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(-)-Pentazocine induces visceral chemical
antinociception, but not thermal, mechanical, or
somatic chemical antinociception, in μ-opioid
receptor knockout mice
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Abstract

Background: (-)-Pentazocine has been hypothesized to induce analgesia via the �-opioid (KOP) receptor, although
the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study,
we investigated the role of the μ-opioid (MOP) receptor in thermal, mechanical, and chemical antinociception
induced by (-)-pentazocine using MOP receptor knockout (MOP-KO) mice.

Results: (-)-Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was
significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice.
The results obtained from the (-)-pentazocine-induced mechanical and somatic chemical antinociception
experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the
thermal antinociception experiments in these mice. However, (-)-pentazocine retained its ability to induce
significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect
that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. In vitro binding
and cyclic adenosine monophosphate assays showed that (-)-pentazocine possessed higher affinity for KOP and
MOP receptors than for δ-opioid receptors.

Conclusions: The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical
antinociceptive effects of (-)-pentazocine and retention of the visceral chemical antinociceptive effects of
(-)-pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal,
mechanical, and somatic chemical antinociception induced by (-)-pentazocine, whereas the KOP receptor is
involved in visceral chemical antinociception induced by (-)-pentazocine.
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Background
The racemic compound (±)-pentazocine is used for the
management of mild to moderate pain in humans.
(-)-Pentazocine is known to act as an opioid analgesic,
and (+)-pentazocine is a s receptor agonist without
analgesic effects. The antinociceptive effects of (-)-pen-
tazocine are reportedly mediated by its agonist action
at the �-opioid (KOP) receptor [1]. A previous report

showed that the antinociceptive effects of (-)-pentazo-
cine were antagonized by nor-binaltorphimine (nor-
BNI, a selective KOP receptor antagonist) but not by
b-funaltrexamine (a selective μ-opioid [MOP] receptor
antagonist) in the mouse tail-flick test [2]. However,
(-)-pentazocine reportedly binds not only KOP recep-
tors but also MOP receptors with high affinity [2] and
acts as a MOP receptor partial agonist. Furthermore,
the antinociceptive effects of (-)-pentazocine were
antagonized by b-funaltrexamine in the mouse hot-
plate test [3] and writhing test [4]. Thus, the role of
the MOP receptor in the antinociceptive effects of
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(-)-pentazocine remains unclear. Moreover, the most
selective ligands for specific opioid receptor subtypes
(e.g., b-funaltrexamine for the MOP receptor, naltrin-
dole for the δ-opioid [DOP] receptor, and nor-BNI for
the KOP receptor) possess certain affinities for other
opioid receptor subtypes [5]. Thus, the precise molecu-
lar mechanisms that underlie the antinociceptive
effects of (-)-pentazocine have not been clearly deli-
neated by traditional pharmacological studies that use
only selective ligands.
Developing mice that lack the MOP receptor gene has

made possible the discovery of the molecular mechan-
isms that underlie the effects of opioids [6-9]. Both the
analgesic and rewarding effects of morphine are abol-
ished in MOP receptor knockout (MOP-KO) mice [7-9].
Buprenorphine, a nonselective opioid receptor partial
agonist, exerts no analgesic effects in the tail-flick and
hot-plate tests but a significant rewarding effect in the
conditioned place preference paradigm in homozygous
MOP-KO mice [10]. These observations are especially
interesting because the distributions of DOP and KOP
receptors are not apparently altered in MOP-KO mice
[6,7,9]. Furthermore, butorphanol, a nonselective opioid
receptor partial agonist, exerts no thermal or mechanical
antinociceptive effects but exerts visceral chemical anti-
nociceptive effects that are sensitive to nor-BNI in
MOP-KO mice [11]. Although several compensatory
changes might occur in KO animals, these animal mod-
els have potential utility in the investigation of the in
vivo roles of specific proteins. Thus, the use of MOP-
KO mice has provided novel theories on the molecular
mechanisms that underlie the effects of opioid ligands.
The present study investigated the molecular mechan-
isms that underlie the antinociceptive effects of (-)-pen-
tazocine using various types of nociceptive stimuli in
MOP-KO mice.

Methods
Animals
The present study used wildtype, heterozygous, and
homozygous MOP-KO mouse littermates from hetero-
zygous/heterozygous MOP-KO crosses on a C57BL/6J
genetic background (backcrossed at least 10 generations)
as previously described [8]. The experimental proce-
dures and housing conditions were approved by the
Institutional Animal Care and Use Committee, and all
animal care and treatment were in accordance with our
institutional animal experimentation guidelines. Naive
adult (>10 weeks old) male and female mice were group
housed in an animal facility maintained at 22 ± 2°C and
55 ± 5% relative humidity under a 12 h/12 h light/dark
cycle with lights on at 8:00 AM and off at 8:00 PM.
Food and water were available ad libitum.

