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Single-cell sequencing deconvolutes cellular
responses to exercise in human skeletal muscle
Alen Lovrić1,2,3, Ali Rassolie1,2,3, Seher Alam1,2, Mirko Mandić1,2, Amarjit Saini1,2, Mikael Altun 1,2,

Rodrigo Fernandez-Gonzalo1,2, Thomas Gustafsson1,2 & Eric Rullman 1,2✉

Skeletal muscle adaptations to exercise have been associated with a range of health-related

benefits, but cell type-specific adaptations within the muscle are incompletely understood.

Here we use single-cell sequencing to determine the effects of exercise on cellular compo-

sition and cell type-specific processes in human skeletal muscle before and after intense

exercise. Fifteen clusters originating from six different cell populations were identified. Most

cell populations remained quantitatively stable after exercise, but a large transcriptional

response was observed in mesenchymal, endothelial, and myogenic cells, suggesting that

these cells are specifically involved in skeletal muscle remodeling. We found three sub-

populations of myogenic cells characterized by different maturation stages based on the

expression of markers such as PAX7, MYOD1, TNNI1, and TNNI2. Exercise accelerated the

trajectory of myogenic progenitor cells towards maturation by increasing the transcriptional

features of fast- and slow-twitch muscle fibers. The transcriptional regulation of these con-

tractile elements upon differentiation was validated in vitro on primary myoblast cells. The

cell type-specific adaptive mechanisms induced by exercise presented here contribute to the

understanding of the skeletal muscle adaptations triggered by physical activity and may

ultimately have implications for physiological and pathological processes affecting skeletal

muscle, such as sarcopenia, cachexia, and glucose homeostasis.
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The skeletal muscle is one of the largest organs of the body.
In addition to its obvious importance in locomotion, it also
plays a central role regulating the body’s metabolism.

Skeletal muscle is composed mainly of elongated cells called
muscle fibers, each of which contains many nuclei. However,
other cell types in skeletal muscle have also been shown to be
important in maintaining these functions, including cells that
infiltrate the muscle from the bloodstream1–3.

Skeletal muscle is highly plastic, and changes in physical
activity lead to a plethora of adaptive processes that, when
repeated over time (i.e., training), result in structural and func-
tional adaptations of skeletal muscle4,5. Skeletal muscle mass and
function have a major impact on physical performance in healthy
individuals, but also on the quality of life in old age and on the
progression and clinical course of many diseases6. The latter is
true even when the disease is primarily localized in another organ
system, as in heart failure7,8. While the molecular machinery
underlying the processes of adaptation to exercise has been stu-
died primarily at the level of whole muscle and muscle fibers,
information on the effects of exercise on other cell populations in
muscle is limited. Existing studies in both animals and humans
suggest that many of the cell populations present in muscle are
critical for a favorable response to exercise1,9,10. For example,
immune cells are involved in the recovery response after exercise,
fibroblasts appear to have the potential to secrete cytokines
involved in various muscle remodeling processes, and endothelial
cells produce myogenic and anti-apoptotic factors that promote
muscle growth1.

Single-cell sequencing (scRNA-seq) has been hailed as one of
the most important scientific breakthroughs of recent years11.
With its help, it has been possible to map cellular composition
and identify previously unknown cell populations in various tis-
sues. Single-cell studies describing the cellular landscape in dif-
ferent tissues, have yielded some interesting results with potential
implications for human physiology. For example, the compen-
dium Tabula Muris (scRNA-seq data) has shown that the niche of
mesenchymal cells in mouse skeletal muscle is 3–5 times larger
than the niche of satellite cells12. Large numbers of mesenchymal
cells along with subpopulations of endothelial and satellite cells
have also been found in humans, and it has been speculated that a
subpopulation of fibro-adipogenic progenitor cells plays a central
role in both metabolic adaptations associated with exercise and in
aged or diseased skeletal muscle by contributing to increased
fibrosis and fat cell infiltration13,14. A particularly important cell
in skeletal muscle tissue is the myogenic stem cell, also known as
satellite cell1,15. The satellite cells pool is reduced in aged muscle
and in various diseases such as heart failure and diabetes and is
accompanied by decreased activation into myoblasts (myogenic
progenitor cells) and subsequent proliferation and differentiation
capacity16. Given the important role of different cell populations
within skeletal muscle, a better understanding of cell composition
and how different cells in skeletal muscle are affected by different
stimuli could provide important insights to fully understand the
remodeling processes of peripheral tissues in general and skeletal
muscle in particular. This knowledge could also add important
information to decipher the pathophysiological mechanisms
involved in various diseases related to changes in skeletal muscle
mass or function.

