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Abstract

Reactive aggression after interpersonal provocation is a common behavior in humans. Little is known, however, about brain
regions and neurotransmitters critical for the decision-making and affective processes involved in aggressive interactions.
With the present fMRI study, we wanted to examine the role of serotonin in reactive aggression by means of an acute
tryptophan depletion (ATD). Participants performed in a competitive reaction time task (Taylor Aggression Paradigm, TAP)
which entitled the winner to punish the loser. The TAP seeks to elicit aggression by provocation. The study followed a
double-blind between-subject design including only male participants. Behavioral data showed an aggression diminishing
effect of ATD in low trait-aggressive participants, whereas no ATD effect was detected in high trait-aggressive participants.
ATD also led to reduced insula activity during the decision phase, independently of the level of provocation. Whereas
previous reports have suggested an inverse relationship between serotonin level and aggressive behavior with low levels of
serotonin leading to higher aggression and vice versa, such a simple relationship is inconsistent with the current data.
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Introduction

Aggressive behavior is prevalent in social interactions in both

humans and animals. It is highly heterogeneous in its origins and

manifestations ranging from verbal insults to full-blown physical

violence. Studying its neural basis in terms of critical brain regions

and neurotransmitters will provide a better understanding of its

conditions and regulating mechanisms. Substantial research has

implicated serotonergic functioning in aggressive social interactions,

both in animals and in humans [1,2,3,4]. Most studies point to an

inverse relationship between serotonin (5-HT) and particularly

unrestrained, impulsive aggression in several species [5,6,7,8,9],

although the picture turns out to be less clear for humans [1,10,11].

There is still an ongoing debate about the underlying mechanism by

which serotonin exerts an impact on reactive aggression. The

present fMRI study investigated the role of serotonin in reactive

aggression by means of an acute tryptophan depletion and the

Taylor Aggression Paradigm [TAP; 12].

Evidence for a regulating impact of serotonin on offensive

behavior stems from several lines of research with rodents,

monkeys and humans [1]. Correlational and pharmacological

challenge studies in humans, for instance, found an inverse

relationship between 5-HT functioning and aggression, at least in

‘‘extreme’’ groups, such as criminal offenders [1,3,4,11]. One

method to directly lower central 5-HT level and to thereby

examine the causal effect of serotonin is acute tryptophan

depletion (ATD). A reduced supply of tryptophan, the amino

acid precursor of serotonin, leads to lowered cerebral levels of

serotonin [13,14,15]. A negative correlation between serotonin

and aggression has been observed in studies examining ATD

effects on laboratory-induced aggression [16,17]. Interestingly,

however, several studies reported an increase of aggression in high

trait aggressive subjects only, whereas low-trait aggressive subjects

showed even less aggressive behavior after ATD [16,18,19,20].

Cleare and Bond, for instance, reported an increase of aggressive

behavior in the Taylor Aggression Paradigm in high trait

aggressive subjects only (assessed with the Buss-Durkee Hostility

Inventory), while low-trait aggressive subjects showed in fact less

aggressive behavior after ATD [16]. This converges with studies

using the Point Subtraction Aggression Paradigm [21]: Subjects

with high trait aggressiveness or a history of aggression showed

increased levels of aggressive responses after ATD, whereas no

pharmacological effects or even contrary effects were seen in low

aggressive participants [18,19,20].

Different suggestions have been made regarding the underlying

cognitive and motivational processes that might be affected by

tryptophan depletion, and thereby causing increased aggression.

Literature related to aggression has mainly focused on the role of

serotonin in impulsivity, and explained the effects of ATD with an

impairment of inhibitory functions [16,22,23]. Other studies have

implicated serotonin in stimulus-reward learning and decision-

making and suggested that ATD affects the processing of the

motivational properties of stimuli [24,25,26,27]. For instance,

ATD was found to increase rejection rates of unfair offers in the

Ultimatum Game, supposedly resulting from the effect serotonin

has on emotional reactions to social feedback [28].

In terms of critical brain regions for aggressive behavior and its

regulation, research with psychiatric and neurological patients has
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highlighted the prefrontal and especially the orbitofrontal cortex

[29,30]. Imaging studies on laboratory-induced reactive aggression

in healthy participants [31] identified a network of cortical and

subcortical regions related to aggressive behaviour. Lotze et al.

