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Abstract: In this paper, we analyze the total work extracted and the efficiency of the magnetic Otto
cycle in its classic and quantum versions. As a general result, we found that the work and efficiency
of the classical engine is always greater than or equal to its quantum counterpart, independent of
the working substance. In the classical case, this is due to the fact that the working substance is
always in thermodynamic equilibrium at each point of the cycle, maximizing the energy extracted
in the adiabatic paths. We apply this analysis to the case of a two-level system, finding that the
work and efficiency in both the Otto’s quantum and classical cycles are identical, regardless of the
working substance, and we obtain similar results for a multilevel system where a linear relationship
between the spectrum of energies of the working substance and the external magnetic field is fulfilled.
Finally, we show an example of a three-level system in which we compare two zones in the entropy
diagram as a function of temperature and magnetic field to find which is the most efficient region
when performing a thermodynamic cycle. This work provides a practical way to look for temperature
and magnetic field zones in the entropy diagram that can maximize the power extracted from an Otto
magnetic engine.

Keywords: thermodynamics; heat engines; quantum thermodynamics

1. Introduction

The classical standard nonmagnetic Otto cycle is widely used in present-day technology, as it
is the thermodynamic cycle most commonly found in automobiles engines. This cycle consists of
two classical isochoric and two classical adiabatic processes. In the isochoric processes, the system
interacts with either of two thermal reservoirs at temperatures Tl and Th, with Th > Tl , and each one
of these processes is followed by a classical adiabatic process which enables work extraction. In this
cycle, the results of the efficiency depend on the nature of the working substance (through its energy
spectrum) and the contributions of work and heat are separate in its stages, which facilitates theoretical
modelling. These characteristics favor its extension to its quantum version, which has been studied
extensively in recent years [1–19].

Otto quantum cycle similarly consists of four processes: two quantum isochoric processes and
two quantum adiabatic processes. The quantum isochoric process is very similar to the classical one in
the sense that both admit changes in the temperature of the system trough heat exchange with zero
work performed [20]. The quantum scenario requires that the energy-level populations of the working
substance remain constant for each of the quantum states as the volume varies, ensuring that entropy
remains unchanged. This implies that the quantum adiabatic processes should be realized in a time
frame that avoids transitions between levels that can be generated while it is carried out. Deffner and
Campbell define this difference [21]: “Quantum adiabatic processes form only a subset of classical adiabatic
processes”. Therefore, the development of a classical and quantum Otto cycle differs not only in the
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time of their processes but also in the physical concepts involved. Moreover, it is essential to mention
that the word “classical” should not be directly interpreted as if the working substance is “classical.”
The notion of “classical” refers here to the four stages developed in the classical Otto cycle that are in
thermodynamic equilibrium. On the other hand, the working substance of the quantum cycle reaches
thermal equilibrium only in two stages of the cycle (the isomagnetic paths). Given the differences of
the classical and quantum processes of the adiabatic Otto’s stage, two questions naturally arise: How
are work performance and efficiency when these two approaches, classical and quantum, are applied
to the same working substance? What conditions should fulfill the energy spectrum of the working
substance in both approaches such that this difference is as small as possible?

In this work, we give a possible solution to these questions using as an example a magnetic Otto
cycle under the classical and quantum thermodynamics formulations. In the magnetic Otto cycle,
the two isochoric processes are replaced by two isomagnetic processes. Our first discussion entails a
comparison between both thermodynamical approaches to explore why the classical work is greater
than its quantum counterpart. We argue that the answer can be regarded as a consequence of a free
energy principle for systems in thermal equilibrium. We analyze a particular case of a two-level system
working under a magnetic Otto cycle, where we show that the total work extracted is equal under
both formulations regardless of the magnetic dependence of the energy levels. Finally, we explore the
consequences of including more energy levels and how this affects the behavior of thermal quantities
and work as compared to the simple case of a two-level system.