In the present study, we use scRNA-seq to characterize single
cells from skeletal muscle biopsies obtained before and after a
robust remodeling stimulus, i.e., strenuous exercise. The main
objective was to characterize the cellular composition of adult
skeletal muscle at baseline and to deconvolute the transcriptional
responses to exercise in different cell populations, with particular
emphasis on myogenic cell subpopulations. We show that
scRNA-seq of skeletal muscle quantifies and delineates cell

populations in a highly reproducible manner, both in terms of
repeatability and across different subjects. Cellular composition of
six different main cell types was identified at baseline, with the
highest proportion consisted of endothelial cells (44%) followed
by mesenchymal cells (26%). Several subpopulations of cells,
some not previously described, were also identified, including
three distinct populations of myogenic cells and several sub-
populations of endothelial, mesenchymal, and immune cells.
Most cell populations remained quantitatively stable after three
maximal sprint bouts. Immune cells, however, increased sub-
stantially, presumably due to infiltration from the circulation. The
strongest transcriptional response was observed in mesenchymal,
endothelial, and myogenic cells, suggesting that these cells are
specifically involved in skeletal muscle remodeling. In agreement
with animal studies, we also show that myogenic cells in human
skeletal muscle can be divided into three groups characterized by
different degrees of cell maturation, and that a single bout of
exercise drives these cells towards maturation.

Results
Clinical characterization. Three healthy, moderately active
individuals (Table 1) performed three 30 s all-out sprint exercises
with 2 min of recovery between sprints. Peak power output in the
three sprints was on average 8.87 ± 2W/kg, corresponding to 10.3
metabolic equivalents (METs). Total energy expenditure was
14.5 ± 6.9 KJ.

Cellular yield, composition, and biological processes in dif-
ferent cell populations. The tissue retrieval was 500 ± 150mg per
sample and a total of 39,015 cells from pre- and 24,332 cells from
post-exercise were analyzed with a mean read count of 19,507,451
and 19,328 882, respectively. To investigate reproducibility and
increase sequence-depth, cells isolated from the third subject were
sequenced twice.

Cell-type annotation and reproducibility. The six samples from
the three subjects, in addition to the two re-sequenced samples
from the third subject, were integrated, anchored, and clustered
(Fig. 1a). Inter-sample reproducibility with regards to cell-type
composition was assessed by a correlation matrix using inter-
sample anchoring scores17. Agreement both between and within
subject was consistent, with anchoring scores ranging from 0.6 to
0.7 (Fig. 1b). All subjects contained cells of all cell types detected
(Fig. 1c), with comparable proportions between samples (Fig. 1d).
Thus, the cell-type annotations and anchoring were highly
reproducible across different subjects and biopsies. Sample dis-
tribution across clusters is found in Supplementary Figure 1.
Following Leiden-based clustering and cell-type analysis, six
major cell types were identified: myogenic cells, endothelial cells,
pericyte cells, mesenchymal cells, lymphoid cells, and monocyte
cells. Cell-type annotation was based on a combination of
marker gene expression compared to the CellMatch database, the
scCatch pipeline18, and an enrichment test of cell types by using
highly expressed/marker genes in each cluster relative to the

Table 1 Study participants.

Subject Age
(years)

Weight (kg) Height (cm) Sex

1st 26 61 174 F
2nd 50 98 191 M
3rd 26 65 173 M

Three individuals participated in the study. Biopsies from the vastus lateralis muscle were taken
before and after a bout of high-intensity exercise.
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transcriptomic profiles of cell types provided by the Human Gene
Atlas19,20. All populations, except the pericyte cluster, were
consistently annotated by ≥2 of the methods and were therefore
considered unambiguously annotated with respect to cellular
origin. Composition tables for individual samples can be found in
Supplementary Data 1.

Comparison with whole-tissue RNA-sequencing. An obvious
advantage of scRNA-seq over whole-tissue RNA-sequencing
(RNA-seq) is the ability to deconvolute gene expression profiles
into their respective cell-type-based compartments. In addition, it
is also possible to provide better coverage of gene expression of
less abundant cell types, such as immune and stem cells. To
address and objectify this notion, genes detected in the present
single-cell experiment were compared with the comprehensive
profile of the skeletal muscle transcriptome available through the
Genotype-Tissue Expression data (GTEx)21. In the 564 skeletal
muscle samples from the GTEx study, 5844 unique transcripts

were detected readably, while in the current single-cell experi-
ment a total of 1946 unique transcripts were detected. Of the
transcripts detected by scRNA-seq, 504 transcripts were not
readably detected in the GTEx data, representing 26% of all the
transcripts identified by scRNA-seq (Fig. 1e). Among transcripts
detected exclusively in the single-cell experiment, gene and cell
ontology analysis revealed strong enrichment of genes derived
from immune, endothelial, mesenchymal, and smooth muscle
cells (Fig. 1f). Among the differentially enriched biological pro-
cesses associated with these cell populations were “positive reg-
ulation of T cell proliferation” (fdr < 0.01), “positive regulation of
angiogenesis” (fdr < 0.01), and “positive regulation of endothelial
cell proliferation” (fdr < 0.05), indicative of cell type-specific
enrichments (Fig. 1f).