[32], presenting in their study one opponent who turned from nice

to unfair, could dissociate different roles of the ventral and dorsal

prefrontal cortex, with the former related to affective processes and

the latter supporting cognitive processes engaged by the social

interaction. In another study, Krämer et al. [31] introduced two

opponents – one highly and one less provoking – and could

thereby disentangle unspecific social interaction processes and

cognitive and motivational processes specific to the aggressive

interaction. These regions encompassed the dorsal and rostral

parts of the ACC, the dorsal striatum as well as the anterior insula

which were involved in decision-making and evaluation of the

opponent when being provoked.

With the present study, we wanted to investigate the effect of

ATD on reactive aggression and its neural correlates. Behaviorally,

we expected participants to show more aggressive behavior after

ATD. We assessed participants’ trait aggressiveness to examine a

possible moderating effect on the serotonin – aggression relationship

as suggested by previous data [16,18,19]. Previous research

reported increased ACC and insula activations in response to

provocation and related to aggressive retaliation [31]. Moreover,

serotonin was shown to change emotional reactions to social

feedback and modulate prefrontal and insula activity [28,33,34].

Based on these studies, we also expected increased activity especially

in the ACC and anterior insula after tryptophan depletion.

Methods

Participants
Thirty-six right-handed, male volunteers participated in this

study (mean age = 24.8 years,63.1). No women were included in

the study because of changes in serotonergic levels during the

menstrual cycle [35]. One participant could not drink the amino

acid drink because of nausea, two were removed from further

analysis because of technical problems during scanning, two

because of extensive movements during scanning and one because

he was deemed not to have been completely deceived (as assessed

through post-experimental questioning). Thus data of 30 subjects

(15 subjects per group; mean age tryptophan depleted group: 24.8,

non-depleted group: 24.7) were included in the analysis. The study

was performed in agreement with the Declaration of Helsinki and

had been approved by the ethics committee of the University of

Magdeburg (the affiliation of all authors at the time of the

experiment). All subjects gave written informed consent and were

paid for participation.

Procedure
Participants arrived five hours prior to scanning, after an

overnight fast from midnight and without alcohol consumption the

preceding day. Before administration of the amino acid mixture

they filled out the psychological rating and bodily symptom scales

(see below). They drank either a balanced amino acid drink

containing tryptophan (referred to as BAL) or the same mixture

without tryptophan (subsequently referred to as TRP-). The drinks

were assigned in a random double-blind order. We decided to use

a between-subject design for the present experiment, as partici-

pants can be expected to get suspicious after doing the Taylor

Aggression Paradigm once. A repetition of the experiment, as

required for a within-subject design, is thus problematic.

The 100g amino acid mixture contained 15 amino acids in

proportion identical to human breast milk, except for the omission

of glutamic and aspartic acids due to toxicity. The drink consisted

of L-Alanin (5.5 g), L-Arginin (4.9 g), L-Cystein (2.7 g), Glycin

(3.2 g), L-Histidin (3.2 g), L-Isoleucin (8.0 g), L-Leucin (13.5 g), L-

Lysin Monohydrochlorid (8.9 g), L-Methionin (3.0 g), L-Phenyla-

lanin (5.7 g), L-Prolin (12.2 g), L-Serin (6.9 g), L-Threonin (6.5 g),

L-Tyrosin (6.9 g) and L-Valin (8.9 g). The balanced drink

contained additionally 2.3 g tryptophan. The amino acids were

mixed with cold water, sugar and mint and consumed within

10 minutes. The participants received sugar-free chewing gum

and water to remove the unpleasant taste. Shortly before the

scanning, the psychological rating and bodily symptom scales were

administered again.

Before scanning, participants’ pain threshold for the thermal

stimulation was assessed. Thermal stimuli were delivered by a

thermode (363 cm thermo-conducting surface; TSA II, MEDOC

Inc., Israel) at the back of the left hand. The scanning started

approximately five hours after amino acid administration, when

the effects of tryptophan depletion are known to be maximal

[36,37]. After scanning, participants filled out a post-experimental

questionnaire and rating scales (see below). All participants were

given a snack after the testing to reverse any persistent effects of

the depletion.

