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The generation, manipulation and fundamental understanding of entanglement lies at very heart of
quantum mechanics. Among various types of entangled states, the NOON states are a kind of special
quantum entangled states with two orthogonal component states in maximal superposition, which have a
wide range of potential applications in quantum communication and quantum information processing.
Here, we propose a fast and simple scheme for generating NOON states of photons in two superconducting
resonators by using a single superconducting transmon qutrit. Because only one superconducting qutrit and
two resonators are used, the experimental setup for this scheme is much simplified when compared with the
previous proposals requiring a setup of two superconducting qutrits and three cavities. In addition, this
scheme is easier and faster to implement than the previous proposals, which require using a complex
microwave pulse, or a small pulse Rabi frequency in order to avoid nonresonant transitions.

V
Arious physical systems have been considered for building up quantum information processors. Among
them, circuit QED consisting of microwave resonators and superconducting qubits is particularly appeal-
ing1,2. Superconducting qubits (such as charge, flux, and transmon qubits) behave as artificial atoms, they

have relatively long decoherence times3–7, and various single- and multiple-qubit operations with state readout
have been demonstrated8–12. On the other hand, a superconducting resonator provides a quantized cavity field
which acts as a quantum bus and thus can mediate long-distance and strong interaction between distant super-
conducting qubits13–15. Furthermore, the strong coupling between a microwave cavity and superconducting
charge qubits16 or flux qubits17 was earlier predicated in theory and has been experimentally demonstrated18,19.
Because of these features, circuit QED has been widely utilized for quantum information processing. During the
past decade, based on circuit QED, many theoretical proposals have been presented for the preparation of Fock
states, coherent states, squeezed states, Schördinger Cat states, and arbitrary superpositions of Fock states of a
single superconducting resonator20–22. So far, Fock states and their superpositions of a resonator have been
experimentally produced by using a superconducting qubit23–25.

Intense effort has been recently devoted to the preparation of entangled states of photons in two or more
superconducting resonators26–29. The NOON states are a special type of photonic entangled states with two
orthogonal component states in maximal superposition, which play the crucial role in quantum optical litho-
graphy30,31, quantum metrology32–35, precision measurement of transmons36–38, and quantum information
processing39,40.

In Ref. 26, a theoretical method for synthesizing an arbitrary quantum state of two superconducting resonators
using a tunable superconducting qubit has been proposed. This method is based on alternative resonant inter-
actions of the coupler qubit with two cavity modes and a classical pulse. As pointed out in26, the Rabi frequency of
the classical pulse needs to be much smaller than the photon-number-dependent Stark shifts induced by dis-
persive interaction with the two field modes and, hence, the pulse can drive the qubit to undergo a rotation
conditional upon the state of the cavity modes. This implies that the time needed to complete the rotation in each
step should be much (two orders of magnitude) longer than the vacuum Rabi period of the coupled qubit-
resonator system.

In Ref. 27, the authors proposed a theoretical scheme for creating NOON states of two resonators, which was
implemented in experiments for N # 3 by H. Wang et al.28. The method in27,28 operates essentially by employing
two three-level superconducting qutrits as couplers, preparing them in a Bell state, and then performing N steps of
operation to swap the coherence of the Bell state onto the two resonators through a sequence of classical pulses
applied to the two coupler qutrits. In addition, as discussed in27,28, a third resonator or cavity is needed in order to
prepare the two coupler qutrits in the Bell state.
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Ref. 29 presented an approach to control the quantum state of two
superconducting resonators using a complicated classical microwave
pulse. For the generation of NOON states, this scheme also requires
two superconducting qubits which are initially prepared in a Bell
state. Another problem is that the produced state is essentially an
entangled state of two resonators and two qubits. To obtain the pure
photonic NOON state, one should use additional techniques to
decouple the qubits from the resonators.

As reported in28, the fidelity of the obtained NOON state decreases
dramatically with the photon number N due to decoherence, drop-
ping to 0.33 for N 5 3. In order to be useful in quantum technologies,
the fidelity needs to be significantly improved. Thus, it is worthy of
exploring more efficient schemes to generate the NOON states with a
higher fidelity.

In this work, we propose an alternative scheme for generating the
NOON state of two resonators coupled to a superconducting trans-
mon qutrit, via resonant interactions. This proposal has the following
advantages: (i) Because of using only one superconducting qutrit and
two resonators, the experimental setup is greatly simplified when
compared with that in27–29, which is important for decreasing deco-
herence effects; (ii) In principle, there is no limitation on the intensity
of the classical pulse for our scheme and thus the operation can be
performed much faster when compared with the method in26.
Overall, the important features of our scheme are simplicity, rapid-
ness, and robustness.