Cellular composition and cell-type characteristics. Endothelial
cells accounted for 44% of the total number of cells and were
distributed in four distinct but neighboring clusters (ESAM+,
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Fig. 1 Data alignment and reproducibility. Reproducibility of scRNA-seq between and within subjects. a A total of 63 000 cells isolated from six vastus
lateralis muscle biopsies from three different subjects were processed, clustered, and visualized using UMAP projection, with color coding indicating the
contributing donor and sample. Cells aligned into six major cell populations in which cells from all donors were evenly distributed, providing a measure of
reproducibility of cellular composition. b This was further confirmed by consistent anchoring scores, a measure of correlation between samples, both within
and between subjects, as shown in the correlation-matrix. c Cell-type annotation identified six different cell types/lineages as indicated on the UMAP.
d Cell-type composition in all subjects at baseline, including resequencing of one subject to confirm reproducibility within and between samples.
Endothelial cells were the most abundant cell type constituting 44% of the samples followed by mesenchymal 26% and myogenic cells at 18%. Complete
composition can be found in Supplementary Data 1. e Based on the sequencing data from homogenized whole tissue, 5844 transcripts were identified as
part of the skeletal muscle transcriptome and 1946 unique transcripts were detected with the scRNA-seq. A substantial proportion (504 or 26%) of these
transcripts were detected only with the scRNA-seq. f The unique transcripts from scRNA-seq analysis were highly enriched in genes from endothelial,
immune, and stem cell populations, suggesting that scRNA-seq captures a transcriptional signature of cell populations that otherwise goes largely
undetected when using RNA-seq strategies.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04088-z ARTICLE

COMMUNICATIONS BIOLOGY |          (2022) 5:1121 | https://doi.org/10.1038/s42003-022-04088-z | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


VWF+/EPS8+, ACKR1+, and FABP4+/NEAT1−) (Fig. 2a).
Overall, endothelial cells were characterized by high expression of
known endothelial marker genes, including VWF and ESAM
(Fig. 2c, d). In comparison with the other cell types, endothelial
cells had a significantly higher expression of 165 genes and
enriched for 263 gene ontologies such as “regulation vasculature
development” (fdr < 0.05), “actin filament organization” (fdr <
0.01), and “response to wounding” (fdr < 0.001) (Fig. 2b). More
detailed tables of cell-type and subpopulation specific differential
expression together with ontology enrichment can be found in
the Supplemental Information.

Mesenchymal cells represented 26% of the total number of cells
and showed significantly increased expression of DCN, CFD, and
GSN. These cells were further divided into three distinct
subpopulations (i.e., DCN+/CFD+, GSN+/LUM+, S100A8+/
S100A9+) (Fig. 2a, c, d). The ontologies enriched in the
mesenchymal cell population were generic in nature, including
“autophagy” (fdr < 0.01), “regulation of anatomical structure
morphogenesis” (fdr < 0.01), “oxidative phosphorylation” (fdr <
0.01), “electron transport chain” (fdr < 0.01), and “cell activation”
(fdr < 0.05) (Fig. 2b). The S100A8+/S100A9+ subpopulation was
considered ambiguously annotated. However, due to the high
expression of DCN, VIM, COL6A3, and GSN marker genes the
cluster was deemed to be of mesenchymal origin.

Myogenic cells represented 18% of total cells and were further
divided into three distinct subpopulations (i.e., PAX7+, TNNI1+,
TNNI2+) (Fig. 2a). In addition to PAX7, the first cluster
expressed MYF5 and in a smaller frequency MYOD1, indicating
this cluster is a mix of undifferentiated satellite cells and early
myoblasts. The remaining myogenic subpopulations expressed
genes associated with more mature characteristics such as DES,
MYL2, and MYOG (Fig. 2c, d), and perhaps terminally
differentiated muscle fibers including ACTA1 and MYH6. A
subset of these cells also expressed MYOD1. These two
subpopulations were distinguished from each other by the
expression of slow-twitch (TNNI1) and fast-twitch (TNNI2)
troponins. At the ontology level, the myogenic subpopulations
exhibited a gene expression profile dominated by key skeletal
muscle functions such as “oxidative phosphorylation” (fdr <
0.001) and “mitochondrial respiratory chain” (fdr < 0.001)
(Fig. 2b). Consistent with muscle-specific gene expression, the
TNNI1+ and TNNI2+ cells also showed enrichment for pro-
grams involved in skeletal muscle protein synthesis and
degradation (e.g., TRIM63, SYNPO2).

