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Abstract: Pancreatic cancer, most commonly referring to pancreatic ductal adenocarcinoma (PDAC),
remains one of the most deadly diseases, with very few effective therapies available. Emerging
as a new modality of modern cancer treatments, immunotherapy has shown promises for various
cancer types. Over the past decades, the potential of immunotherapy in eliciting clinical benefits
in pancreatic cancer have also been extensively explored. It has been demonstrated in preclinical
studies and early phase clinical trials that cancer vaccines were effective in eliciting anti-tumor
immune response, but few have led to a significant improvement in survival. Despite the fact that
immunotherapy with checkpoint blockade (e.g., anti-cytotoxic T-lymphocyte antigen 4 [CTLA-4]
and anti-programmed cell death 1 [PD-1]/PD-L1 antibodies) has shown remarkable and durable
responses in various cancer types, the application of checkpoint inhibitors in pancreatic cancer has
been disappointing so far. It may, in part, due to the unique tumor microenvironment (TME) of
pancreatic cancer, such as existence of excessive stromal matrix and hypovascularity, creating a TME
of strong inhibitory signaling circuits and tremendous physical barriers for immune agent infiltration.
This informs on the need for combination therapy approaches to engender a potent immune response
that can translate to clinical benefits. On the other hand, lack of effective and validated biomarkers to
stratify subgroup of patients who can benefit from immunotherapy poses further challenges for the
realization of precision immune-oncology. Future studies addressing issues such as TME modulation,
biomarker identification and therapeutic combination are warranted. In this review, advances in
immunotherapy for pancreatic cancer were discussed and opportunities as well as challenges for
personalized immune-oncology were addressed.
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1. Introduction

Pancreatic cancer is the fourth leading cause of cancer death for both men and women,
with an annual incidence of approximately 53,000 new cases in the United States, of whom 43,000
are expected to die [1]. Despite a better understanding of tumor biology and optimization of current
treatment modalities, 5-year survival rate of pancreatic cancer is only 5–6% [2]. These sobering
results have spawned the efforts spent on developing novel therapies to improve the treatment
outcomes. Immunotherapy, which targets cancer cells by augmenting the immune system, has become
a game changer in modern cancer cares. Emerging immunotherapeutics including immune checkpoint
blockade antibodies and CAR T cell therapies have led to durable response among responsive patients.
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However, challenges remain as only an objective response rate of 10–30% was observed among those
receiving single agent immunotherapy. There is a growing need for individualized medicine solutions
to guide patient selection by predicting treatment response, to spare patients from ineffective treatment,
and also to avoid toxicity associated with immunotherapy.

With rapid advancement in the technology of next generation sequencing and novel bioinformatics
platforms, molecular and genetic profiling of tumors has become an integral venue to guide
personalized cancer cares. Opportunities for precision medicine have been expanded to the
field of immune-oncology. Integrating immunotherapy with precision medicine by leveraging
molecular, genomic, cellular, clinical, behavioral, physiological, and environmental parameters to
tailor immunotherapy options has generated enormous interests. PD-L1 status, mutation burden
and neoantigen load has been shown in various cancer types to predict positive response to immune
checkpoint inhibitors. More challenges lie in validations of the clinical values of these biomarkers in
selecting the patients for immunotherapy. Particular opportunities and challenges of personalized
immunotherapy exist for pancreatic cancers.

2. Overview of Immune-Biology of Pancreatic Cancer

Cancer immunotherapy is based on the exquisite specificity of both antibodies and T cells to
differentiate the subtle differences between cancer and normal cells and thus mediate a response against
tumor cells. To trigger an effective killing of cancer cells, a series of stepwise events must be initiated
and allowed to proceed and be expanded iteratively [3,4]: (1) release of tumor specific or associated
antigens; (2) antigen presentation (dendritic cells/APCs); (3) priming and activation of T cells;
(4) trafficking of T cells to tumors (CTLs); (5) infiltration of T cells into tumors; (6) recognition of cancer
cells by T cells; (7) killing of cancer cells. Each step of anti-tumor immune response is characterized by
the coordination of numerous factors, with stimulatory factors promoting immunity and inhibitory
factors reducing immune activity or keeping the process in check. Therefore, cancer immunotherapy
has been attempted by targeting each of the rate-limiting steps. Over the last decade, researches have
suggested an immunosuppressive TME (Figure 1) as the fundamental basis for most of the rate-limiting
steps of an effective anti-tumor immune response in pancreatic cancer [5,6].Cancers 2018, 10, x 3 of 15 
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Pancreatic cancer bears unique immunologic hallmarks. With a low-moderate mutational
burden, pancreatic cancer cells are less immunogenic and reside within a dense stromal environment.
The stromal matrix, which comprised of cellular and acellular components, such as fibroblasts,
myofibroblasts, pancreatic stellate cells, immune cells, blood vessels, extracellular matrix and soluble
proteins such as cytokines and growth factors, contributes to tumor growth and promotes metastasis [7].
In line with the excessive desmoplasia, another conundrum of pancreatic cancer is a deficiency
of vasculature, leading to impaired perfusion and drug delivery. The unique TME of pancreatic
cancer gives rise to a series of challenges along multiple steps of anti-tumor immune response:
a lack of strong cancer antigens or epitopes recognized by T cells (Step 1), minimal activation of
cancer-specific T cells (Step 3), poor infiltration of T cells into tumors (Step 5), downregulation of the
major histocompatibility complex on cancer cells (Step 6), and immunosuppressive factors and cells
in the tumor microenvironment (Step 2–7). As a consequence, T cells are largely excluded from the
immediate TME, which may, at least partially, explain the unresponsiveness to checkpoint blockade
therapy (including anti-PD-1/PD-L1 and anti-CTLA-4) [8]. An individual pancreatic cancer patient
can have a deficiency in one or multiple step(s) of anti-tumor immune response. Thus, a personalized
medicine approach will ultimately be required for effective cancer immunotherapy.

