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Abstract 

Background:  Theoretical analysis of signaling pathways can provide a substantial 
amount of insight into their function. One particular area of research considers signal‑
ing pathways capable of assuming two or more stable states given the same amount 
of signaling ligand. This phenomenon of bistability can give rise to switch-like behavior, 
a mechanism that governs cellular decision making. Investigation of whether or not 
a signaling pathway can confer bistability and switch-like behavior, without knowl‑
edge of specific kinetic rate constant values, is a mathematically challenging problem. 
Recently a technique based on optimization has been introduced, which is capable of 
finding example parameter values that confer switch-like behavior for a given pathway. 
Although this approach has made it possible to analyze moderately sized pathways, 
it is limited to reaction networks that presume a uniterminal structure. It is this limited 
structure we address by developing a general technique that applies to any mass 
action reaction network with conservation laws.

Results:  In this paper we developed a generalized method for detecting switch-like 
bistable behavior in any mass action reaction network with conservation laws. The 
method involves (1) construction of a constrained optimization problem using the 
determinant of the Jacobian of the underlying rate equations, (2) minimization of the 
objective function to search for conditions resulting in a zero eigenvalue, (3) computa‑
tion of a confidence level that describes if the global minimum has been found and (4) 
evaluation of optimization values, using either numerical continuation or directly simu‑
lating the ODE system, to verify that a bistability region exists. The generalized method 
has been tested on three motifs known to be capable of bistability.

Conclusions:  We have developed a variation of an optimization-based method for the 
discovery of bistability, which is not limited to uniterminal chemical reaction networks. 
Successful completion of the method provides an S-shaped bifurcation diagram, 
which indicates that the network acts as a bistable switch for the given optimization 
parameters.
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Mass action kinetics, Bistability, Switch-like behavior

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Reyes et al. BMC Bioinformatics            (2022) 23:1  
https://doi.org/10.1186/s12859-021-04477-x BMC Bioinformatics

*Correspondence:   
vladislav.petyuk@pnnl.gov 
3 Biological Sciences Division, 
Pacific Northwest National 
Laboratory, Richland, WA 
99352, USA
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04477-x&domain=pdf


Page 2 of 26Reyes et al. BMC Bioinformatics            (2022) 23:1 

Background
Cellular decisions via signaling pathways are essential for complex biological systems to 
function. The key attribute of signaling pathways which are capable of mediating a deci-
sion-making process is switch-like behavior. Such behavior assumes that the system has 
(typically) two stable equilibria and there is a way to switch between them. In bistable 
switches, two different thresholds for switching back and forth ensure the robustness 
of the decision. This characteristic dose–response behaviour is called hysteretic. Distor-
tion of these signaling pathways with switch-like behavior manifests in no switching at 
all, switching at incorrect input signals, irreversible switching, etc. These malfunctions 
result in incorrect cell decisions and may be one of the underlying causes of develop-
mental disorders, cancer, diabetes, and presumably a number of other pathologies [1–3]. 
Given that cellular decisions can consist of an immense number of biochemical interac-
tions, smaller network motifs are often considered and can help elucidate the portions of 
the signaling pathway that are key to the decision-making process [4].

Although discovering essential network motifs can provide a wealth of information, 
obtaining these configurations is not only difficult, but costly if approached purely from 
an experimental point of view. For this reason, it is imperative for this process to be cou-
pled with mathematical modeling, which can act as a guide for designing experiments. 
Analysis of these models is useful as they can determine the existence of bistability in 
the signaling pathway, an attribute directly tied to the pathway’s ability to exhibit switch 
like behavior. Existence of bistability in chemical reaction networks has been an active 
area of research since the 1970s. In particular, a wealth of mathematical theory has been 
oriented towards network motifs that utilize mass action kinetics for the participating 
reactions. This is due to the fact that mass action law does not employ assumptions on 
time-and concentration-scale separation as do other kinetics, such as Michaelis-Menten 
[5–8].

One well-established theoretical framework to preclude multistationarity (and there-
fore bistability) in a network motif following mass action kinetics was developed by 
Feinberg, Horn, and Jackson [9, 10]. This theory, aptly named Chemical Reaction Net-
work Theory (CRNT) uses the underlying structure of the reactions in the network to 
identify key properties. CRNT has produced results such as the Deficiency Zero and 
One Theorems which preclude bistability for certain network structures, irregardless of 
the kinetic constant values [9]. Although these theorems are very powerful, it is often 
the case that more complex networks found in cell signaling do not meet the deficiency 
requirement of these theorems [11]. To consider networks with higher deficiency, the 
Deficiency One Algorithm and Advanced Deficiency Algorithm were developed [11, 12]. 
These algorithms use the structure of the network to construct a system of equalities and 
inequalities. If these systems are solvable by either linear or nonlinear programming, 
they can state the existence of multiple positive steady states. However, these meth-
ods do not provide any conclusions about switchability between the alternative steady 
states. For more details on the topic of switchability between steady states we would like 
to refer the reader to [13]. In addition to the Deficiency One Algorithm and Advanced 
Deficiency Algorithm, injectivity theory and network concordance tests have also been 
developed, which attempt to address those networks that are not covered by the afore-
mentioned theory [14, 15].
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Besides CRNT and linear/nonlinear programming, there are a number of alternative 
approaches for gaining insights into an ODE system’s behavior. For example, algebraic 
methods utilizing the Gröbner basis approach [13, 16], cylindrical algebraic decomposi-
tion [17] and sign pattern analysis of the Jacobian [18] have been developed in concert 
with CRNT. The goal of these methods is to obtain analytical solutions to the system of 
ODEs at the steady state and then further analyze the solutions to detect bistability. A 
number of methods have also been reviewed and compared in [19]. Additionally, prom-
ising approaches have been developed that attempt to determine the parameter regions 
where multistability may occur using symbolic [20] or numerical [21] methods.

Recently, the optimization-based approach of [22] has gained attention as it provides 
an efficient procedure to search for bistability with respect to the total amount of a cer-
tain chemical moiety (e.g. ligand) that is reflected by a conservation law. For brevity we 
will refer to this method as the uniterminal approach (where the term uniterminal is 
defined in the Basic notation section) as the approach is limited to uniterminal networks. 
This particular approach attempts to find bistability by constructing an efficient optimi-
zation problem to find a saddle-node and then uses numerical continuation to confirm 
if the saddle-node is a saddle-node bifurcation (in general for signaling pathways under 
study bistability occurs via saddle-node bifurcations). This approach is of considerable 
interest because it allows (1) evaluation of fairly large pathways and (2) directly imposing 
bounds on values of the parameters of the network, such as the species’ concentrations 
and kinetic constants. The uniterminal approach is constructed based on the assump-
tion that (1) every reaction is endowed with mass action kinetics, (2) the network admits 
a strictly positive steady state (where the concentrations of all the species are positive) 
and (3) the network is uniterminal.

