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Abstract

Electroencephalogram (EEG) microstates that represent quasi-stable, global neuronal

activity are considered as the building blocks of brain dynamics. Therefore, the analy-

sis of microstate sequences is a promising approach to understand fast brain dynamics

that underlie various mental processes. Recent studies suggest that EEG microstate

sequences are non-Markovian and nonstationary, highlighting the importance of the

sequential flow of information between different brain states. These findings inspired

us to model these sequences using Recurrent Neural Networks (RNNs) consisting of

long-short-term-memory (LSTM) units to capture the complex temporal dependencies.

Using an LSTM-based auto encoder framework and different encoding schemes, we

modeled the microstate sequences at multiple time scales (200–2,000 ms) aiming to

capture stably recurring microstate patterns within and across subjects. We show that

RNNs can learn underlying microstate patterns with high accuracy and that the micro-

state trajectories are subject invariant at shorter time scales (≤400 ms) and reproduc-

ible across sessions. Significant drop in the reconstruction accuracy was observed for

longer sequence lengths of 2,000 ms. These findings indirectly corroborate earlier

studies which indicated that EEG microstate sequences exhibit long-range dependen-

cies with finite memory content. Furthermore, we find that the latent representations

learned by the RNNs are sensitive to external stimulation such as stress while the con-

ventional univariate microstate measures (e.g., occurrence, mean duration, etc.) fail to

capture such changes in brain dynamics. While RNNs cannot be configured to identify

the specific discriminating patterns, they have the potential for learning the underlying

temporal dynamics and are sensitive to sequence aberrations characterized by

changes in metal processes. Empowered with the macroscopic understanding of the

temporal dynamics that extends beyond short-term interactions, RNNs offer a reliable

alternative for exploring system level brain dynamics using EEG microstate sequences.
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1 | INTRODUCTION

Four quasi-stable states explain consistently around 80% of total

topographic variance in spontaneous electroencephalography (EEG).

These states are referred to as microstates and have been suggested

to be the “building blocks of brain functions” (Khanna, Pascual-Leone,

Michel, & Farzan, 2015; Koenig et al., 2002; Lehmann & Michel, 2011;

Michel & Koenig, 2017). Recent studies show that changes in the

properties of microstates (e.g., mean duration) are associated with

neuro-psychiatric disorders (Michel & Koenig, 2017), for example,

schizophrenia (Andreou et al., 2014; Lehmann et al., 2005; Rieger,

Diaz Hernandez, Baenninger, & Koenig, 2016), depression

(Damborská et al., 2019; Strik, Dierks, Becker, & Lehmann, 1995), epi-

lepsy (Pittau, Baldini, Tomescu, Michel, & Seeck, 2018), as well as

stages of development (Koenig et al., 2002). The continuous time

course of microstate appearances exhibits long range dependencies

over at least six dyadic scales (Van de Ville, Britz, & Michel, 2010) and

is interrelated with some of the well-known blood oxygen-level

dependent (BOLD) resting state networks (Britz, Van De Ville, &

Michel, 2010; Rajkumar et al., 2018; Van de Ville et al., 2010), effec-

tively associating them, among others, with visual, auditory, and atten-

tion processes (Milz et al., 2016; Seitzman et al., 2017). Therefore,

studying the trajectory of microstates which represents the whole

brain dynamics, and seems to be governed by distinct but inter-

connected processes, is a promising venue to investigate the brain

dynamics at the system level.

However, EEG trajectories are rarely investigated by proper

mathematical tools capable of modeling the dynamics in a sequence-

preserving way. More recently, modeling techniques based on hidden

Markov models (Gschwind, Michel, & Van De Ville, 2015), random

walk (von Wegner, Tagliazucchi, Brodbeck, & Laufs, 2016), and sto-

chastic process (von Wegner, Tagliazucchi, & Laufs, 2017) are gaining

momentum to investigate the transition properties of microstates.

Such approaches are nevertheless limited in terms of their dynamical

richness (Gschwind et al., 2015). A fundamental issue with the transi-

tion matrix approach is the combinatorial increase of the number of

possibilities when the length of sequences is extended, which leads to

a sharp decrease in the reliability of models. Consequently, adequate

modeling of microstates sequences needs to reach beyond simply the

sequence of labels and should consider temporal relations within and

between states (Gschwind et al., 2015).

In this article, instead of trying to explicitly model the temporal

dynamics of EEG microstates, we ask if there are any temporal pat-

terns in the sequence of EEG microstates that can be reliably and

reproducibly detected. This question is best addressed using recurrent

neural networks (RNNs) that are known to be a rich and flexible meth-

odology to learn complex temporal dependencies without making any

assumption on the temporal characteristics of the signal. Deep neural

networks with a recurrent structure (i.e., RNNs) have been used suc-

cessfully to model various temporal sequences (Cho et al., 2014;

Sutskever, Vinyals, & Le, 2014). Unlike conventional feed-forward

neural networks that consider all samples to be independent, RNNs

have loops with a chain-like structure that dynamically engage

information learned from the past to be used for future samples and

therefore, have been employed to understand videos and temporal

data with promising results (Cho et al., 2014; Venugopalan et al.,

2014). Specifically, an RNN consisting of long-short-term-memory

(LSTM) cells has been proven to be successful in modeling temporal

dependencies in sequential data (Hochreiter & Schmidhuber, 1997;

Sak, Senior, & Beaufays, 2014). With short-term memory that can last

for a specific period of time, LSTM is well-suited to process, analyze,

and predict sequential data with unknown time lags and durations.