Drugs
(-)-Pentazocine and nor-BNI dihydrochloride were pur-
chased from Sigma Chemical Co. (St. Louis, MO). For
the in vitro assays, [D-Ala2,N-MePhe4,Gly-ol5]enkephalin
(DAMGO), a MOP-selective agonist, and [D-Pen2,D-
Pen5]enkephalin (DPDPE), a DOP agonist, were pur-
chased from Peninsula Laboratories Ltd. (Merseyside,
UK). (+)-(5a,7a,8b)-N-methyl-N-[7-(1-pyrrolidinyl)-1-
oxaspirol[4,5]dec-8-yl]benzeneacetamide (U69593), a
KOP-selective agonist, was a gift from Upjohn (Kalama-
zoo, MI). [tyrosyl-3,5-3H(N)]DAMGO (50.5 Ci/mmol),
[phenyl-3,4-3H]U69593 (47.5 Ci/mmol), and [tyrosyl-
2,6-3H(N)]DPDPE (33.0 Ci/mmol) were purchased from
DuPont-New England Nuclear (Boston, MA).

Antinociceptive tests
Thermal antinociception was evaluated using the hot-
plate and tail-flick tests. Hot-plate testing was performed
according to the method of Woolfe and MacDonald
(1944) [12] with slight modifications. A commercially
available apparatus that consisted of an acrylic resin
cage (20 × 25 × 25 cm, width × length × height) and a
temperature-controlled aluminum plate (Model MK-
350A, Muromachi Kikai Co., Tokyo, Japan) was used for
this test. Mice were placed on a 52 ± 0.2°C hot-plate,
and the latencies to lick the hind-paw and jump were
recorded. We selected a relatively low temperature (52°
C) to examine the mild thermal antinociceptive effects
of opioid partial agonists [10]. The cut-off time was 60
s. Tail-flick testing was performed according to the
method of D’Amour and Smith (1941) [13] with slight
modifications using a commercially available apparatus
that consisted of an irradiator for heat stimulation and a
photosensor for the detection of tail-flick behavior
(Model MK-330A, Muromachi Kikai Co., Tokyo, Japan).
The mice were loosely wrapped in a felt towel. Their
tails were heated, and tail-flick latencies were automati-
cally recorded. The cut-off time was 15 s. The tail-flick
test was followed by the hot-plate test, and both tests
were conducted in the same mice. Mechanical antinoci-
ception was evaluated using the hind-paw pressure test
according to the method of Randall and Selitto (1957)
[14] with slight modifications using a commercially
available apparatus (Pressure Analgesy-Meter, Model
MK-201D, Muromachi Kikai Co., Tokyo, Japan). The
mice were loosely wrapped in a felt towel. Their hind-
paws were gradually pressed, and hind-paw withdrawal
and struggle latencies were automatically recorded. The
cut-off pressure was 250 mmHg. The drug injection
volume was 10 ml/kg. (-)-Pentazocine was administered
at doses of 3, 7, 20, and 26 mg/kg (s.c.), for cumulative
doses of 3, 10, 30, and 56 mg/kg, respectively. Tail-flick,
hot-plate, and hind-paw pressure tests were conducted
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20 min after each drug injection, and then the next dose
of drug was injected immediately after these tests.
The hot-plate, tail-flick, and hind-paw pressure

responses of each mouse in the drug-induced antinoci-
ception tests were converted to the percentage of maxi-
mal possible effect (%MPE) according to the following
formula:

%MPE =
(
postdrug latency − predrug latency

)
/

(
cut − off time or pressure

) − predrug latency) × 100%

Visceral chemical antinociception was evaluated using
the writhing test (Collier et al., 1968) [15]. Acetic acid
(0.6% v/v, 10 ml/kg) was injected intraperitoneally (i.p.),
and the mouse was placed in a large plastic cage. The
intensity of nociceptive behavior was quantified by
counting the total number of writhes that occurred
between 0 and 15 min after the acetic acid injection.
The writhing response consists of contraction of the
abdominal muscles. Nociception is expressed as a wri-
thing score during the 15 min period. (-)-Pentazocine
(10 mg/kg, s.c.) or saline was administered 10 min
before the acetic acid injection in a blind manner. nor-
BNI (10 and 20 mg/kg, s.c.) was administered 24 h
before the (-)-pentazocine injection.
Somatic chemical antinociception was evaluated using

the formalin test in a blind manner as previously
described [16]. Formalin (5% v/v, 20 μl) was injected
into the right hind-paw (intraplantar), and the mouse
was placed in a large plastic cage. The amount of time
the mouse spent elevating, licking, shaking, or biting the
injected paw was measured for each 5 min period dur-
ing a 60 min session. Nociception was quantified using
a rating scale by assigning weights to the following cate-
gories of nociceptive behavior: category 0 (weight is
evenly distributed among all paws), category 1 (injected
paw is lifted), category 2 (injected paw is licked, shaken,
or bitten). The nociceptive score was calculated for each
5 min (300 s) period using the following formula:

Nociceptive score = {(time [s] spent lifting the injected paw
) × 1+

(
time [s] spent licking, shaking, or biting the injected paw

) × 2}/300 s.

(-)-Pentazocine (10 mg/kg, s.c.) or saline was adminis-
tered 10 min before formalin injection (intraplantar) in
a blind manner.