Questionnaires and rating scales
The participants were assessed with a German inventory for the

assessment of factors of aggression (FAF, Fragebogen zur

Erfassung von Aggressivitätsfaktoren) [38] and state questionnaires

to assess effects of the tryptophan depletion on mood and physical

symptoms. With the FAF five sub-scales (spontaneous aggression,

reactive aggression, impulsiveness, autoaggression, aggression inhi-

bition) and a control scale (openness) can be obtained. Spontane-

ous aggression (19 items) refers to unrestrained verbal or physical

aggression, items of the reactive aggression scale (13 items) ask for

aggressive reactions to some kind of provocation or unfairness,

items of the impulsivity scale (13 items) deal with the affective

component of aggression. The sum of the scales ‘‘spontaneous

aggression’’, ‘‘reactive aggression’’ and ‘‘impulsiveness’’ gives a

reliable measure for outwardly directed aggression (internal

consistency Cronbach’s alpha = 0.85) and has been proven to

differ significantly between either adolescent or adult violent

criminals on the one hand and non-violent controls on the other

hand [38], providing evidence for its external validity.

Bodily symptoms were assessed with a visual analogue scale

(VAS) comprising 8 items (active, passive, calm, agitated, awake,

tired, dizzy, nauseous), that had to be rated from ‘‘not at all’’ to

‘‘completely’’. Aggressive mood was assessed with a VAS [39] that

comprised 13 items (angry, quarrelsome, furious, unsociable,

aggressive, belligerent, resentful, impatient, hostile, spiteful,

annoyed, disgusted and rebellious). This aggression VAS was

readministered after the aggression paradigm with the instruction

to rate their feelings during the paradigm against the two

opponents (separate VAS for each opponent). Additionally,

participants answered questions regarding the painfulness of the

noxious stimuli and the fairness of the opponents.

Aggression paradigm
Aggression was elicited and assessed using a modified version of

the Taylor Aggression Paradigm [TAP; 12]. Participants were

instructed that they were playing successive competitive reaction

time trials against one of two opponents outside the scanner taking

turns, 24 times against each opponent. The opponents, amateur

actors and confederates of the experimenters, met the subject

outside of the scanner prior to the experiment to jointly listen to

the instructions: They were told that whoever lost would be
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punished by the opponent with aversive thermal stimulation. The

severity of the punishment, that is the temperature of the stimuli,

had to be selected for each trial on a scale from 1 to 4. In fact,

selections of the putative opponents and outcome of the trials were

under control of the experimenter. Participants played 6 times

against each opponent in randomized order in each of the four

runs. The assignment of the trials to winning or losing was random

with the constraint that 50% of the trials were win trials (resulting

in 12 win trials against each opponent). At the end of the

experiment, subjects were completely debriefed about the

deception and the experiment’s motivation.

At the beginning of each trial, subjects were shown the opponent

for the upcoming competition (i.e. ‘‘Opponent 1’’ or ‘‘Opponent 2’’

was displayed on the screen without further information on who of

the introduced opponents was ‘‘1’’ or ‘‘2’’). This was also the prompt

to select the magnitude of the punishment (in the following referred

to as decision phase; duration of 6 sec). The reaction time task proper

required the participants to press a button as fast as possible when a

picture of a video game character was presented. After that, the

selection of the opponent was shown: one opponent selected

predominantly lower punishments (mean 1.8; condition of low

provocation), the other selected predominantly higher punishments

(mean 3.3; condition of high provocation). Finally, feedback was

given whether the subject had won or lost (in the following referred

to as outcome phase; duration of 4 sec). On win trials, they had to elicit

the punishment for the opponent by button press, on loss trials they

were exposed to the aversive thermal stimulus. The height of the

highest possible temperature was individually adapted to the

subject’s pain threshold. Stimulus presentation and behavioral data

acquisition were controlled with Presentation software (www.

neurobehavioralsystems.com). The experiment had a duration of

36 minutes, for the timing of each trial see Figure 1A.

The current experimental procedure differed from the previous

fMRI study [31] in several points. Instead of the aversive noise, we

used thermal stimulation as punishment. As participants are

automatically exposed to a high noise level within the MRI

scanner, they probably adapt to it to a certain extent. We thus

expected the thermal stimulation to be more aversive and to

thereby induce more aggressive responses. Moreover, we omitted

the ‘‘computer’’ control condition (in which participants were told

to outperform their own mean reaction time to avoid punishment)

and were thus able to increase the number of trials against human

opponents. Finally, we decided to omit the additional punishment

for losing in terms of money subtractions to avoid a confound with

processes regarding monetary punishment.