Therefore, LSTM networks seem to be suitable for modeling patterns

in EEG microstates that are quasi-stable and transient. While

sequence-to-sequence autoencoders (AE) have been employed suc-

cessfully in several tasks such as machine translation and video-to-

text (Cho et al., 2014; Venugopalan et al., 2014), to the best of our

knowledge, there is no previous work on extracting representations

from EEG microstate sequences using this method.

The proposed model aims to learn the underlying patterns that

exist in EEG microstate sequences where these states exhibit quasi-

stability. Use of RNNs alleviates the need to predefine features which

aids in learning potential nonlinear microstate dynamics directly from

the data. LSTM architecture goes beyond the step-by-step short-term

interactions (modeled by conventional methods like Markov Chains)

to capture potentially existing long-range dependencies. Specifically,

we explore the temporal dynamics of the microstate sequences using

an LSTM-based AE neural network, that is, trained to reconstruct its

input to the output, by first compressing the input into a latent-space

representation and then using this representation to reconstruct the

output. Effectiveness of the proposed model in representing the com-

plex dynamic structure is demonstrated through accurate reconstruc-

tion of microstate sequences. Further, we try to study the patterns

learned by the RNNs by visualizing LSTM cells that react to specific

patterns in microstate trajectories to gain intuition into the internal

learning mechanisms and the patterns of EEG microstates that govern

the temporal structure of microstates. We show that the model reacts

to the changes in microstate sequences after stress induction and that

it has the ability to categorize stress-induced condition from baseline

microstate sequences which further demonstrates the potential of the

learned representations for applications such as classification and

cross-modality estimations. Finally, as RNNs have the sequence pre-

diction capability, we attempted to forecast future states in the micro-

state sequence by combining the historical sequence information with

the learned internal representation. Relatively low prediction accura-

cies beyond a few milliseconds corroborates the nonstationary nature

of the resting state microstate sequences due to irregular structure of

microstate durations.

2 | MATERIAL AND METHODS

2.1 | Data acquisition

Here, we used two datasets to assess the temporal structure of EEG

microstates. The first dataset is from a study which employs EEG data
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with simultaneous Functional magnetic resonance imaging (fMRI)

where we have access to the resting state recorded pre and post

stress condition which is of interest to study its effect on temporal

properties of EEG microstates. Furthermore, possible shortcomings of

EEG artifact correction recorded inside magnetic resonance imaging

(MRI) scanner were then controlled using the second dataset which is

recorded outside MRI scanner.

Dataset 1A: Data were obtained from simultaneous 3T EEG-fMRI

recordings of 12-min eyes-closed resting-state of 34 healthy male vol-

unteers (mean age 44.06 ± 9.96). EEG data were acquired using the

BrainAmp MR system (Brain Products) with a 64-channel Easycap

augmented with six carbon-wire-loops (CWLs; van der Meer et al.,

2016). One channel placed on the back was used for electrocardio-

gram (ECG) detection. FCz was used as reference electrode and CPz

as ground electrode. The sampling rate was 5,000 Hz

Dataset 1B: Data were obtained from simultaneous 3T EEG-fMRI

recordings during a 12-min eyes-closed resting-state following a psy-

chosocial stress paradigm in 34 male subjects (mean age = 43.26

± 10.19). EEG and fMRI data were acquired with the same procedure

as in Dataset 1A with the only difference that resting-state data was

recorded after subjects underwent a psychosocial stress paradigm.

The stress paradigm was an adapted version of the ScanSTRESS task

as described by (Streit et al., 2014) where subjects were asked to per-

form two tasks containing mental rotation and arithmetic calculation.

For both types of tasks, control blocks were without any social evalu-

ative feedback, time pressure, or difficult questions and stress blocks

were with feedback about the correctness and speed of the answers

as well as more demanding questions. During the whole experiment,

subjects were exposed continuously to a video feed of the reactions

of two panel members, who were passive during the control blocks

but reacted disapprovingly to the participant's performance during the

stress condition. In total, there were four 40-s blocks of each type

(arithmetic control/stress and mental rotation control/stress) pres-

ented in two runs. After the first run (consisting two blocks of each

condition), the experiment was interrupted for an extensive, negative,

verbal feedback from the panel members stating that the performance

was poor and more effort necessary or the data would not be usable

Dataset 1 was recorded in 39 subjects who underwent baseline

and post psychosocial stress recordings in the scanner twice, that is,

on 2 days, where there was a period of 7–35 days between 2 days.

The EEG acquisition was performed adjacent to a clinical trial

(NCT02602275) where after the baseline measurements subjects

took either placebo or an herbal medicinal product (Neurexan) in a

counterbalanced order. Participants who received placebo on the first

day took Neurexan on the second day and vice versa. This article only

reports results analyzed for the days on which placebo was taken. The

data from five subjects in each resting state were excluded from the

current analysis because of the problems with recording and/or the

low quality of their available EEG data.