We will also give a detailed discussion of the experimental issues
and then analyze the possible experimental implementation. Our
numerical simulation shows that a high-fidelity generation of the
NOON state with N # 3 is feasible within the present circuit QED
technique.

Results
Noon-state preparation. Consider two resonators coupled to a
superconducting transmon qutrit (Fig. 1). The three ladder-type
levels of the qutrit are labeled as jgæ, jeæ, and jfæ with energy Eg ,
Ee , Ef. Suppose that the coupler qutrit is initially in the state
1ffiffiffi
2
p fj iz ej ið Þ and the two resonators are initially in the vacuum

state j0æa j0æb. The qutrit can be made to be decoupled from the
two resonators by a prior adjustment of the qutrit level spacings.
Note that for superconducting transmon qutrits, the level spacings
can be rapidly adjusted by varying external control parameters (e.g.,
magnetic flux applied to superconducting quantum interference
device (SQUID) loops of two-junction transmon qutrits; see,
e.g.41–43).

For simplicity, we define veg (vfe) as the jgæ « jeæ (jeæ « jfæ)
transition frequency of the qutrit and Veg (Vfe) as the Rabi frequency
of the classical pulse driving the coherent jgæ « jeæ (jeæ « jfæ) trans-
ition. In addition, the frequency, initial phase, and duration of the
microwave pulse are denoted as {v, Q, t} in the rest of the paper.

The procedure for generating the NOON state of photons in the
two resonators contains 2N steps. We assume that resonator b (a) is

decoupled from the qutrit during each of the first (second) N steps
due to large detunings, which can be achieved by prior adjustment of
the resonator frequency. The effects of off-resonant qutrit-resonator
couplings and classical drivings on the fidelity of the prepared state
will be taken into account later.

Before the operations for the first N steps, we need to adjust the
level spacings of the qutrit such that resonator a is resonant with the
jgæ « jeæ transition, but is far off-resonant with (decoupled from) the
jeæ « jfæ transition so that the coupling between resonator a and the
jeæ « jfæ transition can be neglected [Fig. 2(a)]. Meanwhile, resonator
b is far off-resonant with both of these two transitions and thus it is
unaffected during this interaction (i.e., resonator b is decoupled from
the qutrit). Under these conditions, the state jfæ remains unchanged
due to the large detuning. In the interaction picture with respect to
the free Hamiltonian of the whole system, the Hamiltonian describ-
ing this operation is given by HI~�h geg az gj i eh j

� �
zh:c:, where a1 is

the photon creation operator of the mode of resonator a, and geg is the
coupling constant between the mode of the resonator a and the jgæ «
jeæ transition [Fig. 2(a)].

The operations of the first N steps are described below:
Step 1: Let resonator a resonant with the jgæ « jeæ transition.

Under the Hamiltonian HI, the state component jfæ j0æa is not chan-
ged because of HI jfæ j0æa 5 0, while jeæ j0æa undergoes the Jaynes-
Cumming evolution44. After an interaction time t1 5 p/(2geg) (i.e.,
half a Rabi oscillation), the state jeæ j0æa changes to 2i jgæ j1æa (for the
details, see the discussion in the part of Methods below). Hence, the

initial state 1ffiffiffi
2
p fj iz ej ið Þ 0j ia 0j ib of the whole system becomes

1ffiffiffi
2
p fj i 0j ia{i gj i 1j ia
� �

0j ib: ð1Þ

Figure 1 | Setup for two resonators a and b coupled by a superconducting
transmon qutrit. Each resonator here is a one-dimensional coplanar

waveguide transmission line resonator. The circle A represents a

superconducting transmon qutrit, which is capacitively coupled to each

resonator via a capacitance Cc.

Figure 2 | (a) Resonator a is far-off resonant with the | eæ « | f æ transition

but resonant with the | gæ « | eæ transition. (b) The pulse is far-off

resonant with the | eæ « | f æ transition but resonant with the | gæ « | eæ
transition. (c) Resonator b is far-off resonant with the | gæ « | eæ transition

but resonant with the | eæ « | f æ transition. (d) The pulse is far-off resonant

with the | gæ « | eæ transition but resonant with the | eæ « | f æ transition.
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Then, apply a microwave pulse of {veg, 2p/2, p/(2Veg)} to the qutrit
to pump the state jgæ back to jeæ [Fig. 2(b)], transforming the state (1)
to

1ffiffiffi
2
p fj i 0j ia{i ej i 1j ia
� �

0j ib: ð2Þ

Here and below, we assume Veg?geg so that the interaction between
the qutrit and resonotor a is negligible during the application of this
pulse.