Although this optimization approach in combination with hybrid optimization solvers 
[23] works quite efficiently, it is limited to networks that are uniterminal. This constraint 
is a direct result of assumptions made in the formulation of the optimization problem. 
More specifically, by assuming that the network is uniterminal, the approach is able to 
form a basis for the deficiency subspace, see section “Deficiency and equilibrium mani-
fold” in [22]. A consequence of this result is the ability to form a square system of equa-
tions that define the equilibrium manifold of the ODE system that is compatible with 
the reaction polyhedron [24]. Furthermore, since this system is square, the approach can 
construct sufficient conditions for a saddle-node in the presence of mass conservation 
by minimizing the system’s determinant (a scalar value available for only square sys-
tems), see section “Sufficient conditions for a saddle-node in presence of mass conserva-
tion” in [22]. To address this limiting condition and extend the reach of this optimization 
approach, we constructed a general technique that can investigate the bistability of reac-
tion networks regardless of their terminality.

The general approach (as depicted in Fig. 1) uses the network structure, represented in 
SBML format [25], to construct an optimization problem that searches for a saddle-node. 
This optimization problem differs from the uniterminal approach as it searches for a saddle-
node using direct ODE stability analysis, rather than relying on constrictive assumptions. 
In essence, the optimization problem consists in minimizing an objective function repre-
sented by the squared determinant of the Jacobian, so that a minimal value of zero guaran-
tees the presence of a zero eigenvalue. Once a set of parameters conferring a saddle-node is 
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found by this minimization, then production of a bifurcation diagram is attempted in one of 
two ways. One way is based on a well-established numerical continuation technique. Alter-
natively, the ODE system can be directly simulated from different initial conditions to com-
pute the dose–response curve. In this case the dose–response curve serves as a surrogate of 
a bifurcation diagram except it does not contain an unstable branch. This option, although 
more computationally intensive, allows one to determine if the system is bistable in cases 
where numerical continuation is not possible due to an ill-conditioned Jacobian.

Basic notation

Assuming mass action kinetics, a given chemical reaction network can be represented as a 
system of autonomous ODEs composed of N species and R reactions

Here ċ denotes the temporal derivative of the species concentrations c ∈ R
N , c ≥ 0 , with 

each species having concentration ci for i = 1, . . . ,N  . The vector k ∈ R
R , k > 0 , repre-

sents the kinetic rate constants of the reactions (determined by mass action kinetics), 
where the individual kinetic rate constants are denoted as ki for i = 1, . . . ,R . We also 
denote the individual reactions as ri for i = 1, . . . ,R . In addition to the system of ODEs, 
we also require that the network have one or more conservation laws, which we denote 
as follows:

where C ∈ R
� , � denoting the number of conservation laws, and each conservation law is 

given as Ci for i = 1, . . . , �.
The following section is heavily based on the CRNT terminology, such as complexes and 

linkage classes. Briefly, a complex (in CRNT terminology) is a list of reactants or products 
for a given reaction. They are denoted as Ci for i = 1, . . . ,M . Complexes and corresponding 
reactions constitute the vertices and edges of the chemical reaction network or graph (also 
know as a C-graph). Disconnected subgraphs of this network are called linkage classes. For 
more formal definitions and descriptions we would strongly encourage the reader to review 
the original lectures on CRNT [26] and the prior publication [22].

For a given network we let ℓ be the number of linkage classes and denote them as Li for 
i = 1, . . . , ℓ . By inspecting a linkage class further, one can then determine if a given network 
is uniterminal using Definitions 1, 2, and 3. The simplest depictions for a network being 
uniterminal and biterminal (Definition 4) are depicted in Fig. 2. Note that in the unitermi-
nal case a linkage class containing a single complex is itself uniterminal as a single complex 
is strongly linked to itself [9]. Although this is assumed by CRNT, this is of little or no inter-
est in application (as it essentially means no reaction occurs) and is simply stated for theo-
retical completeness.

(1)ċ = f (c, k).

C = g(c),

(See figure on next page.)
Fig. 1  Workflow of the general approach for bistability detection in mass action chemical reaction networks. 
The approach is based on finding conditions that produce a Jacobian evaluated at a steady state, which has 
one zero eigenvalue. The symbol ç denotes the independent species’ concentrations. A confidence level 
defining if a global minimum of the optimization problem has been found is denoted as q(n, r)
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Fig. 1  (See legend on previous page.)



Page 6 of 26Reyes et al. BMC Bioinformatics            (2022) 23:1 

Definition 1  (Strongly linked nodes) Two nodes Ci, Cj are said to be strongly linked if 
there is a directed path from Ci to Cj and also a directed path from Cj to Ci.

Definition 2  (Terminal strong linkage class) A terminal strong linkage class is a maxi-
mal set of nodes within a linkage class such that there is no edge pointing to any other 
set of nodes that are strongly linked.

Definition 3  (Uniterminal network) A network graph is uniterminal if every linkage 
class in the graph contains only one terminal strong linkage class.

Definition 4  (Biterminal network) A network graph is biterminal if it contains at least 
one linkage class that has two terminal strong linkage classes.

Bistability in reaction networks

Provided system (1), it’s possible that the chemical reactions will resolve to different 
equilibrium states depending on the starting conditions. Intuitively, such non-linear 
phenomenon can occur when the equilibrium concentration of one species is a poly-
nomial function with degree greater than one with respect to an individual species. In 
biological systems, this behavior may present itself in a situation where a particular value 
of a signal species produces more than one solution with respect to a response species. 
In particular, bistability resulting from two stable branches connected by an unstable 
branch mimics switch-like action. Identification of such behavior is the focus of this 
manuscript.