3. Biomarkers Identification

3.1. Tumor Microenvironment

3.1.1. PD-L1 Expression

The PD-1/PD-L1 pathway regulates the balance between the stimulatory and inhibitory signals
needed for effective immune responses [9]. In tumors, upregulation of PD-L1 on cancer cells creates
an “immune shield” to protect against immune attack from T cells and contributes to the development
of T-cell exhaustion [10]. This lays the foundation of checkpoint blockade of the PD-1–PD-L pathway to
unleash the effector functions of T cells and reinvigorate the killing of tumor cells, and also highlights
the value of PD-L1 expression as a predictive biomarker for this class of therapy. For tumors reported
with clinical response to the anti-PD-1/PD-L1 therapies including melanoma, renal cell carcinoma
(RCC), non-small cell lung cancer (NSCLC) and bladder cancer, the range of PD-L1 expression falls
from 14% to 100% [11–13]. In the KEYNOTE-010 study, the magnitude of benefit with pembrolizumab
was associated with the levels of PD-L1 expression, with increased survival benefits in patients with
PD-L1 expression ≥ 50% of tumor cells (regardless of the staining intensity with the 22C3 clone) [14].
A further study restricting patient recruitment among PD-L1 ≥ 50% showed a significantly improved
progression free survival and subsequently established pembrolizumab as a first-line treatment for
metastatic NSCLC with PD-L1 expression ≥ 50% [14]. By contrast, a clinical trial based on PD-L1
selection of ≥ 5% showed no survival advantage of nivolumab as the first line treatment compared
to the standard-of-care chemotherapy [15]. Of note, differences in the PD-L1 expression threshold
may not be the single factor contributing to the divergent results of the above two clinical trials;
other factors such as difference in assays of assessing PD-L1 expression and imbalance in baseline
patient characteristics may also have contributed to the difference in the clinical trial results.

In PDACs, reports of PD-L1 expression vary from 12–90% [16–19], suggesting that we do not have
a consensus on the expression of PD-L1 [20,21]. Multiple factors may have contributed to the wide
range of reported expression rates including the specificity of the staining methodology, the difference
in the PD-L1 positivity cutoff, the difference between primary and metastatic lesions, and the inclusion
of tumor vs. immune cells in quantifying PD-L1 expression [22]. However, one important factor may
be the effect of the prior treatment on the expression of PD-L1 [20,22]. Thus, extreme cautions should
be taken in investigating the predictive role of PD-L1 expression for immunotherapy response in
pancreatic cancer. In fact, none of the pancreatic cancer patients without mismatch repair deficiency
has responded to the single-agent anti-PD-1 antibody treatment.
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3.1.2. Tumor Infiltrating Lymphocytes

Tumor infiltrating lymphocytes (TILs) are the immune cell context direct interacting with the
TME and have been shown to act either as a predictive or prognostic factor for treatment in various
cancers [21–25]. In a study in colon cancer, the densities of CD3+, CD8+, granulysin, and granzyme B
(GZMB)+, and CD45RO+ cells in each tumor region (tumor center and invasive margin) were shown
to be prognostic [23]. In melanoma, a significant correlation was observed between the presence
of both TILs and B7-H1 expression in the tumor microenvironment and the response to checkpoint
blockade [26]. Nevertheless, only having positive PD-L1 expression and TILs is not sufficient for
pancreatic cancer responding to anti-PD-1 therapies. In our study evaluating 24 pancreatic ductal
adenocarcinomas from patients who received neoadjuvant GVAX vaccination, although essentially
all the tumors have induction of TILs and PD-L1 expression, the survival of patients is correlated
with the infiltration of myeloid cells [27]. Therefore, only a comprehensive characterization of
the tumor infiltrating immune cells would adequately support the precision medicine practice for
pancreatic cancer.