2. Quantum and Classical Magnetic Otto Cycle: Classical and Quantum Work

To describe the Otto cycle classical and quantum formulation, we show a schematic representation
of an entropy (S)–external field diagram in Figure 1. In our notation, T will refer to temperature and B
to external magnetic field (both parameters in arbitrary units). The adiabatic and isomagnetic processes
are represented in Figure 1 by horizontal and vertical lines, respectively.

Figure 1. Entropy versus external field diagram for classical and quantum Otto cycle: The system
contacts the thermal reservoirs only in the isomagnetic strokes. At the points C and A, the working
substance reaches the temperatures Th and Tl , respectively, indicated by the isotherms touching the
points. For the quantum version, the entropy values SB and SD are calculated using the same thermal
probabilities as in points A and C to ensure the quantum adiabatic strokes A→ B and C→ D.

The cycle is thermodynamically defined by the two heat reservoirs (hot and cold) and two extreme
values of the external field, Bh and Bl . Usually, the low temperature stage (Tl) corresponds to a low
external field value (Bl) and the high temperature stage (Th) corresponds to the high external field
value (Bh). This is not true for all working substances [22,23] because we need to observe the behaviour
of the entropy as a function of different temperature and external field parameters in order to know
which specific values correspond to each point in the cycle. As an example, the entropy behavior in
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quantum dots [22,23] is such that the points where the temperature reservoirs are located are crossed
with the fields values. Nevertheless, the conclusions obtained in this work can be applied to this kind
of system regardless of the reservoirs are located in the cycle.

The cycle presented in Figure 1 operates following the sequence A → B → C → D → A.
The output power is defined as the work done per cycle divided by τ, with τ being the duration of
each cycle iteration. It is important to point out that, under this formulation, thermal equilibrium is
reached at the thermal reservoirs for both classical and quantum Otto cycles. For the first isomagnetic
stroke B→ C (see Figure 1) with a hot reservoir at temperature Th at point C, the working substance
reaches the temperature of the hot reservoir. For the second isomagnetic process, from D to A (see
Figure 1), the system is put into contact with a cold reservoir at temperature Tl up to the working
substance reaching the same temperature as the cold reservoir. Contrary are the cases of adiabats
(classical and quantum case), where the systems are disconnected from the reservoirs and the external
field is varied from Bl to Bh (process A→ B) and vice-versa (process C→ D). We use the superscript q
for all quantum thermodynamics variables, while we use cs for the classical ones.

In the quantum scenario, the heat absorbed (Qq
in) and released (Qq

out) are given by the
following [12,20,22,23]:

Qq
in = ∑

s
Es(Bh)

[
PC

s (Th, Bh)− PB
s

]
, (1)

Qq
out = ∑

s
Es(Bl)

[
PA

s (Tl , Bl)− PD
s

]
, (2)

where Es(Bl(h)) is the energy spectrum of the working substance evaluated in the low (high)
temperature value in the cycle, Ps corresponds to the probabilities of occupation along the cycle,
and the index s represents the different quantum numbers that characterise a quantum state of the
working substance. To satisfy the adiabatic nature of the process under the quantum formulation,
one way is that the probabilities of occupation must satisfy the following conservation condition:

PB
s = PA

s (Tl , Bl), PD
s = PC

s (Th, Bh). (3)

Using these relations, we can define the total work per cycle:

W q = Qq
in + Qq

out

= ∑
s
(Es(Bh)− Es(Bl))

[
PC

s (Th, Bh)− PA
s (Tl , Bl)

]
. (4)

Here, we can see one of the main difference between the classical and quantum approaches.
While in classical thermodynamics we require the system to be in thermal equilibrium at every
moment, here, we can see that, even if the points B and D do not fulfill this condition, the entropy
conservation along the adiabatic paths can be made just with only two equilibrium points (A and
C). Accordingly, the system reaches thermal equilibrium with the thermal reservoirs in the isochoric
stages. This naturally means that the density matrix must be described as a thermal equilibrium
state (Gibbs state), which is diagonal in the energy basis. Therefore, the entropy S of the system is
simply S = −∑s Ps ln(Ps), which is reduced to the thermodynamic entropy when the probabilities are
calculated in equilibrium, i.e., where the temperature is defined at each point of the cycle.