Determining the stability of an ODE system is achieved by considering the eigenval-
ues of the Jacobian at a steady state point. The Jacobian of the ODE system is a matrix 

Fig. 2  Examples of linkages classes. The black and red dashed lines in the subfigures indicate the linkage 
class and terminal strong linkage classes of the network, respectively. Thus, a and b represent the simplest 
possible linkage classes that form a uniterminal network. c Depicts the simplest linkage class with two 
terminal strong linkage classes
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representation of the first-order partial derivatives of the ODE system with respect 
to state variables. By constructing the Jacobian one can approximate any ODE sys-
tem with a system of linear ODEs at a given point. The stability at the steady state is 
defined by the sign of the real part of the Jacobian’s eigenvalues. If any of the eigenval-
ues have a positive real component, the deviation from the steady state will increase 
in time, which implies an unstable steady state. In the case where all of the eigenval-
ues have a negative real component, the deviation decreases with time, indicating a 
stable steady state. In some cases, such as a bistable system, a single zero eigenvalue 
indicates that a steady state is momentarily transitioning from stable to unstable or 
vice versa. This transition happens as a consequence of varying a parameter of the 
ODE system.

In a mathematical sense, this transition from a stable state to an unstable state can 
be exhibited by a saddle-node bifurcation. Sufficient conditions for a saddle-node 
bifurcation are given by Theorem  1, where the point must also be a saddle-node 
according to Definition 5. For our purposes, F in Definition 5 corresponds to the line-
arly independent system of ODEs with a variable signal, u is the independent species’ 
concentrations, and ǫ0 is the signal of interest. Throughout the text we refer to linearly 
independent ODEs as independent ODEs.

It should be noted that over the years the naming of a saddle-node bifurcation point 
has become somewhat convoluted, in other literature it is also referred to as a turn-
ing point, fold bifurcation point, or limit point bifurcation [27]. In a bistable system, 
two saddle-node bifurcation points delimit the range of the signal (or bifurcation 
parameter) for which two stable branches of steady states exist. It is this bistability 
phenomenon that we are particularly interested in identifying. An example scenario 
for bistability is depicted in Fig. 3, where the parameter being varied for the bifurca-
tion analysis is the signal of the reaction network, the solid blue line denotes a stable 
branch, and the dashed blue line represents an unstable branch.

Fig. 3  Bifurcation diagram illustrating bistability. The solid blue and dashed blue lines indicate stable and 
unstable branches, respectively. The figure also highlights key characteristics of bistability such as a stable 
and unstable point and a saddle-node bifurcation
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Definition 5  ([28] Saddle-node) When considering an n−dimensional system of 
ODEs, F, we say that u0 ∈ R

n is a saddle-node for F : Rn × R → R
n at ǫ0 if F(u0, ǫ0) = 0 , 

the linear transformation DF(u0, ǫ0) : Rn → R
n has zero as an eigenvalue with algebraic 

multiplicity of one, and all other eigenvalues have nonzero real parts, where DF(u0, ǫ0) 
denotes the Jacobian of F with respect to u evaluated at u = u0 and ǫ = ǫ0.

Theorem 1 contains some technical terminology that requires a brief introduction. The 
smoothness of a function depends on the number of continuous derivatives that exist 
over the function’s domain. The range of a matrix is the span of its column vectors. The 
kernel (or nullspace) of a matrix is the linear subspace of the domain of the map which 
is mapped to the zero vector. Lastly, the Fréchet derivative is the generalized form of the 
derivative of a real-valued function. Further details on these mathematical concepts can 
be found in the original text [28] and elsewhere.

Theorem  1  ([28] Saddle-node Bifurcation Theorem) Suppose that F : Rn × R → R
n 

is a smooth function, u = u0 is a saddle-node for F at ǫ = ǫ0 , and the kernel of the lin-
ear transformation DuF(u0, ǫ0) : R

n → R
n is spanned by the nonzero vector k ∈ R

n . If 
DǫF(u0, ǫ0) ∈ R

n and DuuF(u0, ǫ0)(k , k) ∈ R
n are both nonzero and both not in the 

range of DuF(u0, ǫ0) , then there is a saddle-node bifurcation at u = u0 . Here we define 
DuuF(u0, ǫ0)(k , k) as the second Fréchet derivative of F evaluated at (u0, ǫ0) in the direc-
tions given by k and k. Additionally, DǫF(u0, ǫ0) denotes the directional derivative of F 
with respect to the last vector of the canonical basis.

Results
Bistability in a biterminal futile signaling cycle

Using the general technique established in the Methods section, we will continue by 
considering a non-uniterminal example. For this example we will be considering a key 
reaction network found predominantly in eukaryotic signaling systems, namely a futile 
signaling cycle, that exhibits bistability when featuring a two-state kinase, as presented 
in [29]. This reaction network is represented in Fig. 4.

From Fig.  4b, one can see that the linkage class L1 has two terminal strong linkage 
classes (due to reactions r3 and r6 ). Thus, we have a biterminal linkage class and we can-
not apply the theory presented in [22]. Letting

and performing the steps outlined in the Methods section, we obtain the following inde-
pendent ODEs

with conservation laws

c1 = [S], c2 = [E1], c3 = [E1S], c4 = [S∗], c5 = [E2], c6 = [E2S],

ċ3 = k1(Etot − c5 − c3 − c6)(Stot − c4 − c3 − c6)− k2c3 − k3c3 − k10c3 + k11c6

ċ4 = −k7c4 + k3c3 + k6c6

ċ5 = −k4c5(Stot − c4 − c3 − c6)+ k5c6 + k6c6 + k8(Etot − c5 − c3 − c6)− k9c5

ċ6 = k4c5(Stot − c4 − c3 − c6)− k5c6 − k6c6 + k10c3 − k11c6,
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and fix particular kinetic rate constants to expressions (as described in the Methods sec-
tion) in order to ensure a steady state in the ODE system

After performing the optimization routine, we obtain the following values from our 
decision vector

Using the values for the species’ concentrations and kinetic rate constants found, we can 
now begin to construct the dose–response curve. This is done by using several different 
concentrations of species S∗ for the initial value and simulating the ODE system until 
it has reached a steady state. For this particular example, we obtain the dose–response 
diagram presented in Fig. 5.

Etot = c2 + c5 + c3 + c6

Stot = c1 + c3 + c4 + c6,

k1 =
k7c4 + k2c3 − k6c6 + k10c3 − k11c6

(Etot − c5 − c3 − c6)(Stot − c4 − c3 − c6)

k3 =
k7c4 − k6c6

c3

k4 =
k5c6 + k6c6 − k10c3 + k11c6

c5(Stot − c4 − c3 − c6)

k8 =
k9c5 − k10c3 + k11c6

Etot − c5 − c3 − c6
.

k1 = 0.738028, k2 = 3.316128, k3 = 0.001800, k4 = 0.050541, k5 = 0.029997,

k6 = 0.53685, k8 = 2.310671, k9 = 0.001081, k10 = 0.008850, k11 = 3.437878,

k7 = 0.065141, c3 = 957.287983, c4 = 605.457182, c5 = 136.645046,

c6 = 70.255623,Etot = 1265.114144, and Stot = 1672.513735.