Behavioral analysis
Selections of the participants and their reaction times were scored

and compared using repeated measures ANOVA with the within-

subject factor Provocation (low and high) and the between-subject

factor Tryptophan (TRP; TRP- and BAL). In addition, we analyzed

the data of the personality questionnaire (FAF), VAS rating scales

and the post-experimental questionnaires to test for effects of the

tryptophan depletion and experimental manipulation.

fMRI acquisition and analysis
We used a 3-Tesla Siemens Magnetom Scanner to collect struc-

tural (T1-weighted MPRAGE: 2566256 matrix; FOV = 256 mm;

192 1-mm sagittal slices) and functional images (Gradient-Echo-

EPI-sequence; TR = 2000 ms; TE = 30 ms; FOV = 224 mm; flip

angle = 80u; matrix = 64664; slice thickness = 4 mm; four runs of

each 270 volumes). 32 transversal slices (3.563.564 mm voxel)

parallel to the anterior commissure-posterior commissure (AC-PC)

Figure 1. Trial timing and behavioural results. A Time course of a single trial under high provocation. The trial began with a 12-s preparation
phase. The participant saw the opponent for the upcoming trial and had to select the punishment. After the reaction-time task proper, the
participant was informed about the selection of the opponent. Finally feedback was given about the outcome and the participant had to either press
a button for the punishment or the temperature of the thermode was increased. B Average punishment selections under low (grey) and high (black)
provocation separately for low (filled bars) and high (stripes) trait aggressive participants (median split; n = 28). C Average punishment selection in
low (grey) and high (black) provocation trials, separately for the tryptophan depleted (TRP-) and balanced (BAL) group across the four runs.
doi:10.1371/journal.pone.0027668.g001
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were obtained. Data analysis included preprocessing (3D motion

correction, slice scan time correction and temporal smoothing),

spatial smoothing (8 mm full-width at half-maximum Gaussian

kernel), co-registration and normalization to Talairach stereotaxic

space [40] using Brain Voyager QX.

As in the previous fMRI study [31], the analyses of the functional

data were focused on the decision phase and the outcome phase.

Random effects analyses were performed on the z-transformed data

for the two phases. No provocation effects were seen during the first

run as the participants had to first figure out, which opponent was the

more aggressive one (see results). We thus did separate analyses of the

first run and the second to fourth run. We defined a GLM with

predictors for the decision phase under high and low provocation and

the outcome phase (winning and losing) for low and high provocation.

We included also the reaction time task, the opponent’s selection and

the punishment phase as predictors of no interest. Additionally, the

motion correction parameters were included as covariates.

The fMRI analyses aimed to compare high and low provocation

trials during the decision phase as well as during the outcome

phase (in win trials only). For both the decision and the outcome

phase, we tested for main effects of the provocation as well as for

main effects of and interactions with the group factor TRP.

As we did not find a provocation effect in the first run, we

additionally asked whether the early neural response to the

opponent’s behavior predicts the behavioral reactions to the

provocation. To this end, we introduced the behavioral provoca-

tion effect (effect size, i.e. difference of average selections under

high and low provocation relative to the standard deviation) as a

covariate in the comparison of high and low provocation trials in

the outcome phase of the first run. This allowed us to examine

correlations between early provocation effects on the neural level

and provocation effects on the behavioral level.

Statistical maps were created using a threshold of p,0.001

(uncorrected for multiple comparisons) with a cluster threshold of

10 voxels. The analysis of correlations between outcome-related

activity and the behavioral effect was performed with a more con-

servative threshold of p,0.0001 (corresponding to an FDR

corrected threshold of q,0.02) and an extent threshold of 10 voxels.

Results

Questionnaire and rating scales
The mean FAF sum score of aggressiveness was 9.3 (sd = 6.7),

and did not differ between the two experimental groups (TRP-:

11.167.4; BAL: 7.465.5; t28 = 1.57, p = .127). The two groups

were practically identical regarding their FAF inhibition score

(TRP-: 4.462.0; BAL: 4.461.9).