Pericytes accounted for 6% of the total cells, with two distinct
clusters (TAGLN+ and NDUFA4L2+) (Fig. 2a). The TAGLN+
cluster was characterized by the high expression of smooth muscle
markers such as ACTA2 and pericyte markers (e.g., PDGFR). In
addition, this cluster was also annotated as pericyte in origin by
scCatch, and therefore pericyte was considered the most probable
cellular origin. Significantly enriched ontologies included “mito-
chondrial electron transport cytochrome c to oxygen” (fdr < 0.001),
“nucleoside triphosphate metabolic process” (fdr < 0.001), and
“oxidative phosphorylation” (fdr < 0.001) (Fig. 2b).

Two lymphocyte clusters (NAMPT+ and HCST+) were also
identified, which accounted for 4% of the total number of cells
(Fig. 2a). Considering these clusters presented gene expression
profiles characterizing T-, B-, and NK-cells, they were collectively
considered as lymphocytes. Genes that distinguished these
clusters from the other cell types included CCL5 which is
considered as lymphocyte-specific markers (Fig. 2c, d). Ontolo-
gical enrichment showed “T-cell immunity” (fdr < 0.01), “cell
killing” (fdr < 0.05), and “adaptive immune response” (fdr < 0.05).

One monocyte cluster, which accounted for 2% of the total
number of cells, was classified as myeloid in origin, based on
CD14 expression (Fig. 2a). The cluster differentially expressed

genes including CXCL8, AIF, and TYROBP (Fig. 2c, d). HLA-
DRA was also highly expressed in this cluster, which is a gene
associated with antigen-presenting cells, due to its structural
involvement in the formation of human leukocyte antigen (HLA)
class II proteins. These CD14+ monocytes enriched for
ontologies including “multi organism metabolic process” (fdr <
0.001), “response to corticosterone” (fdr < 0.05), “cellular
response to calcium ion” (fdr < 0.05), “response to mineralocorti-
coid” (fdr < 0.05), “translation initiation” (fdr < 0.001), “Ribosome
assembly” (fdr < 0.001), and “Nuclear transcribed mRNA cata-
bolic process nonsense-mediated decay” (fdr < 0.001) (Fig. 2b).
Gene-ontology enrichment and marker gene expression for all
cell-types can be found in Supplementary Data 2, 3 and 4 and in
Supplementary Fig. 2.

Effects of exercise on cellular composition. The effects of high
intensity exercise were first examined with respect to cellular
composition in skeletal muscle (Fig. 3a). Three hours after
exercise, circulating cells increased substantially, with lympho-
cytes increasing from 4 to 9% (p= 0.05) and monocytes from 2 to
4% (p < 0.05), with a corresponding decrease in the relative
contribution of resident cells, i.e., endothelial cells decreased from
44 to 37% and pericytes decreased from 6 to 5% after exercise.
The proportion of myogenic cells (18%) remained unchanged
after exercise.

Transcriptional response to exercise. The transcriptional
response to exercise was assessed by comparing pre- vs. post-
exercise for each cell type separately. A total of 874 (535 unique)
genes were differentially expressed (fdr < 0.05) across all different
cell types. In terms of number of differentially expressed genes,
the mesenchymal cells showed the greatest exercise-related
response, with 304 genes differentially expressed (Fig. 3b). In
ontological terms, the mesenchymal cells enriched for biological
functions involved in tissue regeneration and remodeling, such as
“regeneration” (fdr < 0.01), “organ regeneration” (fdr < 0.05), and
“wound healing” (fdr < 0.05) (Fig. 3c). Genes driving the
enrichment for regeneration biological function in the
mesenchymal cells included VIM, UBC, GPX4, and AVCRL1
(Fig. 3d). Several genes involved in cytoskeletal reorganization
and cell-cycle activation, such as RHOBTB3, TPM1, and RGCC,
were also robustly upregulated after exercise in this cell type.