On the other hand, the classical case does not require a strong conservation restriction of the
population in Equation (3), giving the possibility to have variations in thermal occupations along the
adiabatic pathways. Furthermore, as the systems follow the classical thermodynamic formulation,
they are kept in equilibrium in all positions of the S− B diagram, and the temperature can be defined
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at points B and D. A possible way to do this is to solve the total entropy differential equation
dS(T, B) = 0 to obtain information about the relationship between T and B along the isentropic
processes. The first-order differential Equation is given by the following:

dB
dT

= −

(
∂S
∂T

)
B(

∂S
∂B

)
T

. (5)

Another possibility is simply to impose the classical adiabatic condition between the points A–B
and C–D in the form of

S(Tl , Bl) = S(TB, Bh), S(Th, Bh) = S(Bl , TD). (6)

Because in the classical case the working substance is always in thermal equilibrium, the internal
energy U(T, B) derived from the canonical partition function (Z(T, B)) is always well defined, i.e.,
U = T2 ∂ ln(Z)

∂T . Accordingly, the incoming heat and released heat can be rewritten for the classical
case as

Qcs
in = UC(Th, Bh)−UB(TB, Bh), (7)

Qcs
out = UA(Tl , Bl)−UD(TD, Bl). (8)

According to these two expressions, the total work extracted in the classical formulation is
given by

W cs = [UC(Th, Bh) + UA(Tl , Bl)]− [UB(TB, Bh) + UD(TD, Bl)] , (9)

in which we have separated the points where the working substance comes into contact with thermal
reservoirs (points A and C) and the other points assumed in thermal equilibrium for the classical
formulation (points B and D).

The efficiency of classical and quantum cases is defined accordingly in the following way:

ηq =
W q

Qq
in

, ηcs =
W cs

Qcs
in

. (10)

At this point, we have obtained the quantum and classical expressions for the total work, as in
Equations (4) and (9), respectively. To compare these two scenarios, we rewrite the quantum work in
Equation (4) as follows:

W q = [UC(Th, Bh) + UA(Tl , Bl)]− [U∗B + U∗D] , (11)

where U∗B = ∑s Es(Bh)PB
s and U∗D = ∑s Es(Bl)PD

s are two expected values of energy in nonthermal
equilibrium. This is where we can get a first relevant discussion to compare the classical and quantum
approaches in Equations (9) and (11), respectively. According to thermodynamics, a system in
equilibrium has the minimum value of energy for a given entropy. If this were not so, we can
think that we could withdraw energy from the system (for example, in the form of work), keeping
the value of the entropy constant, and then, we could return this energy to the system in the form of
heat [24]. This would leave the system with its initial state of energy but would cause the entropy to
increase, violating the condition that, for a state in equilibrium, the value of the entropy corresponds to
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a maximum [24]. Therefore, inspecting Equations (9) and (11), we can argue that the quantity U∗B + U∗D
is always greater than UB(TB, Bh) + UD(TD, Bl) because B and D points in the quantum Otto cycle are
in nonthermal equilibrium. As such, we can conclude that the classical work will always by greater
than or equal to the quantum work because the first two terms in Equations (9) and (11) are the same.
Consequently, we can write the condition for total work extraction as

W cs ≥ W q. (12)

This is a clear example of the robustness of thermodynamics. The result presented in Equation (12)
is nothing more than the condition that a reversible total work is always greater than or equal to the
irreversible one:

Wreversible ≥ Wirreversible. (13)

In the next subsections, we show the analysis for two cases, a two-level and a three-level
system. We begin with a toy two-level model in order to present a simple situation where classical
and quantum approaches give analytical expressions for the thermodynamic quantities previously
described. Even though this scenario its quite simple, an important conclusion is drawn regarding the
condition of work in Equation (12). By using this result, we study a three-level quantum dot-like system
and explore first what parameter conditions must be considered to achieve equal works in Equation (12)
and, second, how to maximize the work difference between the classical and quantum cases.