Participants felt more dizzy and nauseous after the five hours of

waiting than at arrival as stated in the bodily symptoms VAS

(p,0.05). However, the groups did not differ regarding their

bodily symptoms (interaction with TRP: p.0.1). Neither the

TRP- nor BAL group showed a change in the aggression VAS

when comparing the rating at time 0 and after 5 hours within the

subjects and between the groups (all comparisons p.0.1). After the

experiment, feelings towards the highly aggressive opponent were

consistently rated as more aggressive and negative in all 13 items,

most prominently regarding ‘‘angry’’ and least pronounced (but

still significant) regarding ‘‘impatient’’ (Wilcoxon signed rank test:

all comparisons p,0.05). The two groups did not differ in their

rating of the opponents though (all p.0.1).

Behavioral data
Participants in both groups (TRP- and BAL) selected higher

punishments under high than under low provocation (main effect

Provocation: F1,28 = 14.03, p,0.001), but no significant group

differences in the punishment selections were detected (main effect

and interaction with TRP: p.0.2). In fact, there was a trend for

a smaller behavioral effect in the TRP- group compared to the

BAL group. As previous studies reported a diminishing effect of

ATD on aggression in low trait aggressive people, we performed

exploratory analyses testing for a modulatory role of trait

aggressiveness. We did a median split of both groups based on

the participants’ FAF score (median of the complete sample = 10),

yielding a 262 factorial design (each group n = 7; excluding one

participant in both the TRP- and BAL group to yield equal group

sizes). Indeed, low trait aggressive participants in the TRP- group

refrained from any aggressive retaliation (effect Provocation:

p.0.8), whereas low trait aggressive people in the BAL group

reacted aggressively when being provoked (t6 = 24.07, p,0.01;

interaction TRP6provocation: F1,12 = 12.83, p,0.01). No such

TRP effect was observed in the high trait aggressive group (F,1),

resulting in a significant interaction of TRP6FAF x provocation

(F1,24 = 5.91, p = 0.023; Figure 1B). As a median split discards

information and to verify that this interaction does not depend on

the median split, we also performed regression analyses. We tested

for correlations between the behavioral provocation effect, i.e. the

difference of selections between high and low provocation, and the

FAF score separately for TRP- and BAL. As expected from the

three-fold interaction in the ANOVA, the regression analysis

yielded a significant correlation between personality and provo-

cation effect in the TRP- group (r = 0.57, p = 0.03) but not in the

BAL group (r = 20.37, p = 0.18).

When comparing the selections in the four functional runs, both

a main effect of Run (F3,78 = 5.51, p = 0.003) and an interaction of

Run and Provocation were detected (F3,78 = 3.77, p = 0.017),

reflecting higher selections in later runs, particularly under high

provocation (Figure 1C). In fact, selections under high and low

provocation did not differ in the first run (p.0.1). These effects

were similarly pronounced for the TRP- and BAL groups

(interactions of TRP with run: F,1). Further analyses of

provocation effects on the neural responses focused accordingly

on runs 2–4. Regarding the reaction times of the punishment

selections, participants in the BAL group made faster selections

under high than under low provocation (low provocation: 1261 ms

and high provocation: 1145 ms; t14 = 23.78, p = 0.002), whereas

reaction times of selections did not differ in the TRP- group (low

provocation: 1282 ms and high provocation: 1312 ms; p.0.2).

The interaction yielded only marginal significance however

(F1,28 = 3.29, p = 0.08).

In the post-experimental questionnaire, participants rated the

highly aggressive opponent as less fair (Wilcoxon signed rank test:

p,0.001) and the highest temperature as more disagreeable than

the lowest temperature (Wilcoxon signed rank test: p,0.001). No

group differences were observed in these ratings.

Imaging data
Provocation and ATD effects. Contrasting high and low

provocation trials for the decision phase (runs 2–4) yielded

activation in dorsal ACC (BA 24 and 32; Figure 2A), precuneus

as well as in premotor and motor cortex (Table 1). In all areas, the

BOLD response was stronger for high relative to low provocation.

When examining main effects of the tryptophan depletion, we

observed increased BOLD responses in the BAL group both in the

insula and the cingulate gyrus (Figure 2B; Table 1). Average beta

values were extracted from activation clusters for further ROI

analyses. We performed post-hoc analyses on the beta values of the

insula and cingulate ROI to test for interactions of ATD and trait

aggressiveness as in the behavioral data. The ATD effect in the
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insula was significant in the low trait aggressive participants only

(p,0.005), but not in high trait aggressive participants (p.0.1).