The endothelial cells showed the second greatest response to
exercise with a total of 281 differentially expressed genes (Fig. 3b).
The main ontological characterization included cell activation
and stress reactions, such as “cell cycle G2 M-phase transition”
(fdr < 0.05), “energy reserve metabolic response” (fdr < 0.01), and
“tissue regeneration” (fdr < 0.05) (Fig. 3c). Differentially
expressed genes such as TIMP3, ACTB, UBC, and CALM1
(Fig. 3e) indicate endothelial re-composition and stress response
after exercise.

The myogenic cell populations differentially expressed 111
genes (fdr < 0.05) after exercise, including genes involved in
differentiation along myogenic lineage such as MYOD1, and
MYF6 (Fig. 4). In the undifferentiated PAX7+ cluster gene
ontologies related primarily to cellular stress response, such as
“negative regulation of cell death” (fdr < 0.001) and “regulation of
growth” (fdr < 0.05) (Fig. 3c). The genes driving the stress-related
enrichments for the PAX7+ cluster included UBC, HSP90AB1,
LMNA, NCL, and SOD2. Muscle-related functions, such as “actin-
mediated cell contraction” (fdr < 0.001), and “muscle system
process” (fdr < 0.001), were enriched in the more mature clusters
(TNNI1+, and TNNI2+) (Fig. 3c) and mainly driven by gene
expression such as DES, ACTA, MYL2, and MYOZ1.
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Fig. 2 Cell-type and subpopulations. Marker expression, and ontology enrichment across the different cell types and subpopulations. a Cell-type
annotation was based on a combination of marker gene expression compared with the CellMatch database in relation to profiles of specific cell types in the
Human Gene Atlas. Six different cell types/lineages were identified and color-coded on the UMAP: Endothelial cells, Myogenic cells, Mesenchymal cells,
Myeloid cells, Lymphoid cells, and Pericyte cells. Distinct cell clusters derived from the same cell type were compared and characterized through
differential expression. Four subpopulations of endothelial cells were identified to differ by the expression of VWF+/EPS8+, ESAM+, and FABP4+/NEAT−,
respectively. There were three mesenchymal subpopulations characterized by differential expression of DCN+/CFD+, GSN+/LUM+, and S100A8+/
S100A9+, and muscle cells could be further subdivided into three myogenic subpopulations, including PAX7+ satellite/myoblast cells, and fast- (TNNI2+)
and slow-twitch (TNNI1+) troponin expressing cells. Pericytes characterized by high/marker gene expression of ACTA2 and PDGFR were divided into two
subpopulations (NDUFA4L2+ and TAGLN+). One monocyte population was found to express CD14. b Enrichment analysis of biological functions in the
different cell populations shows functionally different gene expression profiles for the different cell types. Color coding represents different cell-type and
larger dot radius denotes more significant biological function (fdr < 0.05). c Marker gene expression in the different cell populations. Red and gray colors
indicate the expression of each marker gene above and below hard threshold in all cells, respectively. d Quantitative comparison of the expression of the
marker genes in the different cell types. The data in boxplots nested within violin plots are expressed as median, interquartile range, minimum and
maximum values. Normalized expression refers to log(1+ x) if not stated otherwise. SC satellite cells; ST slow-twitch, FT fast-twitch, cuff cutoff. Complete
marker-gene differential expression can be found in Supplementary Data 2–4.
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The monocyte cell population differentially expressed 120
genes after exercise (Fig. 3b). Ontologically, the monocytes
presented a generic response to exercise, with terms such as
“amide biosynthetic process” (fdr < 0.001), “protein targeting”
(fdr < 0.001), and “peptide metabolic process” (fdr < 0.001)
(Fig. 3c). When considering the differential expression of
single genes, the monocyte population significantly expressed
NFKBIA, CTSS, HLA-C, and SLC25A6 after exercise, suggesting

an inflammatory response and cellular stress reactions to
exercise (Fig. 3f). Lymphocytes differentially expressed 9 genes
after exercise (Fig. 3b). Ontologically, the lymphocyte cells
solely enriched for generic terms, suggesting an absent exercise-
specific response. The genes regulating the ontological enrich-
ment were overall generic and lacked established biological
functions in the literature (e.g., FTH1, IFITM2, CALM1, and
HLA-E) (Fig. 3g).