Step j (j 5 2, 3, …,N 2 1): Repeat the operation of step 1. The time
for the qutrit interacting with resonator a is set by tj~p

�
2
ffiffi
j

p
geg

� �
(i.e., half a Rabi oscillation). After an interaction time tj, the state jfæ
j0æa remains unchanged while the state jeæ jj 2 1æa changes to 2i jgæ
jjæa, which further changes to 2i jeæ jjæa due to a microwave pulse of
{veg, 2p/2, p/(2Veg)} pumping the state jgæ back to jeæ. Hence, one
can easily verify that after the operation of steps (2, 3, …, N 2 1), the
state (2) becomes

1ffiffiffi
2
p fj i 0j iaz {ið ÞN{1 ej i N{1j ia
� �

0j ib: ð3Þ

Step N: Let resonator a resonant with the jgæ « jeæ transition for an

interaction time tN~p
.

2
ffiffiffiffi
N
p

geg

� �
[Fig. 2(a)]. As a result, we have

the transformation jeæ jN 2 1æa R 2i jgæ jNæa while the state jfæ j0æa

remains unchanged. Thus, the state (3) becomes

1ffiffiffi
2
p fj i 0j iaz {ið ÞN gj i Nj ia
� �

0j ib: ð4Þ

In above we have given a detailed description of the operations for the
first N steps. Now let us give a description on the second N steps. To
begin with, we need to adjust the level spacings of the qutrit to bring
resonator b resonant with the jeæ « jfæ transition but far off-resonant
with the jgæ « jeæ transition [Fig. 2(c)]. On the other hand, resonator
a is far off-resonant with each transition so that it is unaffected
during this interaction (i.e., resonator a is decoupled from the qutrit,
which can be achieved by adjusting the frequency of resonator a). In
the interaction picture with respect to the free Hamiltonian of the
whole system, the Hamiltonian governing this operation is given by
HI~�h gfebz ej i fh j

� �
zh:c:, where b1 is the photon creation operator

of the mode of resonator b, and gfe is the coupling constant between
the resonator b and the jeæ « jfæ transition [Fig. 2(c)].

Since the level spacings of the qutrit are now different from those
used in the operation of the first N steps, we now define v’eg , v’fe, and
v’fg as the jgæ « jeæ transition frequency, the jeæ « jfæ transition
frequency, and the jgæ « jfæ transition frequency of the qutrit,
respectively.

The operations of the second N steps are as follows:
Step 1: Let resonator b resonant with the jeæ « jfæ transition

[Fig. 2(c)]. Under the Hamiltonian HI, the state component jgæ j0æb

does not change because of HI jgæ j0æb 5 0, while jfæ j0æb undergoes
the Jaynes-Cumming evolution. After an interaction time

t’1~p
.

2gfe

� �
, the state jfæ j0æb changes to 2i jeæ j1æb (see the dis-

cussion in the Methods below). Thus, one can see that the state (4)
changes to

1ffiffiffi
2
p {i ej i 0j ia 1j ibz {ið ÞN gj i Nj ia 0j ib
� 	

: ð5Þ

Then, apply a microwave pulse of v’fe, {p=2,p
�

2Vfe

� �
 �
to the

qutrit to pump the state jeæ back to jfæ [Fig. 2(d)], transforming the
state (5) to

1ffiffiffi
2
p {i fj i 0j ia 1j ibz {ið ÞN gj i Nj ia 0j ib
� 	

: ð6Þ

Here and below, we assume Vfe?gfe such that the qutrit-resonator
coupling is negligible during the application of this pulse.

Step j (j 5 2, 3, …, N 2 1): Repeat the operation of step 1. The time
for the qutrit interacting with resonator b is set by t’j~p

�
2
ffiffi
j
p

gfe
� �

.
After an interaction time t’j, the state jgæ j0æb remains unchanged
while the state jf æ jj 2 1æb changes to 2i jeæ jjæb, which further
turns into 2i jf æ jjæb because of a microwave pulse of

v’fe, {p=2,p
�

2Vfe
� �
 �

pumping the state jeæ back to jf æ. After step
N 2 1, the state (6) becomes

1ffiffiffi
2
p {ið ÞN{1 fj i 0j ia N{1j ibz {ið ÞN gj i Nj ia 0j ib
� 	

: ð7Þ

Step N: Apply a microwave pulse of v’eg , {p=2, p
�

2Veg
� �
 �

to the
qutrit to pump the state jgæ back to jeæ [note that in Fig. 2(d), the pulse
is now resonant to the jgæ « jeæ transition, instead of the jeæ « jfæ
transition]. To neglect the qutrit-resonator coupling during this
pulse, the conditionVeg?gfe needs to be satisfied. Then, let resonator
b resonant with the jeæ « jfæ transition for an interaction time

t’N~p
.