Dataset 2 EEG data were obtained in a shielded cabin from

15-min eyes-closed resting-state in 11 healthy male volunteers (mean

age = 24.42 ± 3.05). EEG data were acquired using a BrainAmp (Brain

Products) with 64-channel actiCap. Two bipolar electrodes placed on

the right and the left arm were used for ECG detection and two further

bipolar electrodes with galvanic skin response-module input were used

for skin conductance measurements. FCz was used as reference electrode

and AFz as ground electrode. The electrode PO10 was used for eye

movement detection and was excluded from the further analysis. The

sampling rate was 2,500 Hz, but data were down-sampled to 1,000 Hz.

2.2 | Data preprocessing

Artifact rejection for EEG data was done in a semiautomatic process

using custom MATLAB scripts. First, the raw EEG data was bandpass

filtered between 0.3 and 200 Hz. Then, EEG was cleaned from MRI

gradient artifacts by motion informed template subtraction technique

(Moosmann et al., 2009). Then, the helium pump and ballisto-cardiac

artifacts were removed using the CWLs artifact correction technique

(van der Meer et al., 2016). Finally, the data were segmented into

2 and 1 s trials, for Datasets 1 and 2 respectively, and the trials con-

taining muscle and head movement artifacts were removed from the

dataset. Data segmentation was necessary to allow removal of the

data containing muscle and head-movement-related artefacts.

Because Dataset 1 contains MRI artefact, we aligned EEG segmenta-

tion to the repetition time of the simultaneous MRI scanner. Dataset 2

was recorded outside the scanner and therefore we were able to use

a finer segmentation (here 1 s), that allows us to be more precise in

the artefact removal and keep more data.

The channels that contained too many epochs with artifacts were

also removed and interpolated using routines provided by EEGLAB

(Delorme & Makeig, 2004). The latter step of the artifact rejection

process also includes independent component analysis decomposition

of the EEG data and removing the components that reflected eye

movements, continuous muscle activity, and residual MRI-artifacts.

Note that since Dataset 2 was recorded outside of the scanner, we

only applied the non-MRI part of the pipeline on this dataset.

2.3 | Microstate extraction

To extract EEG microstates, we used the EEGLAB plugin developed

by Thomas Koenig (www.thomaskoenig.ch/index.php/software/).

Artifact-free EEG was band-pass filtered between 1 and 40 Hz,

down-sampled to 250 Hz, and the peaks of the global field power

(GFP) were determined after convolving the GFP time series with a

Gaussian filter of 10 time-points window length. We use GFP to

assign the microstate labels as they are suggested to be the best rep-

resentation of instantaneous EEG topographies (Koenig, Studer, Hubl,

Melie, & Strik, 2005). All maps marked as GFP peaks were extracted

and submitted to a modified k-means clustering algorithm to deduce

the four classes of map topographies that maximally explain the vari-

ance of the map topographies. These four classes of map topogra-

phies were then submitted to a full permutation procedure to

compute mean classes across participants. Full permutation procedure

is a permutation algorithm that is dedicated to maximize the common
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variance over the subjects. This is done in an iterative procedure by

swapping individual microstate topographies for best fit of the proto-

type maps and updating the prototypes by calculation grand average

over subjects (see Koenig et al., 1999 for further details). Using the

mean microstate classes across subjects as templates, for all partici-

pants the EEG topographies at the local maxima (peaks) of the GFP

were assigned to one of these four microstate classes based on maxi-

mal Pearson correlation (see Figure 1). Time points between GFP peaks

were assigned to the microstate class of the temporally closest GFP

peak. Successive maps assigned to the same class were recognized as

belonging to one microstate. Finally, the temporal dynamics of micro-

states are conventionally quantified in terms of the average duration

of microstates each time they occur (i.e., Duration), the number of

times they occur in a second (i.e., Occurrence), and the proportion of

time spent in each microstate (i.e., Contribution; Khanna et al., 2015).

2.4 | Reconstruction of microstate sequences
using RNN

We use a recurrent sequence-to-sequence AE framework (see

Figure 2) to learn high-level, compact representations of EEG micro-

state sequences. The AE is trained in an unsupervised setting to read

the input sequence, encode it and finally decode it to recreate the

sequence accurately. Unlike traditional neural networks, RNNs are

designed to recognize patterns in sequential data.

The encoder processes the input microstate sequence, I1, I2, � � �, IT
of length T and summarizes the observed temporal pattern in the form

of latent representation (hidden state). The task of the decoder is the

state-by-state reconstruction of the input microstate sequence.

The reconstruction is based on the latent representation learned by

the encoder RNN which is used to initialize the hidden states of the

decoder RNN (see Figure 2).

In this work, we employ an architecture similar to the LSTM-

based AE that was first employed by Srivastava, Mansimov, &

Salakhudinov (2015) to learn representations of spatiotemporal

information in video sequences. As illustrated in Figure S1, each

LSTM unit has a memory cell and a set of gates that control the

flow of information. A chain of such LSTM units is organized into

an Encoder-Decoder architecture (see Figure 2) to learn the

latent representation of microstate sequences that not only sum-

marizes the high-level patterns contained in the microstate

sequences but also learns the temporal dependencies between

subsequent states.

In particular, the LSTM-based AE is fed with microstate

sequences to encode temporal patterns that are stable across and

within subjects. As EEG microstate is a categorical variable with labels

A to D, one hot encoding is used to first convert it into numerical

form. Here, each label is mapped to a binary vector with a single non-

zero entry (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) such that the pairwise

distances between all microstates are the same. At each step, the net-

work receives a sequence of EEG microstates and generates an out-

put sequence of the same size. EEG sequence is sliced into segments

of size S that represents the length of the sequence in time points and

input to the LSTM network has dimensions of S × 4 due to one hot

encoding.