Stable expression of human opioid receptors in Chinese
hamster ovary cells
Chinese hamster ovary (CHO) cell lines that stably
express human MOP, DOP, and KOP (MOP/CHO,
DOP/CHO, and KOP/CHO, respectively) were estab-
lished as previously described [10]. The Kd values of
[3H]DAMGO binding to MOP, [3H]DPDPE binding to
DOP, and [3H]U69593 binding to KOP were 1.7 ± 0.3

nM (n = 4), 2.2 ± 0.2 nM (n = 4), and 2.5 ± 0.2 nM (n
= 3), respectively. The Bmax estimates of receptor densi-
ties in these cell lines were 2300 ± 160, 3000 ± 270, and
5000 ± 450 fmol/mg protein, respectively.

Radioligand binding assay
Binding assays were performed as previously described
[17] with slight modifications. Expressing cells were har-
vested after 65 h in culture, homogenized in 50 mM
Tris buffer (pH 7.4) that contained 10 mM MgCl2 and 1
mM EDTA, pelleted by centrifugation for 20 min at
30000 × g, and resuspended in the same buffer. For the
saturation binding assays, cell membrane suspensions
were incubated for 60 min at 25°C with various concen-
trations of [3H]DAMGO for the human MOP receptor,
[3H]DPDPE for the human DOP receptor, or [3H]
U69593 for the human KOP receptor. Nonspecific bind-
ing was determined in the presence of 10 mM unlabeled
ligands. For the competitive binding assays, the cell
membrane suspensions were incubated for 60 min at
25°C with 2 nM [3H]DAMGO for the human MOP
receptor, 2 nM [3H]DPDPE for the human DOP recep-
tor, or 3 nM [3H]U69593 for the human KOP receptor
in the presence of various concentrations of ligands.
After incubation for 60 min, the membrane suspensions
were rapidly filtrated, and the radioactivity of each filter
was then measured by liquid scintillation counting. The
Kd values of the radiolabeled ligands were obtained by
Scatchard analysis of the data from the saturation bind-
ing assay. For the competitive binding assay, non-linear
regression analysis using a one-competition model
(GraphPad Prism, GraphPad, San Diego, CA) was con-
ducted to estimate the inhibitory concentration at 50%
(IC50). Ki values were calculated from the IC50 values
obtained from the competitive binding assay using the
equation Ki = IC50 /(1 + [radiolabeled ligand]/Kd),
where IC50 is the concentration of unlabeled ligand that
produces 50% inhibition of the specific binding of radi-
olabeled ligand. The binding assay results are expressed
as the mean ± SEM of four independent experiments,
each performed in duplicate.

cAMP assay
3’,5’-Cyclic adenosine monophosphate (cAMP) assays
were performed as previously described [17] with slight
modifications. Briefly, 105 cells were placed into each
well of a 24-well plate, grown for 24 h, washed, and
incubated with 0.45 ml HEPES-buffered saline that con-
tained 1 mM 3-isobutyl-1-methylxanthine for 10 min at
37°C. The cells were then stimulated for 10 min by the
addition of 50 ml HEPES-buffered saline that contained
100 mM forskolin and 1 mM 3-isobutyl-1-methyl-
xanthine in the presence or absence of various concen-
trations of opioid ligands and then disrupted by adding
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0.5 ml ice-cold 10% trichloroacetic acid to each well.
The concentrations of cAMP were measured by radio-
immunoassay (Amersham, Buckinghamshire, UK).
cAMP accumulation is expressed as a fraction of the
control value obtained without the addition of opioids.
Inhibition curves were generated using non-linear least-
squares fit using GraphPad Prism (GraphPad, San
Diego, CA). IC50 values were calculated as the concen-
tration of ligand that produces 50% of maximal inhibi-
tion of cAMP accumulation. The IC50 values and
maximal inhibitory effects (Imax) in the cAMP assays are
expressed as mean ± SEM of four independent experi-
ments, each performed in triplicate.

Statistical analyses
The dose-response functions of the thermal and
mechanical antinociceptive effects of (-)-pentazocine
were statistically evaluated by three-way, mixed-design
analysis of variance (ANOVA) with two between-sub-
jects factors (sex and genotype) and one within-subjects
factor (drug dose). Differences among genotypes were
statistically evaluated by two-way, mixed-design
ANOVA followed by the Bonferroni post hoc test. The
visceral chemical antinociceptive effects of (-)-pentazo-
cine were analyzed by one-way and two-way factorial
ANOVA followed by the Bonferroni post hoc test. The
somatic chemical antinociceptive effects of (-)-pentazo-
cine were statistically evaluated by four-way, mixed-
design ANOVA with three between-subjects factors
(drug treatment, sex, and genotype) and one within-sub-
jects factor (time). The sum of the nociceptive scores
during the 1st (0-15 min) and 2nd (15-60 min) phases
were statistically evaluated by one-way factorial ANOVA
followed by the Bonferroni post hoc test. The sum of the
nociceptive scores of the (-)-pentazocine-treated groups
were also analyzed by two-way factorial ANOVA with
two between-subjects factors (genotype and sex). Values
of p < 0.05 were considered statistically significant.