2
ffiffiffiffi
N
p

gfe

� �
[Fig. 2(c)], leading to the transformation jfæ jN

2 1æb R 2i jeæ jNæb. Meanwhile, resonator a remains decoupled
from the qutrit. As a result, the state (7) changes to

1ffiffiffi
2
p {ið ÞN 0j ia Nj ibz Nj ia 0j ib

� 	
ej i: ð8Þ

Then, adjust the level spacings of the qutrit back to the original level
configuration such that the qutrit is decoupled from the two resona-
tors. The result (8) shows that the two resonators a and b are pre-
pared in a NOON state of photons, which are disentangled from the
qutrit.

Previously we have assumed that during the first (second) N steps
of operations, the resonator b (a) is decoupled from the qutrit. In
principle, this requirement can be met by adjusting the level spacings
of the qutrit41–43 or the resonator mode frequency such that the
irrelevant resonator during the operation is highly detuned from
the transition between any two levels of the coupler qutrit. The rapid
tuning of cavity frequencies has been demonstrated in superconduct-
ing microwave cavities (e.g., in less than a few nanoseconds for a
superconducting transmission line resonator45).

As shown above, our NOON-state preparation is based on the
following approximations. For the first N steps of operation, we have
neglected the off-resonant interaction between resonator a and the
jeæ « jfæ transition of the qutrit, the off-resonant interaction between
the pulse and the jeæ « jfæ transition of the qutrit, and the off-
resonant coupling of resonator b with the transition between any
two levels of the qutrit. For the second N steps of operation, we have
omitted the off-resonant interaction between resonator b and the jgæ
« jeæ transition of the qutrit, the off-resonant interaction between
the pulse and the jgæ « jeæ transition of the qutrit, and the off-
resonant coupling of resonator a with the transition between any
two levels of the qutrit. In addition, for each step of operation, there
exists an inter-cavity cross coupling, which was also not considered
in our NOON-state preparation above. To quantify how well our
protocol works out, later we will perform a numerical simulation for
N # 5, by taking all these effects into account.

Experimental issues. For the method to work the primary
considerations shall be given to:

(i) The total operation time t, given by

t~
XN

j~1

p
�

2
ffiffi
j

p
geg

� �
z
XN

j~1

p
�

2
ffiffi
j

p
geg

� �
z

Np
�

2Veg
� �

z N{1ð Þp
�

2Vfe
� �

z3td

ð9Þ
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(where td , 1–3 ns is the typical time required for adjusting the
qutrit level spacings), needs to be much shorter than the energy
relaxation time T1 T ’1ð Þ and dephasing time T2 T ’2ð Þ of the
level jfæ (jeæ) of the qutrit, such that decoherence caused by
energy relaxation and dephasing of the qutrit is negligible for
the operation. Note that T ’1 and T ’2 of the qutrit are compar-
able to T1 and T2, respectively. For instance, T ’1*2T1 and
T ’2*T2 for transmon qutrits.

(ii) For resonator k (k 5 a, b), the lifetime of the resonator mode is
given by Tk

cav~ Qk=2pnkð Þ=�nk, where Qk, nk and �nk are the
(loaded) quality factor, frequency, and the average photon
number of resonator k, respectively. For the two resonators,
the lifetime of entanglement of the resonator modes is given by

Tcav~
1
2

min Ta
cav,Tb

cav


 �
, ð10Þ

which should be much longer than t, such that the effect of
resonator decay is negligible during the operation.

(iii) The inter-cavity cross coupling between the two resonators is
determined mostly by the coupling capacitance Cc and the
qutrit’s self capacitance Cq, because the field leakage through
space is extremely low for high-Q resonators as long as the
inter-cavity distance is much greater than transverse dimen-
sion of the cavities - a condition easily met in experiments for
the two resonators. Furthermore, as the result of our numerical
simulation shown below (see Fig. 4), the effects of the inter-
cavity coupling can however be made negligible as long as the
corresponding inter-cavity coupling constant gab between
resonators a and b is sufficiently small.

Fidelity. Hereafter, we give a discussion of the fidelity of the prepared
NOON state for N # 5.