3.2. Biomarkers in the Genome

3.2.1. Mutations and Mutation Burden

Known as a genetic disease, cancer is initiated by mutations that activate oncogenic drivers and
eventually turn normal cells into cancer cells through activation of genes that promote proliferation
or suppression of genes that modulate apoptosis. In many cancers, oncogenesis is accompanied
by the accumulation of mutations, which lead to generation of neoantigens that capable of eliciting
potent T cell responses and drive response to current immunotherapies [4]. A growing body of
evidence in the past five years have suggested that the overall mutational burden is a predictive
biomarker of checkpoint blockade therapies [28–31]. For example, in tumors with higher spectrum
of somatic mutational burdens, such as melanoma and non–small cell lung cancers, treatment with
anti–PD-1 blockade has resulted in significantly improved survival outcome [14,32,33]. Moreover,
recent research identified truncal mutations, which arise early in oncogenesis and are shared by
almost all of the cancer cells, are more likely to elicit a potent anti-tumor response compared to those
arise later and shared by only a subgroup of cancer cells (branch mutation) [4]. In solid tumors
with mismatch repair (MMR) deficiency, higher mutational burdens were seen [34,35]. In a Phase
II clinical trial of progressive metastatic carcinoma with or without MMR deficiency, whole-exome
sequencing revealed a significantly increased somatic mutations per tumor (mean, 1782 vs. 73) in
MMR–deficient tumors as compared with MMR–proficient tumors. This corresponds to a remarkable
increase in immune-related objective response rate (40% vs. 0%) and prolonged immune-related
progression-free survival rate in MMR-deficient tumors vs. MMR-proficient tumors (78% vs. 11%) [35].
In the subsequent expanded cohort which included 86 advanced MMR-deficient patients across
12 different tumor types, objective radiographic responses were observed in 53% of patients and
complete responses were achieved in 21% of patients [36]. This leads to the recent approval of the
microsatellite instability high condition, the phenotype of mismatch repair deficiency, as a pan-cancer
biomarker for immune checkpoint blockade therapies and set a stage for the development of precision
immuno-oncology. Another potential genetic biomarker is associated with point mutations affecting
DNA replication—polymerase epsilon (POLE) or polymerase delta (POLD1), which have been
reported to exhibit some of the highest mutational burdens identified to date and render patients
with exceptionally mutated (ultramutated) cancers [37–40]. Improved survival has been observed for
POLE-mutated tumors in retrospective studies of conventional therapy setting [21]; and a few case
reports also reported dramatic responses to immune checkpoint blockade [41,42].

In pancreatic cancer, the average mutation burden was reported from 26~67 mutations per
case [43,44], representing a relatively low mutational burden compared to those seen in other solid
tumors. In general, PDAC with more copy number alterations (indicative of chromosomal instability)
exhibited mutations in DNA break repair genes and trended toward poor prognosis [43]. Microsatellite
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instability (MSI) and POLE/POLD1 mutations are found in 2% and 1–2% of patients with pancreatic
cancer, respectively [45]. Favorable outcomes are anecdotally reported for MMR-deficient PDAC [46],
suggesting that even lower incidence of MMR deficiency would be found in the PDAC patients
who require treatment. A retrospective cohort study of resected PDAC (154 in discovery cohort and
95 in replication cohort) clustered PDAC into five predominant mutational subtypes: age related,
double-strand break repair, mismatch repair, and one with unknown etiology. Those with higher
frequency of somatic mutations and tumor-specific neoantigens corresponded to double-strand break
repair and mismatch repair subtypes, which were found to have higher expression of antitumor
immunity, including activation of CD8+ T lymphocytes and overexpression of regulatory molecules
(CTLA-4, PD-1, and indolamine 2,3-dioxygenase 1 [IDO1]) [47]. Moreover, a significant number of
germline mutations that are associated with genes for DNA repair were found in the double-strand
break repair subtype including BRCA1, BRCA2, PALB2, and ATM. These gene mutations render
individuals susceptible to pancreatic cancer and are potential biomarkers for response to targeted
therapy or immunotherapy. Ongoing clinical trials are testing Poly (ADP-ribose) polymerase (PARP)
inhibitors in the small fraction of patients (<10%) with mutations in BRCA2 or other DNA repair genes.

Although high mutation burden is a predictive biomarker for favorable response, individual
mutations may also act as a predictor of inferior anti-cancer immune response, particularly those
cancer-associated driver mutations. Mutations activating the MAP kinase pathway, for example,
the KRAS and BRAF mutations, may attenuate T-cell recognition by down-regulation of the major
histocompatibility complex (MHC) class I antigen-processing factors [48–51]. Notably, KRAS and
BRAF is mutated in 90–95% and 3% of PDAC, respectively [43]. These alterations result in a decrease of
T-cell ligands for antigen presentation (Step 2) and thus attenuating anti-tumor inflammatory response.
Reduced expression of the MHC class I antigen-processing factors enables cancer cell more likely to
escape from immune surveillance and attack, and poses great challenges for effective immunotherapy.
Oncogenic RAS has also been shown to upregulate expression of immunomodulatory cytokines,
such as IL-8 and GM-CSF [52], which subsequently induces the infiltration of myeloid derived
suppressor cells (MDSC) [53]. Other mutations can also attribute to immune resistance. For example,
β-2-microglobulin (B2M) and Janus kinases (JAK1 and JAK2) mutations have been reported to attribute
to primary and secondary resistance to the PD-1 blockade therapy [54,55]. Truncating mutations of
B2M lead to loss of surface expression of MHC class I molecules. Loss-of-function mutations of AK1/2
result in a lack of response to the interferon gamma signaling. Recognizing that B2M and JAK1/2
mutations would lead to lack of response to PD-1 blockade therapy, it has been suggested that these
genes be incorporated in target gene sequencing panels to help select patients for precision cancer
treatments. To validate the predictive value of genomic biomarkers with a low incidence, basket trials
that incorporate precision medicine into hypothesis-driven clinical trials have emerged as a feasible
solution [56]. In these clinical trials, tumors are classified based on genetic alterations instead of tumor
histology. These clinical trials scale the number of patients screened for multiple genetic alterations in
tumors through a large consortium or multi-institution collaboration and assign patients to a treatment
arm corresponding to one particular actionable mutation.

