the best candidate functional SNP. We investigated this
for SNP1, where we detected yet two more SNPs, at —91
and + 1987 bases, respectively, from SNP1. SNP1-91 is
heterozygous in HepG2 and HT29, while SNP1 + 1987
is heterozygous only in HT29. While we did not see any
allele specific binding for any of the investigated proteins
for SNP1 + 1987, the SNP at -91 bp displays a similar
allele specific binding pattern as SNP1 (see Table 1 and
Supplementary Table S2). There are several possible
explanations for the results observed at SNP1-91: either
only one of the SNP1 or SNP1-91 are functional and the
other looks similar just because of proximity, or both of
them are functional. However, several lines of evidence
suggest that SNP1 is functional while SNP1-91 is not.
First, DNA fragments for ChIP are randomly generated
by sonication to an average size of around 200-300 bp, it
is expected that most ChIP enriched fragments will con-
tain both SNPs although only one of them is truly affect-
ing the USF1 binding. This also explains why we did not
see similar results for SNP1 + 1987. Second, the sequence
around SNP1-91, TAGAGI[T/CJGTGGGT, does not even
remotely resemble an E-box further strengthening the
hypothesis that SNP1, rather than SNP1-91, is bound by
USF1. Finally, our results show that in the allelic binding
differences for USF1, USF2, POLR2A and H3K27me3
the effects are weaker for SNP1-91 than SNP1, which
is precisely what we expect to see if SNPI is indeed the
causative SNP.

Allele-specific USF1 binding also occurs in normal tissue

Having obtained encouraging results in cell lines, we
attempted to detect additional rSNPs by sequencing
DNA from normal colon tissue from two different indivi-
duals, because of the similarities of USF1-binding profiles
in liver and colon (32). We found three additional SNPs
(SNP3, SNP4 and SNP5) in the predicted USF1 sites that
were heterozygous in at least one of the colon samples.
SNPs 3 and 4 were inside the core consensus CACGTGA
C while SNP5 was just outside. The results for SNP3 and
SNP4 show that USF1 is preferentially bound to the allele
with a CACGTGAC sequence. However, in these cases
the differences are not as large as for SNP1, which could
indicate that USF1 may also bind to the other allele but
with a lower frequency. For SNP3, POLR2A is also
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Figure 4. Sequencing results for SNP3 (rs16875109), which is in the
sequence CTCA[T/CJGTGACCT. Standard box-and-whisker plots
showing quantification results for SNP3 in the Colonl sample. At
the top of each box are P-values from a r-test, indicating whether
the allele signal in ChIP DNA is significantly different from that in
genomic DNA. High allele signals are obtained for samples with
higher C-allele peaks when compared to the corresponding T-allele
peaks. See ‘Methods’ section for descriptions of allele signals and
statistical testing.

showing a significant effect (see Figure 4). For SNP4,
POLR2A levels are slightly elevated on the USF1 bound
allele but the results were not significant. In any case,
results for SNP4 should be taken with caution, since as
mentioned, this region might be weakly bound by USFs as
indicated both by array and gPCR measurements. SNPs 3
and 4 were also tested for H3K4me3 and H3K27me3 but
we did not see any significant effect.

SNP5 was located just outside of the consensus
sequence. This was the case also for SNP2, which is het-
erozygous in HepG2. These two SNPs show no evidence
of differences in binding between the two alleles (see
Supplementary Figure S5). Although this finding suggests
a polymorphism may be located just outside the consensus
without having any major effect, we should be careful
about drawing conclusions from negative examples.
Nevertheless, the results in SNP2 and SNP5 serve as a
control since ChIP and genomic DNA signals were virtu-
ally identical in both cases.