F IGURE 1 Schematic representation of microstate extraction. (a) The global field power (GFP) is calculated at each time point of the
multichannel electroencephalogram (EEG) recording. (b) At peaks of the GFP curve, the potential recorded at each electrode of the multichannel
signal is plotted onto a map of the channel array. (c) The head-surface topographies of the four EEG microstate classes for Dataset 1. (d) The
original maps at peaks of the GFP curve are assigned to a microstate Class A, B, C, or D based on the degree of correlation with the
microstate maps
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2.5 | Intermediate representation

Technically, only four symbols are enough to represent each of the

microstates where consecutive appearances of a microstate represent

its local persistence in a sequence. However, duration of a microstate

is very irregular and ranges from 0 to 300 ms. As persistence could be

a dominating factor that overwhelms the training process and is also

shown to be an important encoding feature of microstates (Khanna

et al., 2015), alternative encodings were considered to include this

information in the samples. The most compact representation that

encodes the temporal information would be to encode each micro-

state along with its persistence as a unique symbol as shown in

Figure 3. However, due to the heavy-tailed distributions of EEG

microstate durations (Gschwind et al., 2015), such condensed repre-

sentation will lead to a large number of symbols in the new represen-

tation which will make it too sparse compared to number of instances

and therefore, cannot reflect the distribution characteristics of the

sequence correctly. For example, although microstate B occurs with

duration of 100 ms very rarely, it still gets a unique symbol under con-

densed representation. To overcome this issue, we adapt an

intermediate encoding scheme (as shown in Figure 3) that represents

a compromise between the original and compact representations.

Although many such intermediate representations are possible, we

chose to encode microstates persisting up to four time points with

different symbols (A1–A4, B1–B4, etc.) and string them in decreasing

order (e.g., D9 is coded as D4 D4 D1). This representation offers a tra-

deoff between recurrence and sparsity as the number of symbols only

increases from four to sixteen while sustaining the notion of persever-

ance. Importantly, this allows to dissect the possible effect of limited

memory capacity of the RNNs from intrinsic temporal structure of

EEG microstates should the reconstruction accuracy differ for various

microstate sequence durations.

2.6 | Generation of surrogate data

To further validate that the proposed LSTM networks are in fact

learning the underlying patterns in EEG sequences, the experiments

were repeated on two types of surrogate datasets. First, random

sequences of microstates were generated where each state was

F IGURE 2 Encoder–Decoder architecture of the long-short-term memory (LSTM) network. The architecture employs two LSTM networks
called the encoder and decoder. The encoder is a single layered recurrent neural networks (RNN) with Nu units of LSTM. At each time step, the
hidden state of the encoder is updated based on the input microstate. Therefore, the final hidden state of the encoder RNN contains information
about the whole input sequence. This final hidden state is used by the decoder RNN to recreate the original sequence by minimizing the
reconstruction error. The decoder RNN is structurally similar to the encoder with same number of layers and LSTM units

F IGURE 3 Different microstate representations that were used to encode long-term dependencies. Original representation is the most
intuitive encoding scheme and requires only four symbols. On the other extreme, condensed representation is sparse but also minimalistic.
Intermediate representation provides a tradeoff between these two by assigning different symbols for microstate durations up to four time points
and arranging them in decreasing order. With only fourfold increase in the number of symbols, intermediate representation strikes a balance
between recurrence and sparsity
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independently sampled with equal probability of occurrence. Second,

for a more realistic imitation, a sequence of microstates was modeled

as a discrete autoregressive process (Jacobs & Lewis, 1983), where

the state at time t is a function of previous states and thus introduces

correlations. In this case, the microstate sequence is assumed to be

DAR(p) as xn =Vnxn−An + 1−Vnð Þyn where xnϵ (A, B, C, D) is the nth

state in the sequence, Vn is a Bernoulli process taking value of 1 with

probability ρ and 0 with probability (1 − ρ). An is an integer between

1 and p attaining each value with probability αi, and yn is another ran-

dom process with independent and identically distributed probabilities

of selecting a particular state, represented by marginal distribution π.

The parameters of the autoregressive process are estimated from the

original EEG microstate sequences by first mapping the symbolic

states onto a set of numerical values.

3 | RESULTS

3.1 | Reconstruction of microstates sequences
within each subject

We first analyzed the Datasets 1A and 2 within an intrasubject frame-

work where data from each subject was separately used for recon-

struction. Four reconstruction models were trained for each subject

with sequence lengths of 200, 400, 800, and 2000 ms with both inter-

mediate and original representations. For intermediate representation,

sequence length that best approximates the duration (200 ms, 400 ms,

etc.) is considered as an exact match is not always possible due to the

encoding process. To train a model for each subject, 70% of the data

was used for training and the remaining were used as the test set.

Then each set was further divided to overlapping segments of preset

length and then randomly shuffled. We repeat this procedure for the

intermediate representation as well. The performance of the models is

measured using reconstruction accuracy which is defined as:

Reconstruction Accuracy=
number of correctly predicted microstates
length of the sequence #of time pointsð Þ

The mean reconstruction accuracies across all subjects are

depicted in Figure 4. Note that because within a microstate, periods

between GFP peaks were labeled using a nearest neighbor criterion,

within an average of about half the average GFP peak-to-peak inter-

val, EEG time-points receive the same microstate label by definition.