Fig. 3 Transcriptional response to a single bout of exercise across cell types. Exercise effects detected by scRNA-seq analysis of the human skeletal
muscle. a Cellular composition analysis of samples before (pre-exercise) and three hours after (post-exercise) a single bout of exercise. b Differential
expression analysis across cell types after a single bout of exercise. Color coding represents cell-type, and bar height denotes the number of exercise-
regulated genes. In total, 874 (535 unique) genes were upregulated by exercise, with mesenchymal cells having the highest number (304), followed by
endothelial cells (281) and monocytes (120). In contrast, only 9 genes were found to respond to the exercise stimulus in the lymphocyte population.
c Gene-ontology analysis revealed that most biological processes regulated by exercise were cell-type specific, with a small number of processes similarly
regulated in most cell types (“mRNA catabolic process” and “nitrogen formation”). Color coding represents different cell-type, and a larger dot radius
denotes a more significant gene ontology (fdr < 0.05). d–h Normalized expression level of representative genes for each cell type that were differentially
expressed after exercise. The data in boxplots nested within violin plots are expressed as median, interquartile range, minimum and maximum values.
***fdr < 10e−5. i Genes that were significantly regulated by exercise in the current scRNA-seq experiment were compared with differentially expressed
genes after exercise using RNA-seq from whole muscle. Color coding represents different cell-type, and numerical value denotes the number of
differentially expressed genes shared by both methods or those exclusively detected by scRNA-seq. Approximately 25% of the genes detected by scRNA-
seq were also identified using RNA-seq and this was consistent across all cell types. Normalized expression refers to log(1+ x) if not stated otherwise.
Complete exercise-differential expression and ontology analysis can be found in Supplementary Data 5–9.
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Pericytes differentially expressed 49 genes (Fig. 3b). In terms of
ontological enrichment, the pericytes showed a response
indicative of cellular activation, stress response, and regeneration,
enriching for 38 ontologies such as “response to wounding”
(fdr < 0.01), “actin mediated cell contraction” (fdr < 0.05), and
“cell cycle G2 M phase transition” (fdr < 0.05) (Fig. 3c). Genes

driving the regenerative response included ACTB, TPM1, TIMP3,
and CD36. In terms of the greatest exercise-related response, the
pericytes differentially expressed ACTB and ACTA2 after exercise
(Fig. 3h). A complete list of differentially expressed genes and
ontologies across cell-populations can be found in Supplementary
Data 5–8.
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Comparison of single-cell with whole-tissue sequencing in
relation to exercise. We also examined whether the transcrip-
tional responses to exercise among different cell populations
using scRNA-seq were consistent with RNA-seq findings. To this
end, the transcriptional responses to exercise in each cell type
were compared with findings from a recent RNA-seq study22

investigating the same time-points and with a similar exercise
protocol as in the current study. Of the 874 transcripts (535
unique) that were significantly regulated in ≥1 cell-type in the
current scRNA-seq experiment, 187 transcripts (129 unique) were
also regulated by exercise in RNA-seq study (Fig. 3i). There were
no differences between cell populations in terms of coverage by
RNA-seq, i.e., all cell types shared ~25% of transcripts regulated
by exercise with RNA-seq.

Trajectory analysis of myogenic cells. A major advantage of
scRNA-seq is the ability to use the global transcriptome of each
cell to classify populations of cells of common origin into a
continuum of only 1 to 2 dimensions, thereby visualizing and
identifying successive, stepwise changes in gene expression from
cell to cell. This technique is often referred to as trajectory ana-
lysis. Trajectory analysis has proven to be a powerful tool to
deconvolute successive transcription-driven cellular processes in
developmental biology and stem cell differentiation. Here, we use
trajectory analysis to test whether there is evidence of a con-
tinuous transition from undifferentiated myogenic cells into
increasingly mature myogenic cells (Fig. 4a). Three distinct
clusters corresponding to undifferentiated PAX7+ satellite/myo-
blast cells, TNNI2+ fast-twitch, and TNNI1+ slow-twitch myo-
genic cells were selected, and two different trajectories with the
undifferentiated cluster as a starting point were calculated using
principal curve pseudotime analysis. Genetic markers that
determined position along the first principal component included
PAX7, APOE, IGFBP5, MYF5, and NCAM1 (Fig. 4b), which are
canonical myogenic stem/progenitor cell markers. Among the
more differentiated cells, ENO3, TNNI2, TNNT3, MYL2, TNNT1,
and TNNC1 genes (Fig. 4c) drove the partitioning into distinct
clusters along the second principal component. The transition of
undifferentiated PAX7+ satellite/myoblast cells towards a higher
degree of differentiation was proportional to expression levels of
marker genes along the given trajectories. Accordingly, the
expression of TNNC1 and TNNC2 increased proportionally to
pseudotime, in slow- and fast-twitch myogenic cells, respectively
(r2= 0.28 and r2= 0.32, Fig. 4d, e). A corresponding decrease in
the expression of MYOD1 (r2=−0.39 and r2= 0.13) and MYF6
(r2=−0.29 and r2=−0.22) was observed along the trajectories
for both fast- and slow-twitch cells (Fig. 4d, e).