Fig. 4  Futile signaling cycle. a SBGN [30] representation of the reaction network constructed using 
CellDesigner [31] and b its C-graph representation. E1 and E2 indicate alternative forms of a kinase enzyme. 
S is a substrate. S* is a substrate in a phosphorylated form (labeled with p on panel a). E1S and E2S are the 
enzyme:substrate complexes
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Bistability in a biterminal Prion/Double Phosphorylation motif

Next we consider the hypothetical mechanism for prion-like conformation conversion 
between two states of a protein described in Fig. 6. Kinase can be in two conforma-
tions E1 and E2. Conversion between E1/E2 proceeds through a prion-like mecha-
nism, that is catalyzed by the enzyme E in the corresponding conformation. Only one 
conformation of kinase, E2, is active and phosphorylates substrate S in two-steps.

From inspection, one can see that L1 is a linkage class with two terminal strong 
linkage classes (due to reactions r5 and r6 ). Thus, we have a biterminal linkage class 
and we cannot apply the theory presented in [22]. Letting

Fig. 5  Dose–response diagram exhibiting switch-like behavior produced by a futile signaling cycle. Dots 
represent the equilibrium that the system converges to for individual simulations. The red and light blue 
paths correspond to high and low initial concentrations of [S∗] , respectively

Fig. 6  Prion/Double Phosphorylation motif with prion-like conformation conversion between the two states 
of the same protein. One of the conformations is assumed to be an active kinase. a SBGN [30] representation 
of the reaction network constructed using CellDesigner [31] and b its C-graph representation. E1 and E2 
indicate alternative forms of a kinase enzyme. Only E2 is active. S, S* and S** (labeled with p on panel a) is a 
substrate in unmodified, phosphorylated, and doubly phosphorylated forms. E1E2 and E2E1 are the protein 
complexes that mediate conversion from one form into another
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and performing the steps outlined in the Methods section, we obtain the following inde-
pendent ODEs

with conservation laws

An alternative way to ensure the steady state in the optimization problem is to directly 
enforce the time derivatives of the concentrations to be zero. That is, instead of con-
straining some of the kinetic constants with symbolic expressions, we enforce ç̇i = 0 
for i = 1, . . . , s explicitly, where çi denotes a concentration of an independent species in 
the objective function. Specifically, the objective function will have the additional term 
∑s

i=1[ç̇i(k, ç)]
2 , which ensures a steady state. For details please refer to “Perform n opti-

mizations” box in Fig. 1 and equation (4) in Section 4.6. This approach can be helpful in 
cases where the Jacobian is ill-conditioned. Here, for demonstration purposes we choose 
not to fix the kinetic rate constants and instead use the aforementioned robust, but more 
computationally intensive approach. Performing the optimization routine, we obtain the 
following values from our decision vector

Using the values for the species’ concentrations and kinetic rate constants found, we can 
now directly compute the bifurcation diagram with continuation methods or alterna-
tively obtain the dose–response curve by direct simulation. This is done by using several 
different concentrations of species S∗∗ for the initial value and simulating the ODE sys-
tem until it has reached a steady state. For this particular example, we obtain the dose–
response diagram presented in Fig. 7.

c1 = [E1], c2 = [E2], c3 = [E1E2], c4 = [E2E1], c5 = [S],

c6 = [S∗], c7 = [SE2], c8 = [S∗∗], c9 = [S∗E2],

ċ2 = k1c3 − c2(k2 + k3)(Etot − c2 − c9 − c7 − 2c3 − 2c4)+ (k4 + 2k6)c4

+ (k9 + k8)c7 − k7c2(Stot − c6 − c8 − c9 − c7)+ (k12 + k11)c9 − k10c6c2

ċ3 = k2c2(Etot − c2 − c9 − c7 − 2c3 − 2c4)− k1c3 − k5c3

ċ4 = k3c2(Etot − c2 − c9 − c7 − 2c3 − 2c4)− k4c4 − k6c4

ċ6 = k9c7 − k14c6 + k11c9 − k10c6c2 + k13c8

ċ7 = −k9c7 − k8c7 + k7c2(Stot − c6 − c8 − c9 − c7)

ċ8 = k12c9 − k13c8

ċ9 = −k12c9 − k11c9 + k10c6c2,

Stot = c5 + c6 + c7 + c8 + c9

Etot = c1 + c2 + 2c3 + 2c4 + c7 + c9.

k1 = 27.963833, k2 = 2.417993, k3 = 2.121228, k4 = 48.342142, k5 = 0.910340,

k6 = 1.802118, k7 = 17.019827, k8 = 92.473965, k9 = 0.021611, k10 = 0.782488,

k11 = 3.692336, k12 = 0.205743, k13 = 0.063297, k14 = 0.235401, c1 = 14.749224,

c2 = 18.117522, c3 = 22.377604, c4 = 11.304051, c5 = 27.001718,

c6 = 8.264281, c7 = 90.016969, c8 = 97.695329, c9 = 30.056006,

Stot = 253.034303, and Etot = 220.303031.
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Conclusions
We have developed a new general technique to detect bistability in any mass conserv-
ing reaction network. The general technique established builds on an existing approach 
that only allows for bistability detection in reaction networks that are uniterminal. This 
is achieved by first constructing an objective function using CRNT that is not depend-
ent on the number of terminal strong linkage classes in each linkage class. Then, we for-
mulate an optimization approach that searches for a saddle-node. Once a saddle-node 
is detected, the method performs either numerical continuation or direct simulation to 
identify if the particular set of parameters that produced the saddle-node also produce 
a saddle-node bifurcation. Lastly, if a saddle-node bifurcation is found, numerical con-
tinuation or direct simulation will elucidate whether or not there is another saddle-node 
bifurcation. The need to find two saddle-node bifurcation points is necessary as they 
confer back and forth switch-like behavior. Various examples provided verify the general 
technique and its ability to identify bistability.

This technique in its entirety is available in an updated version of CRNT4SBML 
(https://​crnt4​sbml.​readt​hedocs.​io/), a Python package that analyzes SBML files (the 
systems biology community standard for representing reaction networks) and then uti-
lizes mathematical theories to help detect the existence of bistability in cell signaling 
pathways [32]. The models in SBML format and the corresponding Python code for the 
analysis presented in the Results and Methods sections are available at https://​github.​
com/​PNNL-​Comp-​Mass-​Spec/​CRNT4​SBML/​tree/​master/​2021_​BMC_​Bioin​forma​tics_​
paper_​code.