The first N steps above for creating the NOON state involves the
following two basic types of interactions:

(i) The first one is the resonant coupling between resonator a
and the jgæ « jeæ transition. When the interaction between
resonator a and the jeæ « jfæ transition [Fig. 3(a)], the coup-
ling between resonator b and the qutrit [Fig. 3(a)], and the
inter-cavity crosstalk between the two resonators are taken
into account, the corresponding interaction Hamiltonian is
thus given by

HI,1~�h geg a ej i gh jzh:c:
� �

z�h ~gfeeid1ta fj i eh jzh:c:
� �

z�h meg eideg tb ej i gh jzh:c:
� �

z�h mfeeidfetb fj i eh jzh:c:
� �

z�hgab eiDtabzzh:c:
� �

;

ð11Þ

where the first term represents the resonant interaction of
resonator a with the jgæ « jeæ transition, while the second
term represents the unwanted off-resonant coupling between
resonator a and the jeæ « jfæ transition with coupling con-
stant ~gfe and detuning d1 5 vfe 2 va , 0 [Fig. 3(a)]. In
addition, the third term represents the unwanted off-res-
onant coupling between resonator b and the jgæ « jeæ trans-
ition with coupling constant meg and detuning deg 5 veg 2 vb

Figure 4 | Fidelity versus N. Refer to the text for the parameters used in

the numerical calculation. For N 5 1, 2, 3, 4, 5 and gab 5 2 g, the fidelities

are ,0.947, 0.861, 0.762, 0.669, 0.577, respectively.

Figure 3 | (a) and (c) Illustration of qutrit-resonator interactions. (b) and

(d) Illustration of qutrit-pulse interactions. In (a), resonator a is resonant

to the | gæ « | eæ transition with coupling constant geg, while off-resonant to

the | eæ « | fæ transition with coupling constant ~gfe and detuning d1 5 vfe 2

va , 0; resonator b is off-resonant to the | gæ « | eæ transition with

coupling constant meg and detuning deg 5 veg 2 vb . 0, and off-resonant

to the | eæ « | fæ transition with coupling constant mfe and detuning dfe 5

vfe 2 vb . 0. In (c), resonator b is resonant to the | eæ « | fæ transition with

coupling constant gfe, while off-resonant to the | gæ « | eæ transition with

coupling constant ~geg and detuning d3~v’eg{vbw0; resonator a is off-

resonant to the | gæ « | eæ transition with coupling constant ~meg and

detuning ~deg~v’eg{vav0, and off-resonant to the | eæ « | fæ transition

with coupling constant ~mfe and detuning ~dfe~v’fe{vav0. In (b), a pulse

(with frequency v 5 veg) is resonant to the | gæ « | eæ transition with Rabi

frequency Veg, but off-resonant to the | eæ « | fæ transition with Rabi

frequency ~Vfe and detuning d2 5 vfe 2 v 5 vfe 2 veg , 0. In (d), a pulse

(with frequency v~v’fe) is resonant to the | eæ « | fæ transition with Rabi

frequency Vfe, but off-resonant to the | gæ « | eæ transition with Rabi

frequency ~Veg and detuning d4~v’eg{v~v’eg{v’few0. The qutrit-

resonator interactions during the pulses of (b) and (d) are the same as those

shown in (a) and (c), respectively, and have been taken into account in the

numerical simulation. Here, d1 5 d2 because of v 5 va, and d3 5 d4 due to

v 5 vb.
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. 0 [Fig. 3(a)], while the fourth term represents the unwanted
off-resonant coupling between resonator b and the jeæ « jfæ
transition with coupling constant mfe and detuning dfe 5 vfe

2 vb . 0 [Fig. 3(a)]. Finally, the last term indicates the inter-
cavity crosstalk between the two resonators, where D 5 vb 2
va , 0 is the detuning between the two resonators. The
Hamiltonian HI,1 here, together with HI,2, HI,3 and HI,4 below,
is written in the interaction picture with respect to the free
Hamiltonian of the whole system.

(ii) The second one corresponds to the application of the pulse
with {veg, 2p/2, p/(2Veg)} to the qutrit. The interaction
Hamiltonian governing this basic operation is given by

HI,2~�h Veg e{ip=2 gj i eh jzh:c:
� �

z�h ~Vfeei {d2t{p=2ð Þ ej i fh jzh:c:
h i

zHI,1, ð12Þ

where the first term represents the resonant interaction of the
pulse with the jgæ « jeæ transition, while the second one
represents the unwanted off-resonant coupling between the
pulse and the jeæ « jfæ transition with Rabi frequency ~Vfe and
detuning d2 5 vfe 2 veg , 0 [Fig. 3(b)]. Here, HI,1 is the
Hamiltonian given in Eq. (11), describing the coupling
between resonator a and the qutrit, the coupling between
resonator b and the qutrit, as well as the inter-cavity crosstalk
between the two resonators during the pulse.