Additional candidate regulatory SNPs on minor alleles

We hypothesized that more rSNPs could be identified by
assuming that the reference genome might contain the
allele not bound by USFI1, for some SNPs. Therefore,
we considered all sequences with one mismatch from the
USF1 consensus and scanned for SNPs where the minor
allele was CACGTGAC. This resulted in 26 additional
candidates and three of these were found to be heterozy-
gous in at least one of our four samples (i.e. HepG2,
HT29, two colon samples), all of them inside the core
consensus CACGTGAC. For one of the predictions,
SNP6, heterozygous in HepG2, USFs and POLR2A
levels were elevated on the USF1 consensus allele, while
H3K27me3 levels were slightly lower than genomic DNA.
SNP7 did not show any significant effect.
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Some additional information for these two SNPs can
be gained from qPCR ChIP results (see Supplementary
Figure S3). SNP6 is heterozygous in HepG2 but homozy-
gous for the non-consensus USF1 sequence in HT29.
Interestingly, clear USF binding was observed (more
than 5-fold) in HepG2 cells while lower than background
levels were obtained for HT29, clearly reinforcing the
conclusions derived from sequencing results. On the
other hand, for SNP7, HepG2 and HT29 cells were homo-
zygous for the USF1 consensus and non-consensus
sequences respectively. In this case, gPCR signals over
2-fold could be observed in both cell lines without major
differences between the cell types, in agreement with the
lack of allelic differences in the heterozygous colon
sample. This suggests that this region is indeed bound
by USF proteins but that SNP7, which occurs outside
the CACGTG core, is not affecting the interaction.

Allelic differences in transcriptional organization
around SNP1

When evaluating the genomic location of the investigated
SNPs displaying allele-specific protein interactions, we
observed that none of them was in proximity of the TSS
of a well-characterized human gene. To increase the
chances of detecting such type of SNPs, we genotyped 1
million SNPs in HepG2 using an Illumina array, but we
did not find any additional heterozygous SNPs in the pre-
dicted USF1-binding sites. This made it difficult to explore
the effects of our SNPs on gene expression, as has been
previously done, by investigating allelic differences on
RNA levels typically at exonic SNPs (19). In any case
RNA might be affected by post-transcriptional regulation
and is perhaps not the best indicator of transcription for
our purposes.

We instead used an alternative approach for investigat-
ing the allelic transcription around our candidate SNPs.
By using ChIP-seq POLR2A data from HepG2 (unpub-
lished), we found indications of transcription initiation
near SNP1 and SNP6 (data not shown). For these two
SNPs we then used H3K36me3 as a well-recognized indi-
cator of transcription rates and allele specific transcription
(33) that should not be affected by post-transcriptional
events. qPCR analysis for H3K36me3 around SNPI and
SNP6 further suggested that transcription is only ongoing
near SNP1 (data not shown), so only that SNP was
further examined.

We investigated two SNPs near SNP1, at —796 and
+ 1987 bp, respectively. Of these, only SNP1-796 was het-
erozygous in HepG2, so our experiments were instead
performed in HT29 where both of them were heterozy-
gous. SNP1-796, SNP1 and SNPI1 + 1987 are found
within a region of high linkage disequilibrium so the
haplotypes can be inferred with high confidence. The
two haplotypes are GCT and ATC. From before
we know that USF1 is bound to the C allele of SNP1
(see Figure 3), i.e. the GCT haplotype. Next, we examined
H3K36me3 at the three SNPs (see Figure S6).
Interestingly, H3K36me3 showed significantly higher
enrichment on the ATC allele for SNP1-796 and SNP1.
For SNPI1 + 1987 the opposite pattern was found with
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Figure 5. Transcription organization in a region surrounding SNPI.
(A) Summary of sequencing results for SNPI1-796, SNP1 and
SNPI + 1987. The two alleles are shown separately. The arrows indi-
cate positions with differential allelic enrichment of USF1, H3K36me3
and POLR2A and are placed above the allele showing higher enrich-
ment. Differential enrichment of H3K36me3 was not significant
for SNP1 + 1987bp and is therefore indicated by smaller arrow.
(B) A model explaining the transcription organization in the region.
The blue peaks indicate positions with high POLR2A. The arrows
show the direction of transcription.
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higher, although not significant, H3K36me3 enrichment
on the GCT allele. The results suggest that transcripts
from both strands are being generated in the region.
This idea is further supported by the ChIP-seq data
where distinct POLR2A peaks are found both near
SNP1 and SNPI + 1987. We therefore investigated
POLR2A at those locations. Our results show that
POLR2A is significantly higher on the USF1 bound
allele for SNP1. For SNP1 + 1987, the opposite pattern
is found with higher enrichment on the other allele (see
Figure S6). The results for POLR2A and H3K36me3
are summarized in Figure 5A.