3.2.2. Chromosomal Chaos

Aneuploidy, also known as somatic copy number alterations (SCNAs), is characterized by
the presence of a chaotic chromosomal environment with abnormal number of chromosomes
and chromosomal segments and has been proposed to drive tumorigenesis in various cancer
types [57]. In pancreatic cancer, DNA aneuploidy is an independent factor of poor prognosis [58].
Recently, aneuploidy was found to be associated with decreased expression of cytokines responsible
for tumor destruction (IFN-γ, IL-1A, IL-1B, and IL-2) [59]. In this study, compared to the mutation
number, the level of SCNAs showed a stronger correlation with the cytotoxic immune signature in
most of the tumor types examined, even in those whose mutation numbers positively correlated with
the SCNA levels. Clinical validation of the predictive role of aneuploidy in melanoma patients treated
with anti–CTLA-4 revealed that high SCNA levels were associated with a poorer response [59].
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4. Immunotherapeutic Targets for Pancreatic Cancer

4.1. Immune Checkpoints

Immune checkpoint inhibitors, including anti-CTLA4, anti-PD-1, and anti-PD-L1 antibodies, are
effective as single agents in immune-sensitive cancers like melanoma, renal cell carcinoma and NSCLC,
but lack efficacy in immune-quiescent or resistant cancers such as pancreatic cancer [60–62]. In a phase
II trial, Ipilimumab was administered to 27 patients with locally advanced or metastatic pancreatic
cancer. Unfortunately, no significant improvement in survival was observed [63]. As discussed
previously, PD-L1 was rarely expressed on untreated pancreatic cancer. Therefore, combination
strategies to leverage the potentials of other therapies to turn tumors from immunologically “cold” to
“hot” are a key to achieve the response to immune checkpoint blockade.

4.2. Activating or Introducing Cancer Antigen-Specific T Cells

4.2.1. Tumor Vaccines

Over the last decade, great efforts have been made to explore the role of vaccines in enhancing
the immunogenicity of cancer cells and boosting the T cell response in pancreatic cancer. At the center
of vaccine design is the delivery of tumor antigen to antigen presenting cells (APCs), which plays
a major role orchestrating the immune response [64]. Early studies with single agent tumor vaccines
targeting cancer associated antigens (TSAs) showed improved immune profiles, but have been
largely unsuccessful in inducing a positive clinical response [65]. On the one hand, lack of a strong
immunogenicity of TSAs may have decreased the efficiency of the vaccine. On the other hand,
the excessive immune suppressive TME also contributes significantly to the unresponsiveness.
However, our group has raised the “Priming” hypothesis and demonstrated the role of cancer
vaccine in priming the TME for immune checkpoint blockade therapies. This evidence supports
the combinatorial immunotherapy strategies by providing T cells to immunologic “cold” TME
followed by removing the inhibitory signals in the TME [66–69]. GVAX, which composed of
two granulocyte-macrophage colony-stimulating factor–secreting allogeneic pancreatic tumor cell
lines, induces T-cell immunity to cancer antigens, including mesothelin [70]. In a clinical trial
of 59 patients with resectable pancreatic cancer treated preoperatively with GVAX, infiltration
of T cells and development of tertiary lymphoid structures in the TME were observed in the
tumors resected 2 weeks following the treatment of GVAX, suggesting that the combination therapy
converted a “non-immunogenic” neoplasm into an “immunogenic” neoplasm. In addition, the vaccine
therapy induces the adaptive immune resistance mechanisms, including the PD-1–PD-L1 pathway,
indicates that the vaccine approach could prime pancreatic cancer for immune checkpoint and other
immunomodulatory therapies [17]. This was also evidenced by another trial in which favorable
objective responses were observed among metastatic PDAC patients treated with the combination
of GVAX and Ipilimumab compared to ipilimumab alone [71]. Therefore, combinatorial therapy of
vaccines with immunomodulatory therapies (e.g., Checkpoint blockade) or other treatment modifying
TME would be the best strategy.

4.2.2. Neoantigens and Neoepitopes

The recognition that neoepitope-specific T cells underlies the immune response to checkpoint
inhibitors have pushed neoantigens to the wavefront. Indeed, as tumor neoantigens are non-self to the
host immune system, they are less likely to induce immune tolerance or trigger autoimmunity [72].
As discussed previously, the fact that mutation/neoantigen burden drives immune response and
correlates with clinical outcomes of immune checkpoint blockade strongly supports the use of
neoantigens for therapeutic intervention. In a mouse model, therapeutic vaccines of synthetic mutant
peptides predicted from genomics and bioinformatics approaches showed comparable outcome as
checkpoint blockade in sarcomas [73]. Steven Rosenberg and his group reported that a metastatic
cholangiocarcinoma patient treated with adoptive transfer of TIL containing mutation-specific
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polyfunctional T helper-1 cells achieved notable tumor regression. CD8+PD-1+ neoantigen-specific
lymphocytes detected in the peripheral blood in melanoma patients resembled infiltrating CD8+PD-1+

cells in their tumors, implying that vaccine-induced CD8+PD-1+ lymphocytes could also traffic into
the tumors [74]. These results provide evidence for the rationale to develop personalized therapies
using neoantigen-reactive lymphocytes or T cell receptor (TCR) engineered T cells to treat cancer [75].
Adoptive transfer of T cells targeting the mutant KRAS as a cancer-specific neoantigen is also being
tested [76].