Although the general technique is a useful method for the detection of bistabil-
ity, there are certain difficulties it may encounter.The technique can become com-
putationally intensive for large reaction networks with very high dimensional search 
spaces to be explored. To overcome this, we included an option that allows the user 
to perform the optimization routine using parallel computing techniques (enabled 
by the use of MPI). This is possible since the optimization routine starts from dif-
ferent independent initial starting points. Additionally, even if a large portion of the 
objective function’s domain is explored, we cannot preclude bistability if a zero is not 

Fig. 7  Dose–response diagram exhibiting switch-like behavior produced by the Prion/Double 
Phosphorylation model

https://crnt4sbml.readthedocs.io/
https://github.com/PNNL-Comp-Mass-Spec/CRNT4SBML/tree/master/2021_BMC_Bioinformatics_paper_code
https://github.com/PNNL-Comp-Mass-Spec/CRNT4SBML/tree/master/2021_BMC_Bioinformatics_paper_code
https://github.com/PNNL-Comp-Mass-Spec/CRNT4SBML/tree/master/2021_BMC_Bioinformatics_paper_code
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found. We address this uncertainty by computing the probability that the minimum 
objective function value achieved is equal to the true global minimum. In the future, 
we would like to couple the general technique with other methods that utilize the 
Gröbner basis for the ODE system. This coupling could produce further insight into 
the conditions of bistability for particular parameters produced by the optimization.

Methods
The introduced approach is more general than those methods developed in [22] as it 
does not require the network to be uniterminal. Without loss of generality and for the 
sake of simplicity, we will be using the well-known Edelstein network, which is uniter-
minal. Note, the steps of the approach would be exactly the same regardless of termi-
nality (uniterminal, biterminal, etc.) of the network. Originally, the Edelstein network 
was introduced in [33] and we choose to use the reduced form presented in Lecture 3 
of [26]. The Edelstein network is shown in Fig. 8.

In the following subsections we develop our framework using aspects of CRNT. Here 
we have k = (k1, k2, k3, k4, k5, k6)

T  and c = (c1, c2, c3)
T  with c1 = [A], c2 = [B], c3 = [C].

Step 1: Constructing the full ODE system

The first step of the approach is to construct the ODEs describing species’ concen-
tration dynamics for the given reaction network. Assuming mass action kinetics, we 
obtain the following representation for our autonomous ODEs:

The molecularity matrix Y is a N ×M matrix where Yij corresponds to the 
molecularity of species i in complex j. For our example the complexes are 
C1 = A, C2 = 2A, C3 = A+ B, C4 = C , and C5 = B , which provide the molecularity 
matrix:

(2)ċ = YAψ(c) ⇐⇒
ċ1 = k1c1 − k2c

2
1 − k3c1c2 + k4c3

ċ2 = (k4 + k5)c3 − k3c1c2 + k6c2

ċ3 = k3c1c2 − (k4 + k5)c3 + k6c2

Fig. 8  Edelstein chemical reaction network [33]. a SBGN [30] representation of the reaction network 
constructed using CellDesigner [31] and b its C-graph representation
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A is the M ×M kinetic constant matrix, where the diagonal elements of A contain the 
negative of the sum of the kinetic rate constants corresponding to the reactions going 
out from Ci . While the off-diagonal elements, say Aij , contain the kinetic rate constants 
of the reactions going from Cj to Ci . Here i and j correspond to the ith row and jth col-
umn of A, respectively.

The vector ψ(c) = (ψ1, . . . ,ψM)T defines the mass action monomials (a product of 
species’ concentrations) associated with each complex

For our example we obtain:

Step 2: Computing the mass conservation laws

The next step is to compute the mass conservation laws that govern the network. To 
do this, we first construct the species stoichiometric matrix S with dimension N × R . 
Its entries can be constructed from the Y matrix by noticing that every reaction from 
Ci to Cj has an associated vector Yj − Yi where Yj and Yi are the jth and ith columns of Y, 
respectively. In our example, this produces the stoichiometric matrix S:

We also denote the rank, that is the maximal number of linearly independent columns, 
of S as s, for notational convenience. For our example, s = 2.

Note, that the number of mass conservation relations is � = N − s . Matrix B (of 
dimension N × � ) that defines such relations is defined as the nullspace of ST , such 
that STB = 0 . It should be also noted that the matrix spanning the nullspace of ST is 
not uniquely determined, and we choose B such that all of its entries are nonnegative. 
This choice of B is always possible provided that each conservation law represents the 

ψj(c) =

N
∏

i=1

c
Yij
i , j = 1, . . . ,M.

ψ(c) = (c1, c
2
1, c1c2, c3, c2)

T .
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conservation of a chemical or moiety. This is because an individual species’ concentra-
tion cannot be negative. Thus, there must be a way for a basis vector, representing a con-
servation law, to be expressed only with nonnegative values.

For most reaction networks, constructing a B matrix with nonnegative entries can be 
done by using linear programming. The construction of the linear programming prob-
lem requires a firm understanding of polyhedra. Thus, we strongly recommend that 
the reader consider Sections 2.2 (in particular Subsection 2.2.3) and 2.4 of [34], which 
describe polyhedral sets and cones, and how the nullspace of the stoichiometric matrix 
can be described as a polyhedral cone, respectively. Additionally, it should be noted 
that the mathematical definitions and theorems in the suggested sections of [34] were 
obtained from [35], see for example Sections 1, 2, and 19 of [35].

We now briefly describe the linear programming problem construction. The optimiza-
tion problem is formed by first considering the intersection of Null(ST ) and the non-
negative vectors of RN , which is an infinite cone. In order to obtain a finite set of this 
intersection, one can consider an intersection of the infinite cone with the set of vectors 
that have the sum of their coordinates equal to one. The solution to this intersection is a 
finite convex polytope. This conclusion can be seen by considering Definition 2.29 and 
2.33 of [34]. It should be noted that [34] presents Enumeration Problems in general (Sec-
tion 2.3) as a way to search for the vertices of this convex polytope. We instead search 
for these vertices beginning from random directions via the optimization problem (3), 
which is realized by the Simplex optimization method [36].