Results
Thermal antinociceptive effects
The thermal antinociceptive dose-response relationships
of (-)-pentazocine were analyzed in wildtype, heterozy-
gous, and homozygous MOP-KO mice (Figure 1).
(-)-Pentazocine dose-dependently induced thermal anti-
nociceptive effects in both wildtype and heterozygous
MOP-KO mice but not in homozygous MOP-KO mice.
Three-way, mixed-design ANOVA revealed that the
thermal antinociceptive effects of (-)-pentazocine (%
MPE) were significantly different among these genotypes
in both the hot-plate test (significant difference between
genotypes, F2,31 = 34.39, p < 0.001; significant genotype
× dose interaction, F8,124 = 13.53, p < 0.001; Figure 1A,

B) and tail-flick test (significant difference between gen-
otypes, F2,31 = 76.84, p < 0.001; significant genotype ×
dose interaction, F8,124 = 18.34, p < 0.001; Figure 1C,
D). The thermal antinociceptive effects of (-)-pentazo-
cine were significantly different between male and
female mice in the hot-plate test (significant difference
between sexes, F1,31 = 8.82, p < 0.01; significant sex ×
dose interaction, F4,124 = 4.16, p < 0.01; Figure 1B) but
not in the tail-flick test (no significant difference
between sexes, F1,31 = 2.30, p = 0.14; no sex × dose
interaction, F4,124 = 0.78, p = 0.54; Figure 1D). Although
the thermal antinociceptive effects of (-)-pentazocine in
the tail-flick test tended to be more pronounced in male
mice than in female mice, these differences were signifi-
cant only in the hot-plate test.
In the hot-plate test, two-way, mixed-design ANOVA

revealed that the thermal antinociceptive effects of
(-)-pentazocine were significantly different among geno-
types in both males (F2,18 = 18.23, p < 0.001) and
females (F2,13 = 27.05, p < 0.001; Figure 1B). The ther-
mal antinociceptive effects of (-)-pentazocine in hetero-
zygous and homozygous MOP-KO female mice were
significantly lower than in wildtype female mice (p <
0.05, Bonferroni post hoc test). By contrast, these effects
only in homozygous MOP-KO male mice were signifi-
cantly lower than in wildtype male mice (p < 0.05, Bon-
ferroni post hoc test). Furthermore, two-way, mixed-
design ANOVA also revealed that the thermal antinoci-
ceptive effects of (-)-pentazocine were significantly dif-
ferent between male and female heterozygous MOP-KO
mice (F1,10 = 8.31, p < 0.05) but not in wildtype and
homozygous MOP-KO mice.
In the tail-flick test, two-way, mixed-design ANOVA

revealed that the thermal antinociceptive effects of
(-)-pentazocine were significantly different among geno-
types (F2,34 = 78.85, p < 0.001; Figure 1C, D). The ther-
mal antinociceptive effects of (-)-pentazocine in
heterozygous and homozygous MOP-KO mice were sig-
nificantly lower than in wildtype mice (p < 0.05, Bonfer-
roni post hoc test).

Mechanical antinociceptive effects
The mechanical antinociceptive effects of (-)-pentazo-
cine were then analyzed in wildtype, heterozygous, and
homozygous MOP-KO mice (Figure 2). (-)-Pentazocine
showed dose-dependent mechanical antinociceptive
effects in both wildtype and heterozygous MOP-KO
mice but not in homozygous MOP-KO mice. Three-
way, mixed-design ANOVA revealed that the mechani-
cal antinociceptive effects of (-)-pentazocine were signif-
icantly different among these genotypes in the hind-paw
pressure test (significant difference between genotypes,
F2,19 = 233.2, p < 0.001; significant genotype × dose
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interaction, F8,76 = 38.29, p < 0.001; Figure 2). In con-
trast, these effects in the hind-paw pressure test were
not significantly different between male and female mice
(no significant difference between sexes, F1,19 = 0.58, p
= 0.45; no sex × dose interaction, F4,124 = 0.78, p = 0.54;
Figure 2B). Two-way, mixed-design ANOVA revealed
that the mechanical antinociceptive effects of (-)-penta-
zocine were significantly different among genotypes
(F2,22 = 257.5, p < 0.001; Figure 2A). The mechanical
antinociceptive effects of (-)-pentazocine in both hetero-
zygous and homozygous MOP-KO mice were signifi-
cantly lower than in wildtype mice (p < 0.05, Bonferroni
post hoc test).

Visceral chemical antinociceptive effects
The visceral chemical antinociceptive effects of (-)-pen-
tazocine (10 mg/kg, s.c.) were analyzed in wildtype, het-
erozygous, and homozygous MOP-KO mice using the
writhing test. Interestingly, (-)-pentazocine induced visc-
eral chemical antinociceptive effects not only in wildtype
and heterozygous MOP-KO mice, but also in homozy-
gous MOP-KO mice. One-way factorial ANOVA
revealed that (-)-pentazocine significantly decreased wri-
thing (Figure 3A) in wildtype mice (F1,17 = 128.1, p <
0.001), heterozygous MOP-KO mice (F1,16 = 125.4, p <
0.001), and homozygous MOP-KO mice (F1,18 = 87.40, p
< 0.001). Although no significant differences in writhing