(ii) The second N steps above for creating the NOON state covers
the following two basic types of interactions:

(iii) The third one corresponds to the resonant coupling between
the resonator b and the jeæ « jfæ transition. When the
unwanted off-resonant coupling between this resonator and
the jgæ « jeæ transition [Fig. 3(c)], the coupling between
resonator a and the qutrit [Fig. 3(c)], and the inter-cavity
crosstalk between the two resonators are considered, the total
interaction Hamiltonian reads

HI,3~�h gfeb fj i eh jzh:c:
� �

z�h ~geg eid3tb ej i gh jzh:c:
� �

z�h ~meg ei~deg ta ej i gh jzh:c:
� �

z�h ~mfeei~dfe ta fj i eh jzh:c:
� �

z�h gabeiDtabzzh:c:
� �

,
ð13Þ

where the first term represents the resonant interaction of
resonator b with the jeæ « jfæ transition, while the second
term represents the unwanted off-resonant coupling between
resonator b and the jgæ « jeæ transition with coupling con-
stant ~geg and detuning d3~v’eg{vbw0 [Fig. 3(c)]. In addi-
tion, the third term represents the unwanted off-resonant
coupling between resonator a and the jgæ « jeæ transition
with coupling constant ~meg and detuning ~deg~v’eg{vav0
[Fig. 3(c)], while the fourth term represents the unwanted off-
resonant coupling between resonator a and the jeæ « jfæ
transition with coupling constant ~mfe and detuning
~dfe~v’fe{vav0 [Fig. 3(c)].

(iv) The last one is the pump of the qutrit with the pulse
v’fe,{p=2,p

�
2Vfe
� �
 �

, with the interaction Hamiltonian
described by

HI,4~�h Vfee{ip=2 ej i fh jzh:c:
� �

z�h ~Veg ei {d4t{p=2ð Þ gj i eh jzh:c:
h i

zHI,3, ð14Þ

where the first term denotes the resonant pump of the jeæ «
jfæ transition, while the second one represents the unwanted
off-resonant excitation of the jgæ « jeæ transition with Rabi
frequency ~Veg and detuning d4~v’eg{v’few0 [Fig. 3(d)].
Here, HI,3 is the Hamiltonian given in Eq. (13), describing the

coupling between resonator a and the qutrit, the coupling
between resonator b and the qutrit, as well as the inter-cavity
crosstalk between the two resonators during the pulse.

It is noted that the term describing the pulse- or resonator-induced
coherent jgæ « jfæ transition for the qutrit is not included in the
Hamiltonians HI,1, HI,2 HI,3, and HI,4, since the error caused by this
transition is much smaller than those described above. This is
because: (i) the two resonators and the pulses are highly detuned
from the jgæ « jfæ transition with the relevant detunings being much
larger than those for the jgæ « jeæ and jeæ « jfæ transitions, v’fg
(Fig. 3); and (ii) for a transmon qutrit with the three levels considered
here, the jgæ « jfæ dipole matrix element is much smaller than that of
the jgæ « jeæ and jeæ « jfæ transitions46.

When the dissipation and dephasing are included, the dynamics
for the kth type of interactions is determined by the following master
equation

dr

dt
~{i HI,k,r½ �=�hzkaL a½ �zkbL b½ �z

zcfeL S{,fe
� 	

zcegL S{,eg
� 	

zcQ,f Sff rSff {Sff r
�

2{rSff
�

2
� �

zcQ,e SeerSee{Seer=2{rSee=2ð Þ,

ð15Þ

where HI,k for k 5 1, 2, 3, and 4 are the above Hamiltonians HI,1, HI,2,
HI,3, and HI,4, respectively; L L½ �~LrLz{LzLr

�
2{rLzL

�
2

(with L 5 a, b, S2,fe, S2,eg), S2,fe 5 jeæ Æfj, S2,eg 5 jgæ Æej, Sff 5 jfæ
Æfj, and See 5 jeæ Æej. In addition, ka (kb) is the decay rate of the
resonator mode a (b); cfe is the energy relaxation rate for the level
jfæ associated with the decay path jfæ R jeæ; ceg is that for the level jeæ;
and cQ,f (cQ,e) is the dephasing rate of the level jfæ (jeæ).