3. The Case of a Two-Level System

In this section, we address the case of a two-level system to guide the discussion towards a
classical and quantum comparison of work and efficiency in the Otto magnetic cycle. For this purpose,
let us consider a working substance described by two energy levels, E1(B) and E2(B), which are
continuous and differentiable as a function of magnetic field. As usual, the thermal populations are
given by the following:

P1(T, B) =
e−βE1(B)

Z(T, B)
, P2(T, B) =

e−βE2(B)

Z(T, B)
, (14)

where Z(T, B) = e−βE1 + e−βE2 and β = 1
T (with kB = 1). The thermal populations satisfies the

normalization condition P1(T, B) + P2(T, B) = 1. In this case of just two energy levels, we can write
the von Neumann’s entropy as

S = −P1 ln (P1)− P2 ln (P2) . (15)

If we associate this entropy with the one derived from thermal equilibrium, it is possible to
obtain the differential equation that relates changes between temperatures and magnetic field along an
isentropic path. Taking the total difference of Equation (15), we get

dT
dB

=
T
(

dE2(B)
dB − dE1(B)

dB

)
E2(B)− E1(B)

, (16)

for which the solution is given by

CT(B) = (E2(B)− E1(B)) , (17)
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where C it is an integration constant. Equation (17) is a general solution for the temperature regardless
of the behavior of the energy levels upon the external field B. Replacing this solution as the thermal
populations in Equation (14), we found P1 and P2 to be only C dependent rather than B or T in the
following form:

P1 =
eC

1 + eC
, P2 =

1
1 + eC

, (18)

Figure 2 shows the probabilities of Equation (18) and the entropy of Equation (15), where for C → 0
(high-temperature limit), the entropy (blue line) reaches their maximum value of ln(2) and, for the
case of C → ∞ (low-temperature limit), P1 goes to one and P2 goes to zero as expected. An important
consequent of this C dependence can be see analyzing the adiabatic paths in the Otto cycle of Figure 1.
Due to the fact that P1 and P2 do not vary with T and B, their values are constant along the adiabatic
processes; therefore, both classical and quantum works become the same in Equation (12) because the
quantum restriction on the population its automatically fulfilled. This result does not depend on how
E1 and E2 behave upon B. With this, we can conclude that, for every two-level system in which the
energies are continuous with B, there will be no difference on the mathematical analysis between the
classical and quantum approaches except for conceptual interpretation about the physical processes.

Figure 2. Probabilities (P) (left vertical axis) and entropy (S) (right vertical axis) as a function of the
integration constant C: We observe that, when the integration constant is zero (high-temperature limit),
we obtain the maximum value of the entropy given by ln(2) because the probabilities take the value of
1/2 at each level.

In this same line of discussion, we found another case forW cs=W q (Equation (12)) corresponding
to the instance when the working substance in the classical adiabatic strokes satisfies the differential
equation in the following form:

dT
dB

∝
T
B

, (19)

for which the trivial solution corresponds to a linear relation between the magnetic field and
temperature, that is T(B) = C1B, where C1 is an integration constant. Take as example a system
for which the energy levels are mathematically described by E(B) = (−1)j jB, where j can take integer
values from zero onwards; the thermal populations and the partition function for this system can be
defined as follows:



Entropy 2020, 22, 755 7 of 11

Pj =
e
(−1)j+1 jB

T

Z(T, B)
, Z(T, B) = ∑

j
e
(−1)j+1 jB

T . (20)

Using the same reasoning as before, it can be deduced that this kind of system will have a linear
dependence as in Equation (19) between T and B during the adiabatic phase (i.e., T ∝ B). Replacing
this solution in Equation (20), we recover the same constant population behavior as before, giving as a
consequence of the equality between the quantum and classical work Equation (12).

4. The Case of a Three-Level System

In order to show a case in which the quantum and classical work can coincide, we will take as
an example a three-level system for which the spectrum in Figure 3a simulates (roughly) a graphene
quantum dot under an external magnetic field [23]. The chosen levels, all in arbitrary units, are given
by E1 = 0, E2 = B and E3 = e−B. This spectrum of energy exhibits a crossing between the levels E2

and E3 for B > 0 and is doubly degenerated for zero external magnetic field.