Figure 1 Thermal antinociceptive effects of (-)-pentazocine in wildtype, heterozygous, and homozygous MOP-KO mice. (-)-Pentazocine-
induced alterations of %MPE in the hot-plate (A, B) and tail-flick (C, D) tests in wildtype (+/+; [A, C] closed circles, n = 12; [B, D] gray closed
circles [male, n = 6], open circles [female, n = 6]), heterozygous (+/-; [A, C] closed triangles, n = 12; [B, D] gray closed triangles [male, n = 7],
open triangles [female, n = 5]), and homozygous (-/-; [A, C] closed squares, n = 13; [B, D] gray closed squares [male, n = 8], open squares
[female, n = 5]) MOP-KO mice under a cumulative dose-response paradigm. (A, C) Combined data of male and female mice. #p < 0.05,
significantly different from wildtype mice. (B, D) #p < 0.05, significantly different from male wildtype mice; *p < 0.05, significantly different from
female wildtype mice. Data are expressed as mean ± SEM.
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counts were observed in the saline-treated groups, two-
way factorial ANOVA with two between-subjects factors
(genotype and sex) showed significant differences in wri-
thing counts between genotypes in the (-)-pentazocine-
treated group (F2,26 = 12.06, p < 0.001). Furthermore,
writhing counts in female mice in the (-)-pentazocine-
treated group were higher than in male mice (F1,26 =
4.42, p < 0.05; Figure 3B). Writhing counts in (-)-penta-
zocine-treated homozygous MOP-KO mice were

significantly higher than in both male and female wild-
type mice treated with (-)-pentazocine (p < 0.05, Bonfer-
roni post hoc test).
The remaining visceral chemical antinociceptive

effects of (-)-pentazocine in homozygous MOP-KO mice

Figure 2 Mechanical antinociceptive effects of (-)-pentazocine
in wildtype, heterozygous, and homozygous MOP-KO mice.
(-)-Pentazocine-induced alterations of %MPE in the hind-paw
pressure test in wildtype (+/+; [A] closed circles, n = 8; [B] gray
closed circles [male, n = 4], open circles [female, n = 4]),
heterozygous (+/-; [A] closed triangles, n = 9; [B] gray closed
triangles [male, n = 4], open triangles [female, n = 5]), and
homozygous (-/-; [A] closed squares, n = 8; [B] gray closed squares
[male, n = 4], open squares [female, n = 4]) MOP-KO mice under a
cumulative dose-response paradigm. (A) Combined data of male
and female mice. #p < 0.05, significantly different from wildtype
mice. (B) #p < 0.05, significantly different from male wildtype mice;
*p < 0.05, significantly different from female wildtype mice. Data are
expressed as mean ± SEM.

Figure 3 Visceral chemical antinociceptive effects of
(-)-pentazocine in wildtype, heterozygous, and homozygous
MOP-KO mice. Writhing counts induced by 0.6% acetic acid (i.p.)
with saline pretreatment in wildtype (+/+; [A] n = 9; [B] male [n = 5],
female [n = 4]), heterozygous (+/-; [A] n = 8; [B] male [n = 8], female
[n = 4]), and homozygous (-/-; [A] n = 8; [B] male [n = 4], female [n =
4]) mice, (-)-pentazocine pretreatment (10 mg/kg, s.c.) in wildtype
(+/+; [A] n = 10; [B] male [n = 5], female [n = 5]), heterozygous (+/-;
[A] n = 10; [B] male [n = 5], female [n = 5]), and homozygous (-/-; [A]
n = 12; [B] male [n = 6], female [n = 6]) MOP-KO mice, and nor-BNI
(10, 20 mg/kg, s.c.) and (-)-pentazocine (10 mg/kg, s.c.) pretreatment
(10 mg/kg nor-BNI: [A] n = 11; [B] male [n = 5], female [n = 6]; 20 mg/
kg nor-BNI: [A] n = 11; [B] male [n = 6], female [n = 5]) in
homozygous MOP-KO mice. (A) Combined data of male and female
mice. (A, B) ###p < 0.001, significantly different from saline
pretreatment; $p < 0.05, significantly different from wildtype mice.
*p < 0.05, significantly different from (-)-pentazocine-pretreated
homozygous MOP-KO mice. Data are expressed as mean ± SEM.
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were dose-dependently antagonized by pretreatment
with nor-BNI (s.c.). Two-way factorial ANOVA with
two between-subjects factors (sex and nor-BNI dose) in
MOP-KO mice revealed a significant difference in wri-
thing counts between nor-BNI doses (F2,28 = 48.07, p <
0.05) but no difference between males and females.
Treatment with 20 mg/kg nor-BNI in MOP-KO mice
significantly antagonized the remaining visceral chemical
antinociceptive effects of (-)-pentazocine (p < 0.05, Bon-
ferroni post hoc test).