Furthermore, we examined the effect of exercise on the
transition from PAX7+ undifferentiated satellite/myoblast cells to
fast- and slow-twitch expressing cells and the overall transcrip-
tional effect of exercise in these subpopulations. Three hours after
a single bout of exercise, there was a small (Δslow-twitch= 5.4%,
p < 0.001; Δfast-twitch= 9.0%, p < 0.001) but statistically significant

incremental shift in pseudotime toward a higher degree of
differentiation in both the slow- and fast-twitch cell populations
(Fig. 5a, b). Apart from the effects on pseudotime, there was a
common transcriptional response to a single bout of exercise for
24 genes in all three myogenic subpopulations. These genes
included mostly mitochondrial and ribosomal genes. More genes
were regulated by exercise in the undifferentiated PAX7+ (255
genes) and slow-twitch (138 genes) subpopulations, compared to
the fast-twitch subpopulation (51 genes) (Fig. 5c). Genes
regulated by exercise in the undifferentiated PAX7+ myogenic
cells included NEAT1, NNMT, CXXC5, MT2A, and SQSTM1
(Fig. 5d). The slow-twitch TNNI1+ cells responded to exercise by
regulating genes involved in “muscle organ development” (fdr <
0.001) includingMYLPF, ACTA1,MYL2, andMYH7 (Fig. 5d). In
the fast-twitch TNNI2+ cells, the exercise response included
upregulation of changes in MYBPC1, MYBCP2 (“muscle
contraction”, fdr < 0.001), TXNIP, UBC, and OPTN (Fig. 5d).
Gene-ontology enrichment in the myogenic cells following
exercise can be found in Supplementary Data 9.

In vitro validation of myogenic subpopulations. The observa-
tion of a regulated expression of contractile elements such as
TNNC1 and TNNC2 in myogenic cells, and that such transcrip-
tional upregulation is associated with the initiation of differ-
entiation towards a more mature myofiber-like phenotype was
validated in vitro. Primary myoblasts were isolated from human
muscle biopsy and kept in proliferation media until confluence.
Differentiation towards myotube formation was initiated
according to standard protocols and the expression of key-marker
genes from the myoblast subpopulations identified as undergoing
differentiation were analyzed with qPCR on day 0, day 4, and day
9 of the differentiation process (Fig. 5e). Slow-twitch troponin
(TNNC1) increased from 9.3 ± 2 a.u on day 0 to 331 ± 150 after
4 days of differentiation (p < 0.001). It remained elevated after
9 days of differentiation (117 ± 20) (p < 0.001). Gene-expression
of fast-twitch troponin (TNNC2) was 2.2 ± 1 a.u on day 0,
increased to 123 ± 10 a.u after 4 days of differentiation (p < 0.001),
and remained elevated after 9 days of differentiation (155 ± 30)
(p < 0.001).

Finally, we utilized a publicly available microarray experiment
conducted in a mouse myoblast cell-line (C2C12-cells) evaluation
gene-expression in cells undergoing differentiation (n= 3) in
relation to cells in proliferation-media (n= 3) (Fig. 5f). TNNC1
and TNNC2 were elevated with a log2FC of 5.7 and 7.7
respectively (fdr < 0.001) in differentiating versus proliferating
C2C12-cells.

Discussion
Here we report the characterization of the cellular composition of
adult human skeletal muscle using scRNA-seq and show that it is
reproducible within and between different individuals. We also
demonstrate changes in cell composition and transcriptional

Fig. 4 Myogenic cell trajectories. Three distinct myogenic subpopulations of myogenic cells were identified and further investigated for their distinguishing
features and trajectories. a The first cluster (brown) was characterized by PAX7+ expression (satellite/myoblast cells), whereas the remaining two
myogenic subpopulations expressed higher levels of genes indicative of maturation, including slow-twitch (TNNI1) and fast-twitch (TNNI2) troponins, along
their respective trajectories. b, c Highly expressed genes in the undifferentiated PAX7+ stem/progenitor cell subpopulation relative to the more
differentiated subpopulations. The undifferentiated cell markers included PAX7, NCAM1, MYF5, and APOE, while more differentiated cells expressed ENO3,
TNNI1, TNNI2, and MYL2. The data in boxplots nested within violin plots are expressed as median, interquartile range, minimum and maximum values.
d, e There was a successive increase in TNNC1 and TNNC2 expression as cells adopted higher absolute values along the trajectory, indicating a continuous
differentiation process within each subpopulation. In parallel, the expression of several other genes involved in differentiation (MYOD1, MYF5) decreased,
consistent with the current understanding of the cell maturation along the myogenic lineage. Shaded area indicates estimated 95% confidence intervals for
the regression estimate. Normalized expression refers to log(1+ x) if not stated otherwise. SC satellite cells, ST slow-twitch, FT fast-twitch, cuff cutoff.
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responses to exercise in different cell populations of skeletal
muscle. We identify three distinct subpopulations of myogenic
cells and use trajectory analysis to show that a continuous process
of myogenic differentiation and maturation occurs in resting
human skeletal muscle. Finally, we show how a single exercise
session accelerates the myogenic trajectory toward a more mature