In optimization problem (3), wT is the vector of random search directions and B̃ is the 
initial B matrix with at least one negative entry. For our purposes, B̃ is initially set to the 
basis vectors that compose the span of Null(ST ) . The endpoints (i.e. the minimized x 
from (3)) of these vertices are then used to form a basis vector (consisting of only non-
negative elements) of the nullspace. Thus, by taking the dot product, B̃ · x , we can obtain 
a vector with nonegative entries, with values between zero and one. To obtain integer 
entries, one can then divide the vector by the smallest nonzero entry of the vector. By 
repeating this process multiple times and obtaining � unique basis elements, one can 
then form a B matrix with nonnegative entries, as outlined in Algorithm 1 . It should be 
noted that � is representative of the number of conserved chemical moieties. Thus, by 
definition we are certain that � > 0 if the system contains conservation laws. A notewor-
thy remark of Algorithm 1 is that it does not guarantee that one will find all � basis vec-
tors, given a fixed number of iterations. Thus, if the number of the found basis vectors is 
less than the pre-computed � = N − s , the number of iterations should be increased. For 
further details of Algorithm 1, we refer the reader to the Supplementary, Additional File 
1. In addition to this approach, there exists alternative ways to obtain a B matrix with 
nonnegative entries, see [37–39].

(3)

Minimize w
T
x

subject to:

− B̃x ≤ 0,
(

∑N
i=1 B̃i,1, . . . ,

∑N
i=1 B̃i,�

)T

x = 1,

−∞ ≤ x ≤ ∞ x ∈ R
�,

w
T ∈ R

�.
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Using ST and the procedure outlined in Algorithm 1, we obtain the B matrix below:

where C1 again stands for the first conservation law. To obtain an explicit statement for 
the conservation laws, we simply take BT

c , giving the following conservation law:

Step 3: Determining the independent ODE system

For any given reaction network, the number of independent ODEs describing the sys-
tem’s dynamics is equal to the rank(S) = s ≤ R [9]. Since we will ultimately consider 
the Jacobian of the ODE system with respect to the concentrations c , it is necessary to 
remove those ODEs that can be represented as linear combinations of other ODEs in the 
system. We will let the independent system of ODEs be represented as follows:

where ç ∈ R
s represents those species’ concentrations that form an independent ODE 

system. To obtain the independent system, we will first see if s = N  , if this is true, this 
implies that there are no conservation laws. This scenario is out of the scope of this 

C1 = c2 + c3.

ç̇ = f̂(c, k),
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manuscript. If s < N  then we have conservation laws and we must continue by find-
ing the independent system. It is at this point where knowledge of the response in the 
bifurcation analysis is used to determine which ODEs should remain in the independent 
ODE system.

For our particular example, we take C1 (the sum of c2 and c3 ) as the input signal, and 
c1 as the output or readout of the system’s response. Since c1 (the concentration of spe-
cies A) is taken as our system’s response, it is necessary for ċ1 to be included in ç̇ . Using 
this fact and conservation law C1 , we can see that c2 has a dependence on c3 of the form 
c2 = C1 − c3 . For this simple example, this information is sufficient enough to eliminate 
ċ2 from ċ . Indeed if we consider the full ODE system (2), we see that ċ2 = −ċ3 . Thus, for 
our particular example we have ç̇ given by:

For larger systems the above methodology may not be straightforward. Thus, we sug-
gest a procedure that exhaustively looks though combinations of species (excluding the 
response species), one from each conservation law, removes corresponding ODEs and 
checks if the rank of the remaining ODE system remains the same. The pseudocode for 
this procedure is provided in Algorithm 2.

Referring to Definition 5, we see that u and ǫ0 correspond to ç and the input signal 
in our example, respectively, with u = (c1, c3)

T and ǫ0 = C1 From this definition we see 
that some modifications to ç̇ must be made, in particular, we need to include the conser-
vation law C1 . To eliminate all the dependent species (DS) we express them in terms of 

ċ1 = k1c1 − k2c
2
1 − k3c1c2 + k4c3

ċ3 = k3c1c2 − (k4 + k5)c3 + k6c2.
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ç and the corresponding conservation law. In our example, this is done by replacing c2 
with C1 − c3 . For our example, we then have ç̇ given as follows:

The system above is then equivalent to F
(

(c1, c3)
T ,C1

)

.

Step 4 : Preserving the steady state

Now that we have our ODE system in terms of our input signal (or bifurcation param-
eter), we can now continue by constructing the expressions that are necessary to check 
the requirements of Definition  5. To do this, the first item we consider is the state-
ment that F(u0, ǫ0) = 0 , this denotes that the ODE system is at a steady state. Thus, 
we must ensure that ç̇ = 0 . One straightforward way of doing this is to add the term 
∑s

i=1[ç̇i(k, ç)]
2 to the objective function (equation (4) in Section 4.6), which represents 

the sum of the squared derivatives. Although this formulation is robust, the trade-off 
includes increased computational time.

To avoid this issue, we suggest an alternative, based on symbolic constraints, formula-
tion of the optimization problem. In this section, we propose splitting the kinetic constants 
into two sets, one set that is free ( k ∈ R

R−s ) and another set that will be fixed using sym-
bolic expressions ( ̃k ∈ R

s ). We analytically solve for specific kinetic constants, k̃ , to enforce 
a steady state. By solving for these expressions analytically, the domain of feasible points is 
reduced, providing a simpler optimization problem. This can be performed systematically 
because we are using mass action kinetics to form our ODEs. Furthermore, we are always 
guaranteed a unique analytical expression for a steady state (in terms of a particular choice 
of kinetic constants). To see this, consider the stoichiometic matrix S, which has columns 
corresponding to the reactions. Based on the law of mass action, the rate of the reaction is 
expressed as the product of the concentrations of the reactants, with each concentration 
raised to a power equal to the stoichiometric coefficient, multiplied by a corresponding 
kinetic constant. Thus, there is a one-to-one correspondence between the notation of reac-
tions and kinetic constants. As stated in step 3 (Subsection 4.3), rank(S) = s ≤ R , for any 
given reaction network. By definition, s corresponds to the number of linearly independent 
columns of S and since the columns of S correspond to the kinetic constants, we are pro-
vided with a set of kinetic constants that form a linearly independent system of equations.

In practice, it is quite simple to determine the expressions for k̃ , that should be chosen to 
create a linear system. One particular way to choose these kinetic rate constants is to put S 
into row reduced echelon form (RREF) and choose those columns that contain pivots. In 
our example:

the pivots are in the columns 1 and 3, resulting in k̃ = (k1, k3)
T.