However, the interaction of ATD and trait aggressiveness yielded

marginal significance only (p = 0.081). No significant interactions

were detected for the cingulate ROI. No significant interactions of

the between-subject factor TRP and the within-subject factor

provocation in the whole-brain analyses were observed.

Regarding the outcome phase, no main effects or interactions

were observed (runs 2–4) when contrasting high and low

provocation for win trials.

Early outcome evaluation and behavioral provocation

effect. We did not detect provocation effects during the

outcome phase in the runs 2–4, possibly because learning about

the opponents’ behavior might happen in the beginning mainly,

when the feedback is most informative. We therefore asked

whether the early neural response during the outcome phase in the

first run was correlated with the participants’ behavioral response

to the provocation. We introduced the behavioral provocation

effect as covariate to the GLM contrasting high and low

provocation for the outcome phase in the first run (both win

and loss trials). The behavioral provocation effect was defined as

the effect size of the provocation, i.e. the difference between

average selection under high vs. low provocation relative to the

pooled standard deviation. Participants’ behavioral response to

provocation correlated with the neural provocation effect in the

right caudate nucleus, right inferior frontal gyrus (BA 47), insula

(BA 13) and anterior cingulate cortex (BA 32; Figure 3A and

Table 2). No negative correlations were observed. Correlations for

the caudate nucleus and ACC are also depicted in Figure 3B.

As at least low trait aggressive participants showed no

behavioral provocation effect after tryptophan depletion, one

might ask, whether the neural provocation effect in this network

also depends on trait aggressiveness and ATD. A repeated

measures ANOVA on average beta-values in the above-mentioned

activation clusters (IFG, insula, caudate nucleus, MFG) with the

between-subject factors trait aggressiveness and ATD and the

within-subject factors provocation (high vs. low) and outcome

(won vs. lost) did not yield significant effects of ATD or trait

aggressiveness however.

Figure 2. Imaging results for the decision phase. A shows the
main effect of provocation with an increased BOLD response in the
dorsal ACC and below the corresponding beta values separately for
the two groups (TRP- left and BAL right). In B depicted the main effect
of the group factor with a higher BOLD response in the insula for the
BAL group. Below the corresponding beta values separately for the two
groups (TRP- left and BAL right).
doi:10.1371/journal.pone.0027668.g002

Table 1. Brain areas activated during the decision phase.

Region of activation Laterality Coordinates F-value

Run 2–4: high.low provocation

Cingulate gyrus R 15, 24, 46 21.2

Medial frontal gyrus (BA 6) L 29, 27, 58 24.8

Medial frontal gyrus (BA 32) L 29, 14, 46 16.6

Precuneus (BA 7) L 221, 261, 49 21.2

Precentral gyrus (BA 4) L 245, 216, 46 30.2

Runs 2–4: BAL.ATD

Insula (BA 13) R 42, 27, 16 18.2

Cingulate gyrus (BA 24) L 29, 2, 31 21.4

Lingual gyrus (BA 18) L 26, 282, 214 18.1

The contrasts of interest for the decision phase yielded several regions defined
by strength of effect (p,0.001, uncorrected for multiple comparisons) and size
(10 or more voxel). The stereotaxic coordinates of the peak of the activation are
given according to Talairach space, together with the F-value for the cluster
peak.
doi:10.1371/journal.pone.0027668.t001

Figure 3. Imaging results for the outcome phase (first run). A
depicts the results of the correlational analysis for the outcome phase
during the first run. Participants with a higher behavioral provocation
effect showed an increased neural provocation effect in the caudate
nucleus, dorsal ACC, insula and right inferior frontal gyrus. B For
visualization purpose only, the correlation of the average difference in
beta values in the caudate nucleus (left) and ACC (right) with the
behavioral provocation effect (effect size d, selection high – low
provocation, relative to the pooled standard deviance) is shown with
the best linear fit. Participants of the TRP- group are indicated with a
cross; BAL participants are shown with a circle.
doi:10.1371/journal.pone.0027668.g003
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Discussion

We examined the effects of tryptophan depletion on reactive

aggression and its neural correlates and detected only subtle

behavioral and neural effects of lowered serotonin. Importantly,

behavioral effects suggested a moderating influence of participants’

trait aggressiveness. In addition, we could identify a network of

prefrontal (IFG, MFG) and subcortical (caudate) brain regions,

whose differential response to the opponent’s provocation in the

first trials correlated with the participants’ aggressive response

during the experiment. This was independent of the tryptophan

depletion, however.