The reconstruction accuracy shows high stability for shorter

sequence lengths of 200–400 ms and as expected starts to decline for

800 ms and drops significantly for sequence length of 2,000 ms. Our

preliminary ablation studies (Appendix D) also indicate that varying the

number units or layers of the LSTM network does not improve the per-

formance of the model significantly for longer sequences of 2000 ms.

Given that this decrease in accuracy is evident for both encoding

schemes used here, this could not be attributed to the capacity of

RNN. Here, to control for possible confounding effect of MRI artefact

on the results of RNN microstate analysis, we compare the dynamics of

microstates that are based on EEG recorded inside (Dataset 1) and out-

side (Dataset 2) scanner. We compare the accuracies of our RNN analy-

sis between Dataset 1 and Dataset 2 (results presented in Appendix B)

that are obtained from EEG data recorder inside and outside the MRI

scanner and observe no significant difference. Additionally, we find no

significant difference in the conventional metrics of microstate dynam-

ics between the data recorded inside and outside the MRI scanner.

As the auto-encoder attempts to learn stably occurring temporal

patterns in the sequences, irregular bursts in the duration of

F IGURE 4 Electroencephalogram (EEG) original representation (OR) versus its intermediate representation (IR) versus surrogate data: For all
different lengths of microstate sequences, the reconstruction (a) accuracies are significantly higher for EEG sequences as compared to random

and random auto-correlated (AC) sequences indicating the existence of strong underlying patterns. (b) Indicates intersubject and intrasubject
reconstruction accuracy for different lengths of microstate sequences for original EEG and its intermediate representation. Consistently
comparable reconstruction accuracies for intrasubject and intersubject analysis establishes the generalizability of patterns across subjects. Here,
dotted line indicates the reconstruction accuracy of 25% for four microstates. For different time-scales, EEG-intermediate representation is in
order with the original representation. This makes it clear that model does not only focus on persistence. These results further corroborate the
existence of strong underlying patterns in EEG microstate sequences and demonstrate the ability of the LSTM-based networks to effectively
capture these patterns
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microstates can affect its performance. As a result, we hypothesize

that the rate of decrease in reconstruction accuracy can be attributed

partly to the burstiness of the EEG sequences. Furthermore, empirical

results show that for longer sequence lengths (2,000 ms), the accura-

cies for either intrasubject or intersubject reconstructions do not dif-

fer significantly from random auto-correlated sequences. This

observation suggests that memory effect in the microstate sequences

decays rapidly beyond this duration.

3.2 | Analysis of surrogate data

Reconstruction accuracy for random sequences is significantly lower

than real EEG sequences (Figure 4). While the accuracy for completely

random sequences (with equal probability of occurrence for each

microstates) is close to chance that is, 25%, accuracies for

autocorrelated random sequences is slightly higher.

3.3 | Comparison of microstate sequences across
subjects

Here, further analysis is done to test the extent to which microstate

sequences are comparable across subjects. To do this, intersubject

analysis is conducted where microstate sequences extracted from

80% of the subjects were used to train the RNNs and data from the

remaining 20% of the subjects were used for testing the performance

of the trained models with fivefold cross validation. Figure 4 shows

the average reconstruction intersubject analysis and compares it with

intrasubject analysis. Remarkable performance of the intersubject

models indicates that microstate sequence trajectories are subject

invariant at short time scales and can be generalized across subjects.

The higher reconstruction accuracy for intersubject as compared

to intrasubject experiment can be attributed to the substantially

greater number of training samples available to train the model. As

microstate sequences from different subjects are pooled together, the

large training sample enables the learning model to generalize better

by capturing inherent variations more effectively.

3.4 | Visualization and Interpretation of LSTM
Cells

RNNs, composed of a large number of individual cells combined in

complex ways to solve challenging tasks, are still majorly black boxes.

With proliferation of large-scale neural networks, interpreting them

has become one of the most challenging and active areas of research

(Karpathy, Johnson, & Fei-Fei, 2015). LSTMs learn the underlying

F IGURE 5 Visualization of two cells from hidden layer of the encoder. Each row represents a microstate sequence of length 100 where the
number of examples represented by the number of rows is 32 and every microstate is highlighted by its corresponding activation value. The
activation values of each microstate range between [−1, 1] and are represented by colors ranging from dark red (negative) to dark blue (positive).
(a) This cell responds to the appearance of microstate A. (b) This cell responds to the transition to and from microstates C and D
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complex, nonlinear patterns by extracting high level features and gener-

ating rules directly from examples. Here, we attempt to gain some insight

into the form of these rules by visualizing the hidden state representa-

tions of the network. Specifically, we tried to find LSTM cells that are

dedicated or react to specific patterns in microstate trajectories.

Toward this end, the hidden layer of the network was visualized

for better interpretation of the underlying lower dimensional represen-

tation of the temporal patterns. Specifically, we tried to visualize the

internal units of a single layer, subject specific model for a sequence

length of 400 ms only for the full EEG representation. As the LSTM

reads a sequence of microstates, its cells fire with varying intensities.

For each cell, these activations are visualized for an input sequence of

microstates where each state is color-coded according to the cell's

intensity. These activation values range between [−1, 1] and colors

range from dark red (negative) to dark blue (positive), respectively.