In the initial step of developing personalized neoantigen vaccine, somatic mutations can be
identified by comparing the whole exome sequences and those of matched normal cells [77,78].
Tumor RNA expression profiling will help to filter in those expressed candidate neoepitopes [79].
Subsequent prediction of putative peptides involves interrogating the class I and class II HLA binding
affinities using neoantigen prediction software. The final step requires well-designed clinical study to
validate the vaccine before it applied to the patients.

4.3. Targeting the Microenvironment

4.3.1. Stromal Matrix

Stroma cells contribute to the resistance of pancreatic cancer to chemotherapy by forming
an insulating matrix around the tumor, squeezing the blood vessels and preventing chemotherapy
drugs and immune cells from reaching it (Figure 2). Breaching the significant stroma barriers
represents a promising strategy to improve the delivery and efficacy of systemic therapeutics agents.
Various attempts have been made to target stromal profibrotic pathways, cytokines and growth
factors involved in tumor desmoplasia and angiogenesis. In a mouse PDA model, inhibition of
the sonic hedgehog (SHH) signaling pathway could engender a dramatic depletion of stromal
components paralleled by an increase in intratumoral vascular density, leading to a significantly
enhanced concentration of intracellular metabolite of gemcitabine, transient disease stabilization and
a significant prolongation of survival [80]. However, tumors could develop adaptation to chronic SHH
inhibition and ultimately resume stromal desmoplasia and hypovascularity [80]. Though disappointing,
it provides a proof of principle that disruption of the desmoplastic stroma facilitates the delivery of
therapeutic agents into PDAC. Preliminary data in mice have shown that a synthetic form of vitamin D
could be used to target the protective matrix, which would increase the delivery of chemotherapy and
immune cells into tumor more efficiently [81]. Another study reported depleting carcinoma-associated
fibroblasts (CAFs) expressing fibroblast activation protein (FAP) resulted in the immune control of
PDAC growth. The depletion of the FAP(+) stromal cell also uncovered the antitumor effects of
α-CTLA-4 and α-PD-L1, indicating that the potential therapeutic value of stroma targeting agents in
combination with T-cell checkpoint antagonists [8].

4.3.2. CD40/CD40L Pathway

The tumor microenvironment in PDAC is predominantly immunosuppressive and exerts potent
restrains for antitumor immunity. CD40 agonist antibodies (αCD40) promote APC maturation and
enhance macrophage tumoricidal activity [82]. Beatty et al. reported on a small cohort of PDAC
patients treated with gemcitabine chemotherapy plus anti-CD40 agonist antibodies and observed
tumor regressions in a CD40-dependent mechanism by targeting tumor stroma [83]. More recent
studies suggested that CD40 agonists can mediate both T-cell-independent and T-cell-dependent
immune mechanisms of tumor regression in pancreatic cancer. The former mechanism involves
systemic activation of macrophages that infiltrate the tumor, become tumoricidal, and facilitate the
depletion of tumor stroma [84]. The latter finding suggested, when combined with chemotherapy,
CD40 blockade can activate T-cell immunity and mediate major tumor regression, but this anti-tumor
T-cell response is restrained by suppressive elements in the tumor microenvironment. An early clinical
trial testing agonist CD40 monoclonal antibody in combination of gemcitabine was well-tolerated and
associated with increased antitumor activity in patients with PDAC [85].
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4.3.3. RAS/MAPK Activation

With the significant role of RAS/MAPK (Mitogen-activated Protein Kinase) pathway in modifying
the TME, inhibition of activated RAS downstream pathways may increase anti-tumor immune response
and thus therapeutic effect of checkpoint blockade therapy. In melanoma patients, treatment with MEK
(Mitogen-activated protein kinase kinase) inhibitors have shown reduced levels of immunosuppressive
cytokines and increased TILs [86,87]. For triple-negative breast cancer (TNBC), the use of MEK
inhibitors has enhanced the responses to immune checkpoint blockade, with an upregulation of MHC
I and II on tumor cells, increase in CD8 TILs, and improved prognosis [88]. In pancreatic cancer,
most efforts targeting RAS/MAPK activation pathway has been largely unsuccessful. However,
simultaneously targeting RAS/MAPK pathway and providing immunotherapy hold a promise to tear
down the barriers of immune suppression in the TME and increase the effectiveness of immune-based
therapeutic modalities. Nevertheless, additional resistance mechanism may likely need to be identified
and overcome.