We detected no clear effect of ATD on aggressive mood or

laboratory-induced aggressive behavior in our sample. However,

post-hoc analyses revealed reduced reactive aggression in low trait

aggressive participants following the ATD. This is in contrast to

our hypothesis, but awaits further replication as the sample size

was quite small to examine trait-related effects. Note that there

was a non-significant tendency for higher aggressiveness scores in

the TRP- group. As higher trait aggressiveness has been shown to

result in more aggressive behavior in the TAP [41], this tendency

might have counteracted the diminishing effect of ATD on

aggressive behavior, resulting in a non-significant effect of ATD in

the whole sample. Our results go in line with previous studies

demonstrating differential effects of ATD on aggressive behavior

in low and high trait aggressive people [18,19,20]. As outlined in

the introduction, previous research featuring the Taylor Aggres-

sion Paradigm or the Point Subtraction Aggression Paradigm

reported an increase of aggression in high trait aggressive subjects

only, while low-trait aggressive subjects showed in fact less

aggressive behavior after ATD [16,18,19,20].

This differential effect could result from pre-existing differences

in the serotonergic system associated with trait aggressiveness.

Evidence for differences in serotonin levels related to trait

aggressiveness comes from correlational and pharmacological

challenge studies both with healthy people and patients with

antisocial personality disorder [1,3,4,11,42]. Hennig and co-

authors, for instance, could present evidence for trait related

differential responsiveness of the serotonergic system even within

the normal range of aggressiveness [42]. More specifically,

individuals scoring high on aggressive hostility were high

responders to the selective serotonin reuptake inhibitor (SSRI)

citalopram, which was taken as evidence for an elevated

postsynaptic sensitivity resulting from lower 5-HT availability.

The same authors also reported an association of aggressive

hostility with a polymorphism in the tryptophan hydroxylase gene

(TPH A779C), an enzyme important for serotonin synthesis.

Future studies could directly examine the interactive effects of pre-

existing differences in serotonin levels and ATD on reactive

aggression by for instance controlling for the genetic makeup of

participants [42]. Alternatively, the interaction of the tryptophan

effect with personality could be explained in terms of a dual-mode

of self-regulation model such that low levels of serotonin lead to a

more impulsive, reactive behavior in contrast to an effortful,

controlled behavior. As suggested by Carver and co-authors [43],

the two modes interact with one’s personality style resulting in

more impulsive approach behavior in persons with high reward

sensitivity and in immobility and withdrawal in persons with

high punishment sensitivity. This could also explain the seem-

ingly paradoxical effect of low serotonin on both aggression and

depression.

As in our previous study [31], we observed increased activity in

the dorsal ACC during the decision phase in high compared to low

provocation trials. This underscores the dorsal ACC’s known role

in cognitive control and response selection and reflects a greater

need for cognitive control when being provoked. This effect was

not modulated by the tryptophan depletion, however. The BAL

group showed a generally increased BOLD response in the right

insula during the decision phase compared to the TRP- group,

which did not differ between provocation levels. This result is

contrary to our hypothesis and does not support previous reports

of an inverse relation between serotonin level and insula activation

in emotion processing [34,44]. These studies reported reduced

activity in the insula in response to emotional faces after taking

citalopram for 21 days [34] and an increased insula response to

emotional words after ATD [44]. The present data suggest that

the effect of serotonin on insula activation depends on the

situational context and differs between assessing emotion-related

stimuli and social interactions. Note, that the insula activation in

the present study was more posterior than that observed in the

previous study [31] and appears to be related to the participants’

affective response to the provocation [45,46,47]. The present

group differences might reflect a reduced affective response to the

provocation after ATD, which could explain the tendency for a

reduced behavioral provocation effect. This is supported by the

observation of a significant ATD effect in low trait aggressive

participants only, i.e. in the group that showed reduced aggression

after tryptophan depletion. However, as we used a between-group

design, group main effects should be interpreted with caution as

their specificity for the experimental task is unclear.