The fidelity of the whole operation is given by F~ yidh j~r yidj i,
where jyidæ is the output state given in Eq. (8) for an ideal system (i.e.,
without unwanted couplings, dissipation, and dephasing) after the
entire operation, while ~r is the final density operator of the whole
system when the operations are performed in a realistic physical
system.

We now numerically calculate the fidelity of the NOON state
prepared above, with N # 5. For simplicity, we set: (i) d1/(2p) 5

d2/(2p) 5 2400 MHz, and d3/(2p) 5 d4/(2p) 5 400 MHz43, (ii) Veg

5 Vfe 5 V (achievable via adjusting the pulse intensities), thus
~Vfe*

ffiffiffi
2
p

V, and ~Veg*V
. ffiffiffi

2
p

for the transmon qutrit here46; (iii)

geg~~geg~g, and thus gfe*~gfe*
ffiffiffi
2
p

g46. In addition, meg, mfe, ~meg ,

and ~meg can be determined due to meg*geg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vb=va

q
,

mfe*~gfe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vb=va

q
, ~meg*~geg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
va=vb

q
, and ~mfe*gfe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
va=vb

q
. For

superconducting transmon qutrits, the typical transition frequency
between two neighbor levels is between 5 and 10 GHz. As an
example, let us consider resonator a with frequency va/(2p) ,
6 GHz while resonator b with frequency vb/(2p) , 3.5 GHz.
Other parameters used in the numerical calculation are as follows:
(i) D/(2p) 5 22.5 GHz, (ii) V/(2p) 5 18 MHz47,48), (iii)
c{1

Q,f ~c{1
Q,e ~3 ms, c{1

fe ~1:5 ms, c{1
eg ~3 ms (which are available in

experiment42), and (iv) k{1
a ~k{1

b ~20 ms. For the parameters cho-
sen here, the fidelity for N # 5 is shown in Fig. 4 for gab 5 0, g, and
2 g. Fig. 4 was plotted by numerically optimizing the coupling con-
stants, e.g., g/(2p) 5 3.9, 2.2, 1.8, 1.5, 1.3 MHz for N 5 1, 2, 3, 4, 5,
respectively. The coupling strengths with these values are readily
achievable in experiment because g/(2p) , 220 MHz has been
reported for a superconducting transmon qubit coupled to a one-
dimensional standing-wave CPW (coplanar waveguide) resonator49.
It can be seen from Fig. 4 that when gab # 2 g, the effect of the inter-
cavity coupling is negligible and a high fidelity *

>76% can be obtained
for N # 3.
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The fidelity can be further increased by improving the system
parameters. For instance, Fig. 5 shows that the fidelity for N 5 3
can be increased to , 85% for c{1

Q,f ~c{1
Q,e ~T~10 ms, c{1

fe ~T=2,

and c{1
eg ~T , which can be reached in the near future due to the rapid

development of the circuit-QED techniques (e.g., decoherence time
, 10 ms has been demonstrated in a superconducting transmon
qubit coupled to a 3D cavity50).

For the resonators a and b of frequencies given above and the k{1
a

and k{1
b used in the numerical calculation, the required quality

factors for the two resonators are Qa , 7.5 3 105 and Qb , 4.4 3
105. Note that superconducting CPW resonators with a loaded qual-
ity factor Q , 106 have been experimentally demonstrated51,52, and
planar superconducting resonators with internal quality factors
above one million (Q . 106) have also been reported recently53.
Our analysis given here demonstrates that high-fidelity generation
of the NOON state with N # 3 using the present proposal is possible
within the present circuit QED techniques.

The condition, gab # 2 g, is not difficult to satisfy with typical
capacitive cavity-qutrit coupling illustrated in Fig. 1. As discussed
in54, as long as the cavities are physically well separated, the inter-

cavity crosstalk coupling strength is gab<g Cc=CP
� �

, where

CP~2CczCq is the sum of the two coupling capacitances and qutrit
self capacitance. For Cc , 1 fF and CP*102 fF (the typical values in
experiments54), we have gab # 0.1 g. Thus, the condition gab # 2 g
can be easily satisfied.

Discussion
We have shown a way to generate the NOON state of two resonators
by using a superconducting coupler transmon qutrit. Unlike the
previous schemes, it requires neither two initially entangled qutrits
nor the photon-number-dependent rotations on the qutrit, and
hence is simple, fast, and robust. Our further numerical simulation
shows that a high-fidelity generation of the NOON state with N # 3
is feasible within the present circuit QED techniques. Hence, the
present scheme is a significant development for the generation of
the NOON state with superconducting circuit QED, and we hope
that the proposed scheme will stimulate further experimental activ-
ities. Finally, it is noted that this proposal is quite general and can be
applied when the coupler qutrit is a different physical system such as

a quantum dot, an NV center, and a superconducting flux, charge, or
phase qutrit.