The model in Figure 5B can explain how transcription
is organized in this region. We hypothesize that for the
GCT haplotype, USF1 is binding to the C allele of SNPI
and activates transcription in the downstream direction.
This transcription reduces the activity of transcription
in the opposite direction from a TSS located near
SNP1 + 1987. The opposite patterns are expected for the
ATC haplotype. However, we cannot fully exclude the
possibility that the SNP at + 1987 bp has some functional
relevance on its own, by for instance affecting the binding
of some other transcription factor. We also attempted to
study RNA levels but detected no allelic differences. We
have already pointed out that RNA levels are not the best
measures of transcription since the levels are affected by
RNA stability and other processes.

DISCUSSION

Recent developments in high throughput technologies
open new possibilities for combining and analyzing data
from different sources. By ChIP-chip and ChIP-seq we can
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now query the whole human genome for a given protein.
Methods such as BCRANK can predict thousands of
binding sites from these genome-wide experiments, and
many of these are likely to be functionally important.
Using the presented strategy, we identified seven hetero-
zygous SNPs in the immediate neighborhood of predicted
USF1-binding sites in the studied cell types. In four of the
five cases where the SNP was inside the core sequence, we
observed clear effects of USF-binding, and in 2/2 SNPs
just outside, there was no effect. Thus, we were successful
in predicting and validating TF-binding sites at base pair
resolution. Furthermore, for one of these SNPs, we could
observe allelic effects on transcription at heterozygous
neighboring SNPs. Our results therefore suggest that
SNPs affecting USF1 binding can result in allelic differ-
ences in gene expression. However, since none of our
SNPs was in a gene promoter we could not investigate
the downstream effects on well-characterized transcripts
for protein coding genes. The distal localization of the
SNPs does not exclude that they are functional. Recent
large-scale transcription factor binding maps have uncov-
ered that most TFs, especially those with cell-type specific
functions, bind mainly at sites far from genes (11,23).
Moreover, these distal binding sites very often display
several features characteristic of enhancers, and are
more cell-type specific and functionally relevant during
development and at establishing cell-type specific tran-
scription programs (22,34,35). Promoters on the other
hand often show the same epigenetic features in different
cell types. However, with current technologies it is difficult
to infer the gene/s regulated by a given enhancer, and
therefore, in the case of our study, it would be challenging
to link our rSNPs to the genes they might affect. Another
possibility is that some of the SNPs, e.g. SNP1 identified
in this study, might occur close to transcription start sites
of uncharacterized coding or non-coding transcripts,
which seem to be more frequent than previously antici-
pated (36).