(a) (b)

Figure 3. (a) Proposed three-level energy spectrum as a function of external dimensionless magnetic
field parameter B. (b) Entropy diagram (S) versus external field (B) in arbitrary units: the color bar
indicates high (low) temperature as a red (blue) gradient. Green and purple geometric shapes represent
two zones: 1 and 2, respectively, where the Otto cycle of Figure 1 is applied in its classical and quantum
versions. Notice that the yellow (blue light) dashed horizontal lines indicate entropy constant values of
ln(2) (ln(3)).

The thermodynamics quantities are calculated from the partition function Z = 1 + e−
B
T + e−

e−B
T ,

and the entropy S as a function of external magnetic field is presented in Figure 3b. At high temperature
and low-external magnetic field region, the entropy tends to ln(3) because, at high temperature, all
three energy levels have the same occupation and therefore the same probability. From the same figure,
we note that some combinations of parameters at low temperature produce first a decrease of entropy
for external magnetic field B < 2 and then an increase converging to ln(2) for high magnetic fields.
This is due to the form of the E3 level in Figure 3a, since for high magnetic fields, it begins to be easier
to populate it than the E2 level, which corresponds to a state that grows linear with the value of the
external field. Consequently, in a region of high magnetic field and low temperature, we have only
two populated states, obtaining the value of ln(2) for the entropy again.

To discuss the performance of the classic and quantum Otto cycles for the three-level system,
we have selected two zones where we will apply the cycles displayed in the Figure 3b and in the
diagram of temperature versus external field in Figure 4, obtained by using the classical conditions of
an isentropic process described by the Equation (6). The green geometric shape (zone 1) corresponds
to a zone where the magnetic field and temperature are related to each other in a linear way, and the
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purple shape (zone 2) is a region where the temperature and the external field have a nonlinear relation
between them. The work and efficiency for zone 1 is presented in Figure 5 for Th = 2, Tl = 0.75 with
an starting value of the external field given by Bl = 3.00 and the high magnetic field (Bh) is moving
up to the value of 4.5. As we can see in the figure, both work and efficiency are the same regardless
of the classical or quantum natures of the cycle operation. How can this be explained? A possible
answer to this question is found in the T-B diagram in Figure 4. If we recall the discussion from the
previous two-level system section, it was found that there are two possible situations where classical
and quantum works are the same. The first one occurs when the system has only two energy levels
with any magnetic field dependence. Here, a constant population behavior appears that implies a
fulfillment of the quantum’s restrictions, giving as a consequence the equality of work and efficiency
with their classical counterpart. The second case was a particular situation in which all energy levels
have a linear dependence with the external field. The result of this is a linear relationship between T
and B appearing for the adiabatic strokes, and therefore, we recover the same population behavior of a
two-level system. Therefore, both classical and quantum work are the same even if the system has a
multilevel spectrum (where the B− T relation is linear).

Figure 4. Temperature versus external field diagram obtained when the classical conditions over the
isentropic trajectories are applied to the three-level system. The color scheme represents different
constant values of entropy (in arbitrary units) from 0.04 (blue) up to 1.09 (red). From this diagram,
the green geometric shapes represent a zone where the temperature is linear with the magnetic field.
The purple one is a region where the relation between temperature and the magnetic field has a
nonlinear behavior. A dashed pattern is used to represent two different thermal cycles operating inside
the same zone keeping in both cases the same reservoir’s temperatures (A and C between dashed and
non-dashed per area). These particular cycles are indicated in Figures 5 and 6, respectively.

In the present case, due to the set of chosen parameters, a linear dependence T − B is graphically
found in Figure 4. What this tell us is that, even if the system does not have two levels or a spectrum
with a linear magnetic field dependence, if there exists a zone in which a linear-like relationship can
be found between T and B, the system will present a maximum quantum work. In other words,
the quantum work will be equal to the classical one while the thermal machine operates inside that
parameter set.
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Figure 5. Work (in arbitrary units) and efficiency (inset) for the case of zone 1 (green shape in Figure 4)
for an initial value of external magnetic field Bl= 3.00 and up to Bh = 4.50: The hot and cold reservoirs
are Th = 2.00 and Tl = 0.75, respectively. The blue dotted line represents the classical performance,
and the red dotted line represents the quantum one. Two bigger points, green and dashed-green,
represent the two geometric shapes (cycles) showed in Figure 4.