Methods
Hamiltonian and Jaynes-Cumming evolution. Consider that resonator b is
decoupled from the qutrit, while resonator a is coupled to the jgæ « jeæ transition of
the qutrit but is decoupled from (far off-resonant with) the jeæ « jfæ transition
[Fig. 2(a)]. In this case, the Hamiltonian of the whole system in the Schrödinger
picture is given by H 5 H0 1 Hint, with

H0~Eg gj i gh jzEe ej i eh jzEf fj i fh jz�hvaazaz�hvbbzb,

Hint~�h geg az gj i eh j
� �

zh:c:,
ð16Þ

where va (vb) is the frequency of resonator a (b), H0 is the free Hamiltonian of the
whole system, and Hint is the interaction Hamiltonian between the qutrit and
resonator a. In the interaction picture with respect to the free Hamiltonian H0, one
can easily get

HI~eiH0 t=�hHinte
iH0 t=�h

~�h geg e{i veg {vað Þt az gj i eh j
h i

zh:c:,
ð17Þ

where weg~ Ee{Eg
� ��

�h is the transition frequency between the two levels jgæ and jeæ
of the qutrit. In the case when veg 5 va, i.e., resonator a is resonant with the jgæ « jeæ
transition of the qutrit, the Hamiltonian (17) becomes HI~�h geg az gj i eh j

� �
zh:c:,

which is the Hamiltonian used for the first N steps of the NOON state preparation. It
is easy to show that under this Hamiltonian, the time evolution of the state jeæ jnæa of
the qutrit and the resonator a is described by

ej i nj ia? cos
ffiffiffiffiffiffiffiffiffiffi
nz1
p

geg t
� �

ej i nj ia{i sin
ffiffiffiffiffiffiffiffiffiffi
nz1
p

geg t
� �

gj i nz1j ia, ð18Þ

where jnæa and jn 1 1æa are the photon-number states of resonator a. Choosing
t~p

�
2
ffiffiffiffiffiffiffiffiffiffi
nz1
p

geg
� �

, we obtain the transformation jeæ jnæa R 2i jgæ jn 1 1æa, which
was used for the first N steps of the NOON state preparation above.

Next, consider that resonator a is decoupled from the qutrit, while resonator b is
resonant with the jeæ « jfæ transition of the qutrit but is far off-resonant with the jgæ
« jeæ transition [Fig. 2(c)]. In this case, the Hamiltonian in the interaction picture is
HI~�h gfebz ej i fh j

� �
zh:c:, which is the one used for the second N steps of the NOON

state preparation. It is straightforward to show that under this Hamiltonian, the time
evolution of the state jfæ jnæb of the qutrit and the resonator b is characterized by

fj i nj ib? cos
ffiffiffiffiffiffiffiffiffiffi
nz1
p

gfet
� �

fj i nj ib{i sin
ffiffiffiffiffiffiffiffiffiffi
nz1
p

gfet
� �

ej i nz1j ib, ð19Þ

where jnæb and jn 1 1æb are the photon-number states of resonator b. For
t~p

�
2
ffiffiffiffiffiffiffiffiffiffi
nz1
p

gfe
� �

, we have jfæ jnæb R 2i jeæ jn 1 1æb, which was used for the second
N steps of the NOON state preparation above.

Qutrit-pulse resonant interaction. When a classical pulse is resonant with the
transition between the level jkæ and the higher-energy level jlæ of the qutrit, the
interaction Hamiltonian in the interaction picture is given by HI 5VlkeiQ jkæ Ælj1 h.c..
From this Hamiltonian, it is easy to find that a pulse of duration t results in the
following rotation

kj i? cos Vlktð Þ kj i{ie{iQ sin Vlktð Þ lj i: ð20Þ

Based on Eq. (20), one can see that when the two levels jkæ and jlæ are jgæ and jeæ of the
qutrit, we have the transformation jgæ « jeæ for Q 5 2p/2 and t 5 p/(2Veg), which
was used for the first N 2 1 steps and the last step of the NOON state preparation. On
the other hand, Eq. (20) shows that when the two levels jkæ and jlæ are jeæ and jfæ of the
qutrit, we have the transformation jeæ R jfæ for Q 5 2p/2 and t 5 p/(2Vfe), which was
used for the first N 2 1 of the second N steps of the NOON state preparation.
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