4.3.4. Focal Adhesion Kinase

Focal Adhesion Kinase (FAK), is a non-receptor tyrosine kinase that plays an critical role in
cancer migration, proliferation, and survival [89], and more recently has been found to regulate
pro-inflammatory pathway activation and cytokine production [90,91]. In neoplastic PDAC cells,
hyperactivated FAK activity has been shown to orchestrate fibrotic and immunosuppressive TME.
In the mouse model of PDAC, elevated FAK activity correlated with high levels of fibrosis and
poor CD8+ cytotoxic T cell infiltration in tumors. However, administration of FAK inhibitors was
associated with markedly reduced tumor fibrosis and decreased numbers of tumor-infiltrating
immunosuppressive cells [92]. Furthermore, FAK inhibitors were shown to render previously
unresponsive PDACs sensitive to chemo- and immunotherapy including anti-PD-1 and anti CTLA-4
antibodies in preclinical model of PDACs. These findings have supported the clinical testing of FAK
inhibitors in combination with checkpoint inhibitors and chemotherapy for pancreatic cancer treatment.

4.4. Targeting DNA Repair Mechanisms

Poly (adenosine diphosphate [ADP]) ribose polymerase (PARP), which represents a powerful
machinery for single-strand break repair, orchestrates the DNA damage response (DDR) and the
maintenance of genomic stability inhibitors [93,94]. In murine models, PARP−/− knockout mice
demonstrated increased genetic instability, major DNA repair defects as well as hypersensitivity to
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alkylating agents and radiotherapy [95]. A synthetic lethal therapeutic effect was also proved for
patients with compromised ability to repair double-strand DNA breaks by homologous recombination
when treated with PARP blockade [96]. Over the past few years, PARP inhibitors (PARPi), which have
been tested as monotherapies or in combination with DNA-damaging agents, have shown an efficacy
against tumors with defects in DNA repair mechanisms, especially in BRCA1/2mutation–related
cancers [97]. There have been great interests in the combination of immunotherapy with PARP
inhibitors based on the rationale that PARPi may increase a synergic therapeutic effect. Treatment
using a PARP inhibitor together with immunotherapy of CTLA-4 blockade was shown to induce
long-term survival in a BRCA1-deficient ovarian tumor model, with local induction of antitumor
immunity and the production of increased levels of interferon-g (IFNγ) in the peritoneal tumor
environment. Several clinical trials testing the combination of PARPi and immunotherapy for PDACs
are underway.

5. Conclusions

The advances in immunogenomics coupled with the recent fundamental advances in the
understanding of immune-tumor microenvironment interaction have created opportunities for
the development of more effective and personalized immunotherapy approaches for pancreatic
cancer patients. Great efforts have focused on identification of biomarkers to facilitate more precise
choices of immune modulatory agents. Research-driven drug discovery has led to the emergence of
a variety of novel therapeutic targets that are reshaping the pancreatic cancer treatment landscape.
Future directions include strategies to pool the right neoantigens/neoepitopes for personalized
vaccines, to break host mechanisms of immune tolerance, to enable relevant immune cells to effectively
localize to the sites of disease, and to use new drugs such as PARPi to target DNA repair deficiencies.
Moreover, studies characterizing PDACs with unique neoantigens and those from long-term survivors
might provide new insights into effective treatment strategies for pancreatic cancer [98]. With enormous
amount of genomics and immune-biomarker data generated, more efforts should be made to the
development of relational databases and bioinformatics platform to empower the practice of precision
immuno-oncology. Nevertheless, before unleashing the full power of precision oncology, more studies
with robust validation and well-designed clinical trials are warranted to provide evidence to support
individualized immunotherapy for pancreatic cancer.

Acknowledgments: This study is partially funded by NIH grants R01 CA169702 (Lei Zheng); R01 CA197296
(Lei Zheng); NIH grant K23 CA148964 (Lei Zheng); the Commonwealth Foundation (Lei Zheng),
the Bloomberg-Kimmel Institute for Cancer Immunotherapy (Lei Zheng, Jiajia Zhang), the Viragh Foundation
and the Skip Viragh Pancreatic Cancer Center at Johns Hopkins (Lei Zheng); the Sol Goldman Pancreatic
Cancer Research Center (Lei Zheng); National Cancer Institute Specialized Programs of Research Excellence in
Gastrointestinal Cancers grant P50 CA062924 (Lei Zheng); Sidney Kimmel Comprehensive Cancer Center grant
P30CA006973 (Lei Zheng, Christopher L. Wolfgang). We thank Sevier Medical Art for their original design of the
cell elements used in Figure 2.

Conflicts of Interest: Lei Zheng receives grant supports from Bristol-Meyer Squibb, Merck, iTeos, Amgen,
Gradalis, and Halozyme, and receives the royalty for licensing GVAX to Aduro Biotech. Lei Zheng is a paid
consultant at Biosynergies and Merrimeck.