Somatic chemical antinociceptive effects
The somatic chemical antinociceptive effects of (-)-pen-
tazocine (10 mg/kg, s.c.) were analyzed in wildtype, het-
erozygous, and homozygous MOP-KO mice using the
formalin test. (-)-Pentazocine exerted somatic chemical
antinociceptive effects in both wildtype and heterozy-
gous MOP-KO mice but not in homozygous MOP-KO
mice (Figure 4). Four-way, mixed-design ANOVA with
three between-subjects factors (sex, genotype, and drug
treatment) and one within-subjects factor (time)
revealed that the nociceptive scores in the formalin test
were significantly different among these genotypes (sig-
nificant difference between genotypes, F2,51 = 8.26, p <
0.005; significant genotype × drug treatment interaction,
F2,51 = 11.45, p < 0.001; significant genotype × time
interaction, F22,561 = 2.82, p < 0.001; significant genotype
× time × drug treatment interaction, F22,561 = 2.20, p <
0.005; Figure 4A). Moreover, we found a significant dif-
ference between sexes (F1,51 = 7.57, p < 0.01) and a sig-
nificant sex × time interaction (F11,561 = 2.97, p < 0.005)
but no sex × drug treatment interaction.
Two phases of spontaneous nociceptive behavior were

analyzed (phase 1 beginning at 0 min and lasting for 15
min, and phase 2 beginning at 15 min). Therefore, the
effects of (-)-pentazocine were based on the cumulative
number of nociceptive scores for each phase for each
mouse (Figure 4B, C). One-way factorial ANOVA
revealed that (-)-pentazocine significantly decreased
nociceptive scores during both phases (Figure 4B) in
wildtype mice (Phase 1, F1,19 = 16.79, p < 0.005; Phase
2, F1,19 = 99.92, p < 0.001) and heterozygous MOP-KO
mice (Phase 1, F1,18 = 11.46, p < 0.005; Phase 2, F1,18 =
13.97, p < 0.005) but not in homozygous MOP-KO
mice. Although no significant differences in nociceptive
scores were observed in the saline-treated groups, two-
way factorial ANOVA with two between-subjects factors
(genotype and sex) showed significant differences in
nociceptive scores between the genotypes in the (-)-pen-
tazocine-treated groups (Phase 1, F2,26 = 16.33, p <
0.001; Phase 2, F2,26 = 21.81, p < 0.001). The nociceptive
scores of both the heterozygous and homozygous MOP-
KO mice in the (-)-pentazocine-treated groups were sig-
nificantly higher than in wildtype mice during both

Figure 4 Somatic chemical antinociceptive effects of
(-)-pentazocine in wildtype, heterozygous, and homozygous
MOP-KO mice. Time-course of (A) and cumulative (B, C) nociceptive
scores of formalin-induced nociceptive behavior with saline
pretreatment in wildtype (+/+; male [n = 5], female [n = 6]),
heterozygous (+/-; male [n = 5], female [n = 5]), and homozygous
(-/-; male [n = 5], female [n = 5]) mice and (-)-pentazocine
pretreatment (10 mg/kg, s.c.) in wildtype (+/+; male [n = 5], female
[n = 5]), heterozygous (+/-; male [n = 5], female [n = 5]), and
homozygous (-/-; male [n = 5], female [n = 7]) MOP-KO mice. (A, B)
Combined data of male and female mice. (A-C) #p < 0.05, ##p <
0.005, ###p < 0.001, significantly different from saline pretreatment.
(B, C) *p < 0.05, **p < 0.005, ***p < 0.001, significantly different from
wildtype mice. Data are expressed as mean ± SEM.
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phases (p < 0.05, Bonferroni post hoc test). By contrast,
although the nociceptive scores of female mice in the
(-)-pentazocine-treated groups tended to be higher than
those of male mice, no significant differences were
observed between sexes (Phase 1, F1,26 = 3.50, p = 0.073;
Phase 2, F1,26 = 1.59, p = 0.219; Figure 4C).

Binding characteristics
(-)-Pentazocine competition experiments using mem-
branes prepared from MOP/CHO, DOP/CHO, and
KOP/CHO cells revealed apparent binding affinities for
each opioid receptor subtype (Figure 5A, Table 1).
(-)-Pentazocine bound with higher affinity than mor-
phine to membranes prepared from KOP/CHO cells.
The morphine results were obtained from previous data
[17] that were reanalyzed according to the present
methods. Although the affinity of (-)-pentazocine for the
KOP receptor was slightly higher than for the MOP
receptor, (-)-pentazocine showed moderate affinity for
the MOP receptor. The affinities of (-)-pentazocine for
MOP and KOP receptors were higher than for DOP
receptors.

cAMP assay
The effects of (-)-pentazocine on forskolin-stimulated
cAMP accumulation in MOP/CHO, DOP/CHO, and
KOP/CHO cells were also tested. (-)-Pentazocine con-
centration-dependently suppressed forskolin-stimulated
cAMP accumulation in all three cell types (Figure 5B).
The Imax values of (-)-pentazocine were lower than
those of morphine for MOP/CHO cells and were the
same as those of morphine for DOP/CHO and KOP/
CHO cells (Table 1). The IC50 values of (-)-pentazocine
were lower than those of morphine for DOP/CHO and
KOP/CHO cells (Table 1). The morphine results were
obtained from previous data [17] that were reanalyzed
according to the present methods. The IC50 values of
(-)-pentazocine for MOP/CHO cells were nearly the
same as those for KOP/CHO cells.