Although many LSTM cells were too complex for visual interpretation,

we were able to find multiple interpretable cells that robustly identified

high-level patterns. Remarkably, some of these patterns correlated

with transition dynamics of EEG microstates. For example, Figure 5

depicts the activation of a cell that is sensitive to the occurrence of

State A (Figure 5) and another cell that was found to track transitions

to and from States C and D (Figure 5). For the purpose of visualization

and ease of interpretation, these RNNs were trained with microstate

sequences of length 100 in original representation.

For a more objective interpretation of these cells, we looked at

how the activations were correlated with the temporal dynamics of

the sequences. As a measure of state transition probability, average

activation value for each transition (across a batch of sequences) for

each cell N is calculated as.

SN:X!Y^ X 6¼Yð Þ =
1
n

Xn

i=1
AXi−AYi

� �

where A represents the cell's activation or intensity and n is total num-

ber of transitions that occur from a state X to state Y. Average

activation value for each state is also calculated as a measure of rate

of occurrence of a particular microstate, that is

SN:X =
1
n

Xn

i=1
AXi

� �
:

Figure 6 depicts the activation metrics calculated for the two cells

presented in Figure 5. The visualizations clearly show the responsive-

ness of LSTM units to multiple patterns. As can be seen from Figure 6,

only State A has a positive average activation value with all transition

activations from State A (A ! B, A ! C, A ! D) , are positive and rela-

tively large compared to other transitions, clearly indicating the interest

of this cell in tracking the occurrence of State A. Similarly, the average

activation values in Figure 6 indicate the specialization of that cell in

tracking transitions to and from States A and B toward States C and D.

3.5 | Effect of social stress on trajectories of
microstates

Several studies have shown that temporal dynamics of the EEG micro-

state sequences are altered due to disturbances of mental processes

F IGURE 7 Block diagram of joint stress classification along with
reconstruction. The reconstruction architecture is same as the one

used for reconstruction but here we have coupled the system with
pattern classifier which classifies the two conditions. Here, we back
propagate both reconstruction and classification error at each epoch.
The bar plot in the right indicates obtained accuracy, sensitivity, and
specificity for classification at 200 to 1,600 ms. We observe that
model is able to differentiate at all sequence lengths when compared
to the simple statistical analysis where no difference was seen

F IGURE 6 The block representation of average state activation

values for each microstate and state transition matrix for hidden cell
1 (a) and 2 (b). Here, A, B, C, and D represent each microstate and
values in the rectangular box represent average state activation
values. The arrows from one state to another represent
corresponding average state transition activation values. Arrows in
bold indicate transitions that are different, that is, either too low or
too high for a particular cell
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associated with neurological and psychiatric conditions. Specifically,

statistics such as duration and occurrence of microstates would be

affected in such conditions. More recently, variations in transition

probabilities between microstates have also been associated with

aberrant neural dynamics. In this section, we use the previous RNN

model to see if trajectories of the microstates are different in the rest-

ing state data following an exposure to a psychosocial stress task

compared to baseline resting state. The stress response to the psy-

chosocial stress is induced using the ScanSTRESS paradigm (Streit

et al., 2014), which uses arithmetic as well as mental rotation tasks

(see Section 2.1 for details).

Here, we hypothesize that since stress suppresses certain modes

of activity in the brain (Olver, Pinney, Maruff, & Norman, 2015; Sandi,

2013; Yu, 2016), resting state data before stress condition (baseline

resting state) should have a richer repertoire of microstate sequences

compared to the resting state following the stress task. To test this

hypothesis, we tested the generalizability of the RNNs to classify the

sequences as stress or nonstress. As shown earlier (see Section 3.3),

the time course of microstates seems to be comprised of multiple time

scales where shorter time scales are subject-invariant. Therefore, we

repeated this experiment with four different sequence lengths of

duration of 200, 400, 800, and 1,600 ms, respectively. We used an

RNN Encoder-Decoder coupled to a pattern classifier as shown in

Figure 7. The combined model uses the latent representation of the

AE to perform classification. This model is jointly trained in an end-to-

end manner where both the reconstruction loss and classification loss

are back-propagated at each epoch. While the configuration of the

auto-encoder remains the same as that of the previous sections, the

classifier is designed as a two-layered dense neural network with

leaky RELU as the activation unit and binary cross entropy as the loss

function. The classification accuracies range from 67 to 73% for

sequence lengths 200–1,600 ms, respectively.

Consistent with the theory that functional brain states are

suppressed under stress conditions, we observe that RNNs encodings

obtained from joint training can distinguish between the EEG with or

without preceding stress condition. Interestingly, the plot shows a

clear trend of increasing accuracy with increasing sequence lengths

and thus, emphasizes the importance of long-range correlations in

characterizing these sequences. Importantly, the effect of stress was

not significant in any of the conventional measures (see Figure 8).

Moreover, we attempted to classify stress versus nonstress for

1,600 ms sequences using simple neural network with conventional

F IGURE 8 Transition
probabilities, average duration,
coverage, and occurrence frequency
of microstates for baseline and stress
conditions are compared. These
results show that there are no
statistically significant differences in
any of the features between the two
conditions
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measures as input features. With architecture similar to that used for

joint stress classification resulted in an accuracy of approximately

52% only.