ċ1 = k1c1 − k2c
2
1 − k3c1(C1 − c3)+ k4c3

ċ3 = k3c1(C1 − c3)− (k4 + k5)c3 + k6(C1 − c3).
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Given we are looking for a steady state, we must consider the following linear system:

Here U ∈ R
s×s corresponds to the coefficient matrix produced from ç̇ for a particular 

choice of k̃ . Vector b ∈ R
s are those terms of ç̇ that do not contain kinetic constants from 

k̃ . For our example we have the following system for our steady state:

Solving for k1 and k3 provides necessary conditions for a steady state

Note that for some systems, this may force a kinetic rate constant equal to zero. How-
ever, other choices of k̃ can yield nonzero values. To account for these cases, if zero val-
ues are found, we exhaustively search through all distinct combinations of independent 
columns to choose k̃ combinations and search for ones that yield no zero entries. If no 
combination provides nonzero values this means that no steady state exists when k > 0 
and c > 0 . In such a scenario we suggest checking the Deficiency Zero and One theo-
rems [26]. To obtain a network that can assume a steady state with k > 0 and c > 0 , 
one can consider removing the reactions that have kinetic constants equal to zero in the 
aforementioned computation.

Step 5: Ensuring a zero eigenvalue

From step 4, we have necessary conditions for a steady state. Thus, the next item we 
must satisfy is that DF(u0, ǫ0) must have a zero eigenvalue with a multiplicity of one 
and all other eigenvalues have nonzero real parts, as stated in Definition 5. Effectively, 
DF(u0, ǫ0) is the Jacobian of the right hand side of our independent ODE system with 
respect to ç , we denote this as Jç . Given that we would like to formulate this as an 
optimization problem, it is easy to see that satisfying the criteria that an eigenvalue of 
zero must have a multiplicity of one and all other eigenvalues be nonzero, will create 
an expensive optimization problem because we would have to calculate the eigenvalues 
each time the objective function is evaluated. For this reason, we will simply search for a 
zero eigenvalue and then check afterwards if the eigenvalue criteria are satisfied.

To find a zero eigenvalue, consider the eigenvalue problem with eigenvalue z ∈ C and 
corresponding eigenvector v ∈ C

s\{0}:

The characteristic polynomial can then be formed by taking the determinant and setting 
it equal to zero:

U k̃ = b,

(

c1 − c1(C1 − c3)
0 c1(C1 − c3)

)(

k1
k3

)

=

(

k2c
2
1 − k4c3

(k4 + k5)c3 − k6(C1 − c3)

)

.

k1 =
k2c

2
1 + k5c3 − k6(C1 − c3)

c1

k3 =
(k4 + k5)c3 − k6(C1 − c3)

c1(C1 − c3)
.

Jçv = zv.

det(Jç − zI) = 0.
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However, since z = 0 , we have the following problem that reassures us that at least one 
eigenvalue is equal to zero:

It is this criteria that we will use to formulate our optimization problem.

Step 6: Searching for a Saddle‑node using optimization

Using the definitions from the previous steps we can create the optimization problem in 
two alternative ways. In both formulations, the optimization problems search for spe-
cies’ concentrations c and kinetic rate constants k that provide a system in a steady state 
( ̇ç = 0 ) and at least one zero eigenvalue of the associated Jacobian Jç . One formulation 
enforces a steady state by explicitly requiring that the derivatives of the concentrations 
be zero through an additional term in the objective function:

Here, cL and cU are the lower and upper bounds for the species’ concentrations, respec-
tively and similarly, kL and kU are the lower and upper bounds for the kinetic rate con-
stants, respectively. This results in a more complex objective function, which is due to 
the addition of more nonlinear terms in the objective function and a higher dimensional 
decision vector. This approach is more robust as it samples from a broader space of solu-
tions, but computationally intensive. Another approach implicitly enforces a steady state 
by solving for kinetic constants (as in Step 4):

In this version of the optimization problem, the decision vector is x = ({k} − {k̃}, {c})T , 
where {k} − {k̃} corresponds to the set of kinetic rate constants in k that are not in k̃ 
and {c} is the set of species’ concentrations. The kinetic rate constants k̃ are then found 
by using the solutions found from solving the linear system in step 4, which reassure a 
steady state occurs, and the conservation constants C1, . . . ,C� are found using the con-
servation laws in step 2.

Since the approach is aimed towards analysis of biological pathways, we can apply 
bounds to the optimization problem based on the BioNumbers database [40]. To bound 
the species’ concentrations, one can choose the typical range of protein concentrations 
in a cell, 5× 10−13 to 5× 10−7 M. The complex formation kinetic constants can be 
bounded between 104 and 108 M −1s−1 . A common range for complex dissociation con-
stants is from 10−5 to 10−3 s −1 . Finally, the enzyme catalysis kinetic constants range from 
10−3 to 1 s −1 . These ranges are the defaults in the CRNT4SBML Python package. How-
ever, they can be overwritten by the user to more narrow ranges if some more accurate 

det(Jç) = 0.

(4)

Minimize [det(Jç)(k, ç)]
2 +

∑s
i=1[ç̇i(k, ç)]

2

subject to:

cL ≤ c ≤ cU c ∈ R
N ,

kL ≤ k ≤ kU k ∈ R
R.

(5)

Minimize [det(Jç)(x)]
2

subject to:

cL ≤ c ≤ cU c ∈ R
N ,

kL ≤ k ≤ kU k ∈ R
R.
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prior knowledge exists. For further details we refer the reader to the corresponding 
CRNT4SBML documentation page.

Due to their nature, like the optimization problem in [22], (5) and (4) are non-convex 
and multi-modal. For this reason, a global optimization procedure should be used to 
search for the optimal solution of (5) and (4). For the results obtained throughout the 
manuscript, we utilize the global optimization algorithm Dual Annealing, starting from 
different random initial starting points that are bounded by the species’ concentrations 
and kinetic constant values. Dual Annealing is an optimization algorithm that combines 
Simulated Annealing [41] and additionally applies a local search on accepted locations 
[42]. In particular, we utilize the Nelder-Mead simplex algorithm for all local searches. 
Given that we are looking specifically for a zero eigenvalue, the objective function of the 
optimization should obtain a minimum of zero. All points that have a zero value (within 
machine precision) are considered for further evaluation. The next evaluation step is 
to check for i) a saddle-node using Definition 5 and discard points that produce more 
than one eigenvalue that is zero (which might indicate a codim 2 bifurcation such as the 
Bogdanov-Takens bifurcation [43]), and ii) a saddle-node bifurcation point using Theo-
rem 1. This allows one to remove unnecessary runs of numerical continuation. Although 
explicitly checking the criteria for a saddle-node bifurcation can reduce the runtime of 
the approach, it should be noted that it is sufficient to conduct numerical continuation.