We also identified a prefrontal-subcortical network whose activity

during the outcome phase in the first run predicted the participants’

behavioral reaction to the provocation. Specifically, participants

who showed a stronger provocation effect on the neural level

differentiated more between the two opponents on the behavioral

level. This network comprised the caudate nucleus, anterior insula,

dorsal ACC and right inferior frontal gyrus. The anterior insula

showed also a provocation effect during the outcome phase in the

previous study [31], supposedly related to the emotional response to

the provocative opponent. In the current study, this effect was

confined to the first run and participants with a strong behavioral

provocation effect. The dorsal ACC, right IFG and caudate nucleus

were not differentially activated during the outcome phase in the

previous study and thus seem to be more specific for the early

learning stage during the social encounter. The present results

suggest that the identified prefrontal-subcortical network plays a

role in establishing a representation of the provocative opponent

that is guiding for the behavioral response to the provocation.

Table 2. Brain regions correlating with behavioral
provocation effect.

Region of activation Laterality Coordinates r-value

Run 1: high.low provocation (outcome)

Insula R 45, 11, 16 0.76

Middle frontal gyrus (BA 10) R 36, 41, 16 0.77

Inferior frontal gyrus (BA 47) R 27, 23, 211 0.74

Caudate body R 12, 14, 7 0.75

Medial frontal gyrus (BA 32) R 6, 11, 46 0.77

The covariate analysis regarding the outcome phase of the first run and
correlations with the behavioral provocation effect yielded several regions
defined by correlation (p,0.0001, uncorrected for multiple comparisons; FDR
q,0.02) and size (10 or more voxel). The stereotaxic coordinates of the peak of
the activation are given according to Talairach space together with the r-value
for the cluster peak.
doi:10.1371/journal.pone.0027668.t002
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The neural effects of provocation were somewhat weaker

compared to our previous study [31]. Although a clear behavioral

provocation effect was seen in both studies, participants in the

present study became overall more aggressive than those in the

previous study. This might have blunted provocation effects seen

in the imaging data, as the low provocation condition elicited

aggressive responses as well.

Our results can be discussed in the light of a recent

neurobiological model of punishment which is based mainly on

research on conditioned and instrumental learning and economic

decision-making [48]. The authors suggest that complex, context-

dependent aversive stimuli (such as they occur in the Taylor

Aggression Paradigm) are represented in the anterior insula and

ventrolateral PFC. Appetitive representations, related, for in-

stance, to the reward of punishing unfairness, are thought to

involve the ventromedial PFC together with the dorsal striatum.

Instrumental control based on more complex representations of

the context and expected future interactions is instigated by a

distributed network of prefrontal areas. The present results

together with other recent imaging [31,32] and electrophysiolog-

ical studies [41,49] can help to specify this model with respect to

reactive aggression. The anterior insula was found to be sensitive

to the level of provocation and to be involved both during the

decision-making and evaluation of the opponent. We did not

observe activations in the ventromedial PFC in the present study,

but Lotze and colleagues found vmPFC activity related to

compassion with the suffering opponent rather than with

appetitive representations [32]. Cognitive control of aggression

was found to engage the dorsal ACC in the present study and the

dorsomedial PFC in the study of Lotze et al. [32]. The difference

might be related to the exact contrast and differences in the

paradigms such as playing against two vs. one opponent. In

addition, with electrophysiological studies we could demonstrate

that cognitive control processes are engaged not only in response

to context variables such as provocation but also depend on the

player’s proneness to aggression [41,49]. Finally, the dorsal

striatum was found to be involved during the early evaluation of

the opponent’s behavior and correlated with the behavioral

provocation effect.

Conclusions
The present study does not support previous reports of an

inverse relationship between serotonin level and aggressive

behavior, as only an aggression diminishing effect of ATD in

low trait-aggressive participants could be detected. We could

replicate provocation-related effects in cingulate gyrus and could

identify a network of prefrontal (IFG, MFG) and subcortical

(caudate) brain regions, whose differential response to the

opponent’s provocation in the first trials correlated with the

participants’ aggressive response during the experiment. It remains

an open question how activity in this network is modulated by

serotonin or other neurotransmitters such as dopamine. The

present study found only a general modulation of anterior insula

activity but no provocation specific effect. Future studies should

examine whether these effects depend on pre-existing interindi-

vidual differences in the serotonergic system or whether other

neuromodulators such as dopamine or vasopressin play a more

significant role for activity in this network.
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