Discussion
In the present study, the antinociceptive effects of
(-)-pentazocine on various types of nociceptive stimuli
were significantly reduced in heterozygous and homozy-
gous MOP-KO mice compared with wildtype mice. The
antinociceptive effects of (-)-pentazocine in these tests
increased in a MOP receptor gene dose-dependent fash-
ion. The copy numbers of the MOP receptor gene are
zero in homozygous MOP-KO mice, one in heterozy-
gous MOP-KO mice, and two in wildtype mice. These
results were obtained in not only male but also female
mice, although female mice may respond differently in
pain tests during different phases of their estrous cycle
[18]. These results suggest that the MOP receptor is the

main opioid receptor involved in (-)-pentazocine-
induced antinociception. The antinociceptive effects of
(-)-pentazocine were previously hypothesized to be
mediated by its agonist action at KOP receptors [13]. A
previous report showed that the antinociceptive effects
of (-)-pentazocine were antagonized by nor-BNI, a selec-
tive KOP receptor antagonist, but not by b-funaltrexa-
mine, a selective MOP receptor antagonist, in the
mouse tail-flick test [3]. However, other groups reported
that the antinociceptive effects of (-)-pentazocine were

Figure 5 Binding properties and agonist effects of
(-)-pentazocine on human opioid receptor subtypes. (A) Binding
properties of (-)-pentazocine for displacement of specific binding of
2 nM [3H]DAMGO, 2 nM [3H]DPDPE, and 3 nM [3H]U69593 to
membranes of MOP/CHO cells (closed circles, n = 4), DOP/CHO cells
(closed squares, n = 4), and KOP/CHO cells (closed triangles, n = 4),
respectively. Data are expressed as mean ± SEM. (B) Agonist effects
of (-)-pentazocine on forskolin-stimulated cAMP production in MOP/
CHO cells (closed circles, n = 4), DOP/CHO cells (closed squares, n =
4), and KOP/CHO cells (closed triangles, n = 4). Intracellular cAMP
levels in the cells incubated with 10 mM forskolin alone served as
controls (100%). Data are expressed as mean ± SEM.
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antagonized by b-funaltrexamine in the mouse hot-plate
test [3] and writhing test [4]. The discrepancy between
these studies might be attributable to differences in the
type of nociceptive test, strain of mice, or injection
route. Furthermore, the most selective ligands for a spe-
cific subtype of opioid receptors possess certain affinities
for other opioid receptor subtypes [5]. Some in vivo stu-
dies also demonstrated antagonist effects of nor-BNI at
other opioid receptor subtypes [19,20]. Thus, the role of
the MOP receptor in the antinociceptive effects of
(-)-pentazocine has not been clearly evaluated by tradi-
tional pharmacological studies that only used selective
ligands. The results of our in vitro experiments that
used human MOP, DOP, and KOP receptor cDNA sug-
gest that (-)-pentazocine induces its antinociceptive
effects via the MOP receptor in humans. Although
(-)-pentazocine bound to human MOP receptor with
moderate affinity and showed moderate Imax values for
the MOP receptor in the cAMP assays, (-)-pentazocine
had high IC50 values for the MOP receptor in the
cAMP assays, which were nearly the same as the IC50

values for the KOP receptor and the IC50 values of mor-
phine for the MOP receptor. These results suggest that
the MOP receptor could be involved in the antinocicep-
tive effects of (-)-pentazocine in humans and rodents.
The antinociceptive effects of morphine, a MOP

receptor agonist with low affinity for DOP and KOP
receptors, are reduced in several strains of heterozygous
MOP-KO mice and completely abolished in homozy-
gous MOP-KO mice [7-9]. Furthermore, the thermal
and mechanical antinociception induced by buprenor-
phine and butorphanol, nonselective opioid receptor
partial agonists, are abolished in MOP-KO mice [10,11].
In contrast, the antinociceptive effects of morphine are
not altered in mice that lack the DOP receptor [21] or
in mice that lack the KOP receptor [22]. The present
results, together with these previous reports, suggest

that the MOP receptor may play a critical role in the
analgesia induced by opioid partial agonists. MOP
receptor tolerance and inactivation or individual differ-
ences in the number of MOP receptors are thus impor-
tant for most of the variations in the degree of analgesia
induced by opioids. Still unclear, however, is whether
DOP and KOP receptors modulate the antinociceptive
effects of not only (-)-pentazocine but also other opioid
partial agonists. Further studies of DOP-KO, KOP-KO,
and double DOP/KOP-KO mice will reveal the mechan-
isms that underlie these antinociceptive effects.
In contrast to thermal, mechanical, and somatic che-

mical antinociception, (-)-pentazocine exerted significant
visceral chemical antinociception in homozygous MOP-
KO mice, although the visceral chemical antinociceptive
effects of (-)-pentazocine increased in a MOP receptor
gene dose-dependent fashion. The residual visceral che-
mical antinociception induced by (-)-pentazocine was
abolished by pretreatment with nor-BNI. These results
indicate that both MOP and KOP receptors play domi-
nant roles in (-)-pentazocine-induced visceral chemical
antinociception, which is consistent with previous
reports. The enhanced response of KOP-KO mice in the
acetic acid writhing test has been previously demon-
strated [22]. Furthermore, butorphanol has been shown
to abolish thermal and mechanical antinociception and
the nor-BNI-sensitive retention of visceral chemical
antinociception in MOP-KO mice [11]. The present
results, together with previous studies, suggest that both
MOP and KOP receptors play important roles in visc-
eral chemical analgesia mediated by opioid partial ago-
nists. Furthermore, both MOP and KOP receptor-
selective agonists reportedly exert significant antinoci-
ceptive effects in mice in a visceral mechanical pain
model that utilizes colorectal distension [23], and per-
ipheral KOP receptor agonists reportedly reduce visceral
pain in humans [24]. The pain pathways that mediate