Bayesian stopping rule

If the optimization satisfies the condition for a saddle-node, one can state that a sad-
dle-node exists. However, the inverse is not true: if we can’t find conditions that result 
in a zero eigenvalue, this doesn’t guarantee that a saddle-node does not exist. This is a 
consequence of using stochastic optimization instead of deterministic methods (based 
for example on interval analysis), which will provide this guarantee [44]. The issue with 
methods such as these is that they become computationally intractable for mass action 
reaction systems with more than two or three parameters, whereas stochastic optimi-
zation provides in general a good overall efficiency [45]. One of the key uncertainties 
in stochastic optimization is how exhaustively the procedure searched the space of all 
the possible solutions. To address this uncertainty we compute the probability that the 
achieved minimum value is the true global minimum. This way we have a quantitative 
estimate of the thoroughness of the optimization procedure. The probability calculation 
is based on the unified Bayesian stopping rule in [46] and Theorem 4.1 of [47], where the 
rule was first established.

For n starting optimization points, let fk be the achieved local minimum for the k-th 
decision vector, f ∗ the true global minimum and f̃ = min{f1, . . . , fn} . Our objective is to 
estimate the probability that f̃  is f ∗ . Let αk and α∗ denote the probabilities that a single 
run of the optimization routine has converged to fk and f ∗ , respectively. Assuming that 
α∗ ≥ αk for all local minimum values fk we may then estimate the lower bound of the 
probability that f̃ = f ∗ is as follows:

Pr[f̃ = f ∗] ≥ q(n, r) = 1−
(n+ a+ b− 1)!(2n+ b− r − 1)!

(2n+ a+ b− 1)!(n+ b− r − 1)!
,
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Here a and b are the parameters of the Beta distribution β(a, b) , where we use a = 1 and 
b = 5 as suggested in [46]. The term q(n, r) is the confidence level, where r is the number 
of fk for k = 1, . . . , n that are in the neighborhood of f̃ .

We say that fk is in the neighborhood of f̃  if the relative difference of fk and f̃  is less 
than a predefined tolerance ǫ , which is by default set to 10% in the CRNT4SBML tool:

Given the formulation of the optimization, the lowest possible minimal value is zero. 
Thus, if f̃  reaches a numerical zero value then we set q(n, r) = 1.0 , skipping the com-
putation of q(n, r). Conventionally q(n, r) ≥ 0.95 is considered an acceptable confidence 
level to make the conclusion that f̃  is the global minimum of the objective function. If 
no zero value is found after achieving a high confidence level ( q(n, r) ≥ 0.95 ), then we 
suggest stopping the optimization routine as it is unlikely that there is a solution. Note 
that the accuracy of this Bayesian stopping rule has not been thoroughly evaluated for 
our optimization problem and method.

Step 7: Numerical continuation and direct simulation

Once the optimization problem is solved, we have an independent ODE system with 
a steady state and at least one zero eigenvalue of the Jacobian. To ensure that this is a 
saddle-node bifurcation we need to check if this is the only zero eigenvalue and that 
Theorem 1 is satisfied. In practice, we check directly for the presence of the bifurca-
tion diagram with switch-like behavior. The existence of such a bifurcation diagram 
rules out undesired findings such as a Jacobian with additional zero eigenvalues or 
eigenvalues with zero real parts. To generate the bifurcation diagram, we utilize either 
the technique of numerical continuation or directly simulate the ODEs. When per-
forming numerical continuation, we use the values provided by the optimization 

|f̃ − fk |

f̃
≤ ǫ.

Fig. 9  Bifurcation diagram of the Edelstein network example. The bifurcation diagram was created using the 
software AUTO 2000, which utilizes numerical continuation. Red markers represent the found saddle-node 
bifurcation points, the stable branches are solid blue lines, and the unstable branch is a dashed blue line
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routine and then leverage the established tool AUTO 2000 [48]. It is made accessible 
through the libroadrunner python library and its extension rrplugins [49]. To demon-
strate numerical continuation, we use the following values provided by the optimiza-
tion routine, which provide Fig. 9:

It should be noted that it is possible that the optimization routine finds a certain com-
bination of kinetic rate constant values that force the Jacobian of the system to be ill-
conditioned or even singular, even if species’ concentrations are varied. The situation 
when the Jacobian is always singular precludes the numerical continuation approach. To 
overcome this type of situation we offer the option of direct simulation, which varies the 
user defined signal and initial conditions values for the ODE system and then integrates 

k1 = 0.05024595, k2 = 0.01029913, k3 = 0.03592955, k4 = 0.01027423,

k5 = 0.01272131, k6 = 0.01006076, c1 = 1.48685156, c2 = 2.07275022,

c3 = 5.72214036, and C1 = 7.79489058.

Fig. 10  Simulation of the ODE system for the Edelstein network using different starting values of Btot and [A]. 
The system converges to two equilibrium states; a “lower” one at [A] ≈ 1 and a “higher” one at [A] ≈ 1.75 . If 
the system starts with a low concentration of A a switch between “low” and “high” equilibrium states happens 
at smaller concentration of Btot . Vice versa, if the system starts with a high concentration of A, the switch 
between the equilibrium states happens at higher concentrations of Btot

Fig. 11  Bifurcation diagram of the example Edelstein network. It is a cross-section of the Fig. 10 data at 
the time point when the system reaches the equilibrium (65,000 seconds for the given parameters). The 
equilibrium concentration of A is plotted for both the “high” and “low” portions of the simulation, highlighted 
in red and light blue, respectively. The arrows on the plot indicate the direction of change in Btot
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the ODEs until a steady state occurs. The steady state is obtained when the species’ con-
centrations do not change between the ODE integration steps, within a predefined tol-
erance (here 1e-06). Given the direct simulation method is numerically integrating the 
system of ODEs, this method will often take longer than the numerical continuation 
routine. Although this is the case, direct simulation is more robust and may be able to 
provide a bifurcation diagram when numerical continuation cannot.

Considering high and low concentrations of species A (response) for the initial 
value, we obtain the ODE simulations in Fig. 10 by direct simulation, where Btot = C1.

If we then consider the left and right plot at time 65,000 as the equilibrium, we can 
plot the values of Btot vs the concentration of species A. The dose–response diagram 
obtained by direct simulation depicted in Fig.  11 mirrors the bifurcation diagram 
obtained by numerical continuation in Fig. 9, thus cross-validating both approaches.
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