To further illustrate the sensitivity of LSTMs to the trajectories of

microstates, we conducted a cross-conditional analysis. We tested the

generalizability (Olver et al., 2015) of the RNNs when trained on these

two datasets (with and without preceding stress) and tested on the

other one. The summary of the results is shown in Appendix E. We

observed that although when tested on the same session that the

model was trained on, the two models have a similar performance

(p < .43), the test accuracy of the model trained on data with preced-

ing stress is significantly (p < .023) lower when tested on the session

with no preceding stress. Interestingly, this drop in the accuracy is

only observed when we cross tested the two models trained on the

longer sequence length of 800 ms. These results suggest that RNNs

trained on EEG data following the stress condition have less ability to

generalize to data with no preceding stress and thus, further substan-

tiating the idea of suppressed brain states under stress conditions.

4 | DISCUSSION

Microstates denote the quasi-stable topography of scalp-EEG that

remain constant for approximately 80 ms and are believed to be the

building blocks of adaptive chain of neuro-cognitive states. Therefore,

the trajectories of microstates are expected to follow certain (yet

unknown) patterns and hence be trackable. Previous studies on EEG

microstate transitions has indeed shown that the matrix of transitions

among microstates is nonrandom, asymmetric, and systematically

affected in different neuropsychiatric disorders (Lehmann et al., 2005;

Nishida et al., 2013). Here, we used RNNs to capture the dynamics of

microstate transitions with high temporal resolution. We capitalized

on the ability of RNNs to recover consistent patterns of EEG micro-

states and provided insights about the temporal characteristics of the

microstate sequences at different sequence lengths. Extensive experi-

ments demonstrated that RNNs can capture the underlying structure

of microstate sequences with high accuracy.

We observed that microstate trajectories are largely subject-

invariant at short time scales (≤400 ms) and that the reconstruction

accuracy of the model decreases gradually with increasing sequence

lengths. In particular, our results suggest that for longer sequence

lengths (2,000 ms), the accuracies for either intra or intersubject

reconstructions do not differ significantly from random auto-

correlated sequences. Interestingly, this approximation is in line with

both (Gschwind et al., 2015) and (von Wegner et al., 2016) that esti-

mate the long-range memory effects to last up to 1,000 ms in EEG

microstate sequences, suggesting the existence of long-range correla-

tions with finite memory content. Moreover, the increasing trend in

the classification accuracy of stress condition from 200 to 1,600 ms

further emphasizes the importance of long-range dependence in char-

acterizing the condition-specific features of these sequences. Collec-

tively, these results suggest a multiscale temporal dynamics of

microstate sequences where microstate sequences at shorter time

scales are subject-invariant and therefore possibly reflect mainly the

primary sensory information processes rather than the high-level cog-

nitive processing which are likely to be coded with longer sequences.

This observation is in line with recent findings relating appearance of

each microstates to specific functional networks and that temporal

characteristics of certain microstates can be manipulated by certain

tasks (Britz et al., 2010; Britz, Diaz Hernandez, Ro, & Michel, 2014;

Seitzman et al., 2017). Taken together, these results provide converg-

ing evidence for the complex relation between microstates functional

relevance and their sequences further consolidating the proposal that

microstates are the building blocks of sequences which manifest brain

cognitive communications (Michel & Koenig, 2017).

The bursting behavior and long-range temporal dynamics of EEG

microstate sequences have been elaborately demonstrated in works

such as (Gschwind et al., 2015). Our preliminary experiments con-

firmed that our datasets exhibit similar properties (Appendix F). While

long-range dependencies play an important role in effectively

encoding a given sequence as part of both reconstruction and predic-

tion, the task of a predictor is significantly more challenging as it

needs to forecast future microstates based on the past information.

We hypothesized that burstiness of the sequences increases the

chances of incorrect prediction causing the predicted sequence to

rapidly diverge from the original.

Towards this end, another variant of the reconstruction model

was trained to investigate the possibility of predicting the future tra-

jectory of microstates. Here, while the encoder RNN analyzes the pat-

tern underlying the past microstate trajectory using LSTMs, the task

of the decoder is modified to forecast the future states. The predic-

tion model was trained using microstate sequence length of 100 (i.-

e., 400 ms) for each subject to predict the next 400 ms (for details see

Appendix C). The results confirm our hypothesis and indicate that pre-

diction accuracies are relatively low for forecast lengths beyond

40 ms. Interestingly, relevant LSTM literature (Jiang, Deng, Simeone, &

Nallanathan, 2019) from the traffic domain (characterized by regular

bursts) have demonstrated how the level of burstiness affects the

forecasting accuracy. Consequently, given our success to reconstruct

sequences with notably longer duration, it is reasonable to attribute

the steep decline in prediction accuracy to the irregular nature of the

bursts in EEG domain. In the current datasets, this average peak-to-

peak interval was 56.3 ± 1.2 ms, such that we expected a “baseline”

predictable sequence length of 28.1 ms. These results are in line with

other studies arguing that resting state EEG microstates show non-

stationary behavior which seems to be due to the irregular and “bur-

sty” nature of the microstate durations (Gschwind et al., 2015).

While RNNs are extremely powerful in processing sequential

data, interpretability of their internal structure and learned parameters

is very limited. We attempted to gain some intuition into how the pro-

posed LSTM-based network learns to reconstruct EEG based micro-

sequences by visualizing the hidden state representations of the

network. We noticed some interpretable patterns that correlated with

the transition dynamics of EEG microstate. However, large number of

cells with visualizations too complicated for human-interpretability

suggest that most cells are involved in processing multiple patterns
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depending on the context. As the interpretability of LSTMs improves

with advancements in the domain of deep learning, it would be inter-

esting to test those techniques in the context of EEG microstate

sequences in near future.