Table 1 Binding properties and agonist effects of (-)-pentazocine and morphine on human opioid receptor subtypes

MOP/CHO DOP/CHO KOP/CHO

Competitive binding assay

Ki value (nM)

(-)-Pentazocine 85.6 ± 13.3 641 ± 88 35.2 ± 2.6

Morphine 21.0 ± 3.7 524 ± 83 247 ± 13

cAMP assay

IC50 (nM)

(-)-Pentazocine 42.8 ± 12.9 255 ± 46 39.6 ± 14.8

Morphine 25.0 ± 9.0 610 ± 220 340 ± 160

Imax (%)

(-)-Pentazocine 52.8 ± 3.0 89.3 ± 4.3 82.1 ± 3.7

Morphine 88.0 ± 3.1 83.7 ± 2.7 84.3 ± 3.3

Morphine data were obtained from a reanalysis of the data in [10].
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visceral and somatic pain have several differences [25].
Notably, treatments with KOP but not MOP or DOP
receptor agonists have been shown to attenuate the
responses of afferent fibers to colorectal distension [26].
The KOP receptor may play a primary role in the anti-
nociceptive effect of opioid agonists on visceral pain via
peripheral mechanisms, and MOP and KOP receptors
may play a role via central mechanisms. The present
results, together with previous studies, suggest that pain
induced by various visceral stimuli can be better con-
trolled by a nonselective opioid that acts at both MOP
and KOP receptors. Further studies on the receptor
mechanisms that underlie the analgesic effects of opioids
will lead to the development of better clinical treatments
of various types of pain.
Sex differences in the antinociceptive effects of

(-)-pentazocine were also demonstrated in the present
study. The antinociceptive effects of (-)-pentazocine
were significantly higher in male than in female mice in
both the hot-plate and writhing tests and tended to be
high in the tail-flick and formalin tests. These sex dif-
ferences appear to be pronounced in heterozygous
MOP-KO mice, although sex differences in the antino-
ciceptive effects of (-)-pentazocine in wildtype mice
might not be noticeable because of a possible ceiling
effect in the present nociceptive tests. The present
results are consistent with previous reports. Pentazocine
has been shown to exert more potent antinociception in
males than in females in both mice [27] and rats [28].
These reports also showed that U50488H, a selective
KOP receptor agonist, and other opioids (e.g., U69593,
bremazocine, and butorphanol) are more effective in
males than in females. Furthermore, with regard to
MOP receptor-selective agonists, morphine exerted
greater antinociceptive effects in male than in female
mice [29], rats [30,31], and monkeys [32]. Additionally,
female mice may differentially respond in pain tests
during different phases of their estrous cycle [18]. In
humans, males required less morphine or fentanyl than
females for postoperative pain relief [33,34]. In contrast,
some inconsistent human studies have reported that the
antinociceptive effects of pentazocine on postoperative
pain were higher in females than in males [35-37]. The
discrepancy between these studies might be attributable
to differences in the body weight-adjusted dose of pen-
tazocine, although other factors (e.g., type of nociceptive
stimulus, type of clinical surgery, estrous cycle phase,
patient race, and ethnicity) might affect these results.
Thus, the present results, together with previous
reports, suggest that not only MOP receptor-selective
opioids, but also other subtype-nonselective opioids
such as pentazocine, are more effective in males than in
females.

Conclusions
The present study demonstrated the abolition of the
thermal, mechanical, and somatic chemical antinocicep-
tive effects of (-)-pentazocine in male and female MOP-
KO mice, suggesting that thermal, mechanical, and
somatic chemical antinociception induced by (-)-penta-
zocine is completely mediated by the MOP receptor par-
tial agonist effects of (-)-pentazocine. We also
demonstrated the retention of (-)-pentazocine-induced
visceral chemical antinociception in MOP-KO mice and
abolition of (-)-pentazocine-induced visceral chemical
antinociception by pretreatment with nor-BNI. Our in
vitro data showed that (-)-pentazocine more strongly
acted at KOP and MOP receptors than DOP receptors,
suggesting that (-)-pentazocine-induced visceral chemical
antinociception is mediated by its MOP receptor partial
agonist effects and full KOP receptor agonist effects. In
the clinic, (-)-pentazocine may effectively control visceral
pain. Future studies will elucidate the precise molecular
mechanisms that underlie the antinociceptive effects of
(-)-pentazocine and will contribute to the better use of
opioid drugs for pain management.
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