Figure 6. Work (in arbitrary units) and efficiency (inset) for the case of zone 2 (purple shape in Figure 4)
for an initial value of external magnetic field Bl = 0.75 and up to Bh = 1.50:The hot and cold reservoirs
are Th = 1.40 and Tl = 0.30, respectively. The blue dotted line represents the classical performance,
and the red dotted line represents the quantum one. Four purple circles (two per cycle) are drawn to
show the difference between cycles (see Figure 4) inside the same region. It can be seen that the purple
line with marked circles that are close together indicate a similar performance for the classical and
quantum cases due to the increasingly linear function in the adiabatic path for the purple line marked
cycle shown in Figure 4.

If we analyse the work and efficiency for zone 2 in Figure 6, where the parameters are given by
Tl = 0.30 and Th = 1.40 and the external field is in the range of 0.75 up to 1.50, we observe a drastic
decrease in the quantum work and efficiency for points near the initial field value Bl . Two things
happen in that area which are fundamental to obtain these results. The first one is the fact that the
function connecting the A–B and C–D paths in the T–B diagram (adiabatic) in Figure 4 clearly does not
have a linear relation T−−B. This implies that at least one of the two situations where the classical
and quantum works are the same is not fulfilled, as described for the two-level system. A second
observation can be made if we look at Figure 3a for the range of magnetic field involved in the process
(zone 2). In this region, we see that the three levels play an important role in determining the thermal
populations, and therefore, it cannot behave as a two-level system as the cycle operating the green
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zone 1 of the T–B diagram in Figure 4. These results confirm that the inclusion of more energy levels
causes a lower work and efficiency in the quantum Otto Cycle when the working zone on the T–B
diagram localizes in regions where no linear relationship between T and B can be found as well as
when more than two levels play a significant role in the thermal populations.

We want to emphasize that the discussion of the two cycles presented in this work correspond
to idealized cycles in which the output power of the machine is zero. In order to realize a more
feasible Otto cycle for practical implementation protocol, this work can be extended in the shortcuts
to the adiabaticity technique [25–27]. Additionally, the use of quantum resources (such as quantum
coherence, for example) can lead to an enhancement in the performance of the quantum version of the
proposed cycle.

5. Conclusions

In this work we have studied and compared Otto’s classical and quantum cycles, showing that
the amount of extracted work under classical formulation is equal to or higher than its quantum
counterpart. An explanation for this lies in all-timing equilibrium configurations along the cycle
operation in the classical one, while in the quantum case, the only equilibrium states belong to the
thermal reservoirs. This is a general result valid for any working substance that operates under the
restriction mentioned in the first section of this work due to the fact that, in a constant entropy process,
the lowest energy state is achieved at thermal equilibrium. Furthermore, this result is consistent with
the thermodynamic postulate of maximum work since the Otto quantum cycle, having just two of the
four main states at thermal equilibrium, represents an irreversible cycle in comparison to the classical
one in which all possible states belong to equilibrium configurations. We also studied two particular
cases where the classical and quantum efficiency/work are the same. This corresponds to any two-level
system and to the case where a multilevel system is linearly dependent on the magnetic field and the
energy spectrum and where a linear relationship between temperature and magnetic field can be found
during adiabatic stages. Finally, we corroborate these results by extending the analysis to a three-level
system. When just two of the three-levels become relevant during the population thermal evolution, a
linear relationship T–B is recovered (adiabatic processes) and, therefore, an equality between classical
and quantum work is achieved. If the external parameters (reservoir’s temperatures, external magnetic
fields, etc.) are such that all three levels becomes relevant, we lose the equality and a nonlinear relation
arises between temperature and magnetic field during the adiabatic stages, giving a lower quantum
work extraction in relation to the classical one.
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