References

1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [CrossRef]
[PubMed]

2. Seufferlein, T.; Mayerle, J. Pancreatic cancer in 2015: Precision medicine in pancreatic cancer—Fact or fiction?
Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 74–75. [CrossRef] [PubMed]

3. Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10.
[CrossRef] [PubMed]

4. Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer—Immune set point. Nature 2017, 541,
321–330. [CrossRef] [PubMed]

http://dx.doi.org/10.3322/caac.21387
http://www.ncbi.nlm.nih.gov/pubmed/28055103
http://dx.doi.org/10.1038/nrgastro.2015.215
http://www.ncbi.nlm.nih.gov/pubmed/26758788
http://dx.doi.org/10.1016/j.immuni.2013.07.012
http://www.ncbi.nlm.nih.gov/pubmed/23890059
http://dx.doi.org/10.1038/nature21349
http://www.ncbi.nlm.nih.gov/pubmed/28102259


Cancers 2018, 10, 39 10 of 15

5. Predina, J.; Eruslanov, E.; Judy, B.; Kapoor, V.; Cheng, G.; Wang, L.-C.; Sun, J.; Moon, E.K.; Fridlender, Z.G.;
Albelda, S.; et al. Changes in the local tumor microenvironment in recurrent cancers may explain the failure
of vaccines after surgery. Proc. Natl. Acad. Sci. USA 2013, 110, E415–E424. [CrossRef] [PubMed]

6. Gajewski, T.F.; Schreiber, H.; Fu, Y.-H. Innate and adaptive immune cells in the tumor microenvironment.
Nat. Immunol. 2013, 14, 1014–1022. [CrossRef] [PubMed]

7. Feig, C.; Gopinathan, A.; Neesse, A.; Chan, D.S.; Cook, N.; Tuveson, D.A. The pancreas cancer microenvironment.
Clin. Cancer Res. 2012, 18, 4266–4276. [CrossRef] [PubMed]

8. Feig, C.; Jonesa, J.O.; Kraman, M.; Wells, R.J.B.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.;
Zhao, Q.; Caballero, O.L.; et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts
synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2013, 110,
20212–20217. [CrossRef] [PubMed]

9. Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The function of programmed cell death 1 and its ligands
in regulating autoimmunity and infection. Nat. Immunol. 2007, 8, 239–245. [CrossRef] [PubMed]

10. Patel, S.P.; Kurzrock, R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy.
Mol. Cancer Ther. 2015, 14, 847–856. [CrossRef] [PubMed]

11. Powles, T.; Eder, J.P.; Fine, G.D.; Braiteh, F.S.; Loriot, Y.; Cruz, C.; Bellmunt, J.; Burris, H.A.; Petrylak, D.P.;
Teng, S.L.; et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer.
Nature 2014, 515, 558–562. [CrossRef] [PubMed]

12. Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.;
Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A
in cancer patients. Nature 2014, 515, 563–567. [CrossRef] [PubMed]

13. Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.;
Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune
evasion. Nat. Med. 2002, 8, 793–800. [CrossRef] [PubMed]

14. Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.;
Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced
non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550.
[CrossRef]

15. Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.;
Ciuleanu, T.E.; Badin, F.; et al. First-Line Nivolumab in Stage IV or Recurrent Non–Small-Cell Lung Cancer.
N. Engl. J. Med. 2017, 376, 2415–2426. [CrossRef] [PubMed]

16. Soares, K.C.; Rucki, A.A.; Wu, A.A.; Olino, K.; Xiao, Q.; Chai, Y.; Wamwea, A.; Bigelow, E.; Lutz, E.;
Liu, L.; et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into
pancreatic tumors. J. Immunother. 2015, 38, 1–11. [CrossRef] [PubMed]

17. Lutz, E.R.; Wu, A.A.; Bigelow, E.; Sharma, R.; Mo, G.; Soares, K.; Solt, S.; Dorman, A.; Wamwea, A.;
Yager, A.; et al. Immunotherapy Converts Nonimmunogenic Pancreatic Tumors into Immunogenic Foci of
Immune Regulation. Cancer Immunol. Res. 2014, 2, 616–631. [CrossRef] [PubMed]

18. Loos, M.; Giese, N.A.; Kleeff, J.; Giese, T.; Gaida, M.M.; Bergmann, F.; Laschinger, M.; Büchler, M.W.;
Friess, H.; et al. Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer.
Cancer Lett. 2008, 268, 98–109. [CrossRef] [PubMed]

19. Lu, C.; Paschall, A.V.; Shi, H.; Savage, N.; Waller, J.L.; Sabbatini, M.E.; Oberlies, N.H.; Pearce, C.; Liu, K.; et al.
The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J. Natl.
Cancer Inst. 2017, 109. [CrossRef] [PubMed]

20. Zheng, L. PD-L1 Expression in Pancreatic Cancer. J. Natl. Cancer Inst. 2017, 109, djw304. [CrossRef] [PubMed]
21. Church, D.N.; Stelloo, E.; Nout, R.A.; Valtcheva, N.; Depreeuw, J.; ter Haar, N.; Noske, A.; Amant, F.;

Tomlinson, I.P.; Wild, P.J.; et al. Prognostic significance of POLE proofreading mutations in endometrial
cancer. J. Natl. Cancer Inst. 2015, 107. [CrossRef] [PubMed]

22. Shang, B.; Liu, Y.; Jiang, S.; Liu, Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers:
A systematic review and meta-analysis. Sci. Rep. 2015, 5. [CrossRef] [PubMed]

23. Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.;
Berger, A.; Wind, P.; et al. Type, density, and location of immune cells within human colorectal tumors
predict clinical outcome. Science 2006, 313, 1960–1964. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.1211850110
http://www.ncbi.nlm.nih.gov/pubmed/23271806
http://dx.doi.org/10.1038/ni.2703
http://www.ncbi.nlm.nih.gov/pubmed/24048123
http://dx.doi.org/10.1158/1078-0432.CCR-11-3114
http://www.ncbi.nlm.nih.gov/pubmed/22896693
http://dx.doi.org/10.1073/pnas.1320318110
http://www.ncbi.nlm.nih.gov/pubmed/24277834
http://dx.doi.org/10.1038/ni1443
http://www.ncbi.nlm.nih.gov/pubmed/17304234
http://dx.doi.org/10.1158/1535-7163.MCT-14-0983
http://www.ncbi.nlm.nih.gov/pubmed/25695955
http://dx.doi.org/10.1038/nature13904
http://www.ncbi.nlm.nih.gov/pubmed/25428503
http://dx.doi.org/10.1038/nature14011
http://www.ncbi.nlm.nih.gov/pubmed/25428504
http://dx.doi.org/10.1038/nm730
http://www.ncbi.nlm.nih.gov/pubmed/12091876
http://dx.doi.org/10.1016/S0140-6736(15)01281-7
http://dx.doi.org/10.1056/NEJMoa1613493
http://www.ncbi.nlm.nih.gov/pubmed/28636851
http://dx.doi.org/10.1097/CJI.0000000000000062
http://www.ncbi.nlm.nih.gov/pubmed/25415283
http://dx.doi.org/10.1158/2326-6066.CIR-14-0027
http://www.ncbi.nlm.nih.gov/pubmed/24942756
http://dx.doi.org/10.1016/j.canlet.2008.03.056
http://www.ncbi.nlm.nih.gov/pubmed/18486325
http://dx.doi.org/10.1093/jnci/djw283
http://www.ncbi.nlm.nih.gov/pubmed/28131992
http://dx.doi.org/10.1093/jnci/djw304
http://www.ncbi.nlm.nih.gov/pubmed/28131993
http://dx.doi.org/10.1093/jnci/dju402
http://www.ncbi.nlm.nih.gov/pubmed/25505230
http://dx.doi.org/10.1038/srep15179
http://www.ncbi.nlm.nih.gov/pubmed/26462617
http://dx.doi.org/10.1126/science.1129139
http://www.ncbi.nlm.nih.gov/pubmed/17008531


Cancers 2018, 10, 39 11 of 15

24. Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.;
Gray, H.; Schlienger, K.; Liebman, M.N.; et al. Intratumoral T cells, recurrence, and survival in epithelial
ovarian cancer. N. Engl. J. Med. 2003, 348, 203–213. [CrossRef] [PubMed]

25. Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact
on clinical outcome. Nat. Rev. Cancer 2012, 12, 298–306. [CrossRef] [PubMed]

26. Taube, J.M.; Anders, R.A.; Young, G.D.; Xu, H.; Sharma, R.; McMiller, T.L.; Chen, S.; Klein, A.P.; Pardoll, D.M.;
Topalian, S.L.; et al. Colocalization of Inflammatory Response with B7-H1 Expression in Human Melanocytic
Lesions Supports an Adaptive Resistance Mechanism of Immune Escape. Sci. Transl. Med. 2012, 4, 127ra37.
[CrossRef] [PubMed]

27. Tsujikawa, T.; Kumar, S.; Borkar, R.N.; Azimi, V.; Thibault, G.; Chang, Y.H.; Balter, A.; Kawashima, R.;
Choe, G.; Sauer, D.; et al. Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed
Tumor-Immune Complexity Associated with Poor Prognosis. Cell Rep. 2017, 19, 203–217. [CrossRef]
[PubMed]

28. Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.;
Ho, T.S.; et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer.
Science 2015, 348, 124–128. [CrossRef] [PubMed]

29. McGranahan, N.; Furness, A.J.; Rosenthal, R.; Ramskov, S.; Lyngaa, R.; Saini, S.K.; Jamal-Hanjani, M.;
Wilson, G.A.; Birkbak, N.J.; Hiley, C.T.; et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity
to immune checkpoint blockade. Science 2016, 351, 1463–1469. [CrossRef] [PubMed]

30. Chen, D.S.; Irving, B.A.; Hodi, F.S. Molecular pathways: Next-generation immunotherapy-inhibiting
programmed death-ligand 1 and programmed death-1. Clin. Cancer Res. 2012, 18, 6580–6587. [CrossRef]
[PubMed]

31. Fang, Y.; Yao, Q.; Chen, Z.; Xiang, J.; William, F.E.; Gibbs, R.A.; Chen, C. Genetic and molecular alterations in
pancreatic cancer: Implications for personalized medicine. Med. Sci. Monit. 2013, 19, 916–926. [PubMed]

32. Topalian, S.L.; Sznol, M.; McDermott, D.F.; Kluger, H.M.; Carvajal, R.D.; Sharfman, W.H.; Brahmer, J.R.;
Lawrence, D.P.; Atkins, M.B.; Powderly, J.D.; et al. Survival, durable tumor remission, and long-term safety
in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol. 2014, 32, 1020–1030. [CrossRef]
[PubMed]

33. Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.;
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