Importantly, we notice that the same algorithm presented in this

article can be effectively applied to relate data from simultaneous

EEG and fMRI. A vertically stacked LSTM architecture that helps

create a hierarchical feature representation allows for better under-

standing of relations between electrophysiological and hemodynamic

processes at multiple time scales. Due to the loop or chain-like struc-

ture, the RNNs are inherently deep in time, a feature that helps the

state of the network to summarize the historical information. Analo-

gously, stacking multiple RNNs on top of each other can be inter-

preted as introducing depth in space. Essentially, this approach

allows for the hidden state at each level of the network to operate at

a different timescale. This mechanism can potentially be a powerful

tool for analyzing simultaneously recorded EEG and fMRI data.

Furthermore, we note that because microstates are assigned

based on the interpolation of the nearest GFP peaks, the effective

length of the sequences are much smaller than the size of the full

sequence. To address this issue, we replicated the results for both

original full length sequences and an intermediate form that repre-

sents a tradeoff between the original and compact versions (see

Figure 2). Interestingly, comparable results for both forms indicate the

ability and flexibility of the LSTMs to effectively model the EEG

sequences. Nevertheless, to assign the microstate labels, one could

alternatively assign microstate labels on a single time point basis

which fully ignores the GFP signal and can in principle change the

absolute duration of the microstates. We find it quite interesting to

test if a different assignment scheme would qualitatively change the

results we presented here.

To conclude, we show that EEG microstates can be reconstructed

by RNNs and their trajectories show a multilayer temporal structure.

This suggests that the information encoded in microstates is far

beyond the conventional univariate measures (e.g., see Section 3.5).

Microstates trajectories can be reconstructed optimally for sequence

length of 400 ms but the accuracy drops significantly for longer

sequences. This observation together with the low predictability of

microstates strongly favors the theory of bursting behavior of EEG

microstates. Based on these results, we suggest that the temporal

structure of microstates could be governed by multiscale mental pro-

cesses where short-term processes which seem to be subject-

invariant manifest the basic sensory processes, midterm sequences

for mental states (e.g., stress response), and long-term sequences are

possibly coding for personality traits. Although it remains beyond the

scope of this article, we find it an extremely rewarding endeavor to

find the processes that belong to each of these time scales and their

temporal properties.
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APPENDIX A: STRUCTURE OF LSTM UNIT

See Figure S1. In all experiments in this article, the encoder and

decoder RNNs both have only one single hidden layer with each com-

prising of 40 LSTM units. The AEs were trained with mean squared

loss function (to minimize the mean square error between the decoder

output and the input sequence) and Adam optimizer with a learning

rate of 0.001. The models were regularized using dropout at the rate

of 0.2 (retain 80%) that was chosen based on an independent valida-

tion set. The network hyperparameters, including the number of units

and layers, were chosen by tuning the network using a coarse grid

search. All models were trained using NVIDIA GeForce GTX 1080 and

Python-based Tensorflow package (Abadi et al., 2016). Training a

model took roughly 1 hr per subject.
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APPENDIX B: INSIDE-OUTSIDE SCANNER EFFECTS ON

RECONSTRUCTION

See Figure S2.

APPENDIX C: EEG MICROSTATE SEQUENCE

PREDICTIONS

As in the reconstruction model, encoder RNN analyzes the pattern

underlying the past microstate trajectory using LSTMs but here,

the task of the decoder is modified to forecast the future states.

The encoder passes the learned representation to the decoder

which is used to initialize the state of decoder module for

sequence prediction. After being initiated with a dummy input at

the first step, the decoder recursively generates the output

sequence O1, O2, � � �, OT0 of desired length T0. Again, the decoder

used in prediction is conditional in nature. At every step, the

decoder feeds the output Ot − 1 obtained in the previous step as

the input for the current update. The motivation to use

conditional decoding is two folds: first, it allows the decoder to

learn multiple target sequence distributions (Srivastava, Man-

simov, & Salakhudinov, 2015), which is a necessary condition since

more than one target can exist in a given input sequence, and sec-

ond, data has strong short-range correlations which are best

modeled by a conditional predictor. We trained this model using

microstate sequence length of 100 (400 ms) for each subject to

predict the next 400 ms (See Figure S3). For intermediate

representation, as one time-step prediction is not possible, we

predicted for 1 and 5 timesteps corresponding to approximately

20 and 80 ms. Additionally, there is a gradual decrease in the pre-

diction accuracy as the length of the predicted sequence increases

but it remains stably above chance level (see Appendix B).

APPENDIX D: ABLATION—PRELIMINARY RESULTS

The performance of an LSTM network depends on a number of

parameters inherent to the architecture. Due to limited computational

resources, exhaustive ablation studies could not be performed. How-

ever, preliminary sensitivity analysis (See Figure S4) was conducted by

varying the number of hidden layers and number of units per layer.

These findings suggest that lower reconstruction accuracies for longer

sequence lengths is due to the inherent nature of the EEG sequences

rather than a limitation of the LSTM network parameters.

APPENDIX E: CROSS-CONDITIONAL ANALYSIS

See Supporting Information Table S1.

APPENDIX F: BURSTINESS AND LONG-RANGE

DEPENDENCE

See Figure S5.
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