In the literature there are two major types of strategies
to identify regulatory genetic variation. We believe our
method adds novelty and that it has several advantages
compared to the previous ones. One approach uses large-
scale technologies in order to detect allele-specific tran-
scription (37-39), histone modifications (17) or POLR2A
binding (19). Although the throughput in these studies is
higher than ours, they essentially do not detect rSNPs
but rather identify genes with allelic differences in their
expression patterns. In those cases where haploChIP
experiments were part of the experimental setup (17,19),
the SNPs showing allelic-differences in protein binding can
only be seen as reporters, since the investigated proteins
lack any sequence-specificity in their binding. Importantly,
the true rSNPs in those studies can simply be in linkage
disequilibrium with the detected SNPs, as exemplified by
—91 SNPI in our study, or even at much larger distance
e.g. within an enhancer. Our strategy identifies SNPs
located in sites bound by sequence specific TFs, so the
chances are much higher that our predicted SNPs are
truly regulatory. The hypothesis that a SNP within a
TF-binding site will affect the protein—-DNA interaction
is very intuitive, but has rarely been shown using in vivo
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experiments. One limitation with our approach is the rel-
atively low number of validated rSNPs, but as discussed
below, there are several ways to increase our throughput.
A second approach of rSNP detection largely relies
on bioinformatics predictions (40-44). A number of inter-
esting genes are selected, based on various criteria, e.g.
allelic-differences in gene expression, association to
human disease, or evolutionary conservation. Then the
promoter regions of those genes are scanned for putative
TF-binding sites. Subsequently, SNPs found within the
predicted binding sites are expected to affect the binding
and are considered as potential rSNPs. However, the
initial TF-binding sites are typically predicted based on
in silico methods, which are known to result in many
false positives (45). A further disadvantage is that these
methods do not give any information as to which cell type
or tissue is relevant for a given rSNP. Finally, if validation
of the detected rSNPs is performed, which is not always
the case in these methods, this is often done using in vitro
methods (i.e. EMSA), which might not reflect the in vivo
situation. Our method only takes into account regions
bound in vivo by a TF. In this way, we dramatically
reduce the number of false positives and also gain infor-
mation about which cell type/s should be investigated
for a particular SNP. In addition, since we validate our
candidate SNPs by an in vivo method (i.e. haploChIP),
the regulatory potential of the reported SNPs should be
largely increased.

Prediction of rSNPs using ChIP data requires thorough
analysis strategies since there is a risk of false prediction
in cases when there are several nearby SNPs. Without
binding site information it would be much harder for
us to predict which of the SNPs plays a regulatory role.
This point is important and it indicates that a SNP can be
seen as having functional consequences like changes in
POLR2A, H3K27me3, USFs, etc. that could explain the
potential changes in expression, but without being the
most likely rfSNP. This is exemplified by the SNP located
—91bp from SNP1 (Figure 3C). Therefore, our strategy
may help identify rSNPs in cases where multiple SNPs on
a haplotype with high linkage disequilibrium are
all associated to a disease, expression of a gene or some
other phenotype.

Here we have demonstrated a proof of principle that
our strategy can be used for detection of rSNPs. The
number of experimentally tested SNPs is relatively low
mainly due to the low number of genotyped samples.
However, the throughput of our strategy can be increased
at least in two ways: first, by genotyping a larger panel
of cell lines or individuals the chances of detecting hetero-
zygous SNPs inside predicted binding sites will largely
increase, and so will also the candidate functional SNPs
to be tested. Second, our approach can in principle be
applied to any available transcription factor binding
data generated by ChIP-chip or ChIP-seq, taking in con-
sideration the cell type where the data was generated
so it matches the samples used to screen for
heterozygous SNPs. The current amount of TF-binding
data available from public repositories, such as GEO
(http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/), is already very
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large and expected to grow at an increasing rate due to
recent next-generation sequencing approaches. Therefore,
our strategy can provide an inexpensive and easily adapt-
able way for many laboratories to effectively screen their
own or public data for detection of regulatory genetic
variation. Finally, using appropriate cohorts of patient
and control samples for a certain disease, we hypothesize
that our strategy could facilitate the detection of disease
causing regulatory SNPs.

In summary, we have presented a strategy that suc-
cessfully can be used for detection of regulatory SNPs
throughout the whole human genome. We believe that
this approach could prove to be an important complement
to the ever-increasing amount of data generated by large-
scale association studies, and that it could help pinpoint
the causative SNPs when they are located in regulatory
regions.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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