transcriptional signature consistent with fast- and slow-twitch
myofibers.

The single-cell atlas projects have had a tremendous impact on
understanding the numbers and properties of cell populations in
different tissues. However, due to the global, whole-body nature
of these studies, the number of cells characterized, and the
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sequencing depth used for each cell in the different tissues have
been rather limited. Hence, there is a need for a deeper and more
detailed analysis of specific tissues and in relation to physiology,
alongside methodological validation. The current study demon-
strated that scRNA-seq analysis of skeletal muscle can quantify
and delineate cell populations in a reproducible manner. The cell
yield (i.e., the number of viable cells recovered per unit of tissue)
varied considerably across samples, but it was within the range of
recovery rates seen for other techniques, such as FACS or isola-
tion of cells for culture23. Despite this variation, the relative
proportion of different cell populations in different samples was
consistent both between different subjects and when samples
from the same subject were re-sequenced (i.e., repeatability). The
fact that all donors contributed comparably to all cell populations
supports the validity of previous single-cell characterizations of
muscle tissue in which cells from multiple donors were pooled or
were based on data from single individuals13,14. However, it
should be noted that attempts to quantify differences in cell
density between different samples using scRNA-seq should be
treated with caution due to the high variance in recovery rates.

The baseline cellular composition of skeletal muscle was
characterized by endothelial cells, which accounted for the largest
proportion (44%), followed by mesenchymal cells (26%), myo-
genic cells (18%), and pericytes (6%). Undifferentiated myogenic
progenitor cells accounted for 6% of the total cells in muscle,
which is consistent with the proportion of these cells in adult
human skeletal muscle24. Immune cells accounted for only a
small proportion of the extracted pre-exercise cells in this study,
namely lymphocytes (4%) and monocytes (2%), which is also
consistent with the previously determined proportions of these
cell types in skeletal muscle25. Thus, the relative contribution of
most cell types reported here is coherent with previous studies
that have analyzed tissue morphology using microscopic techni-
ques. Overall, our data indicate that scRNA-seq gives a good
representation of the mononucleated cell types present in the
muscle.

Exercise is a well-known stimulus to provoke significant
structural and functional adaptations in skeletal muscle. Based on
this, we selected a very strenuous exercise routine (repeated sprint
cycling at maximal intensity) with well-known large local adap-
tations in the skeletal muscle, to investigate its effects on cell
composition and transcriptional response in different cell popu-
lations in skeletal muscle. The different cell populations remained
quantitatively stable after the exercise, with the exception of an
increase in lymphocytes, which confirmed previous reports using
microscopy techniques26. Despite the substantial increase in the
number of cells, the lymphocyte cell population had the lowest
number of exercise-regulated genes and therefore we suggest that
the main mechanism behind this increment in lymphocyte
number after exercise is an effect of post-exercise skeletal muscle

hyperemia, rather than active extravasation. In any case, since the
number of resident lymphocytes and monocytes is low, future
experiments with active enrichment of immune cells prior to
sequencing could increase the resolution and thus identify sub-
populations of lymphocytes cells with different or more active
response to exercise.

The transcriptional response of skeletal muscle to exercise has
been extensively studied by us and other groups27–29. These
experiments have used RNA-seq and microarray techniques, or
qPCR, and have generally assumed that most of the mRNA that is
measured originates from mature myofibers. This assumption is
supported herein, where 25% of the genes detected with scRNA-
seq are not abundantly detected using RNA-seq. These genes
were mainly originating from mononuclear cell populations such
as lymphocytes, myogenic, and mesenchymal cells. In general, the
transcriptional response to sprint exercise varied greatly between
cell populations, and very few genes and gene ontologies were
regulated in a similar manner in more than 1 or 2 cell popula-
tions. The lack of a universal gene expression to sprint exercise in
the different cell types may also explain why most of the genes
regulated by exercise in both scRNA-seq and RNA-seq were
highly enriched for generic biological functions such as ‘Tran-
scriptional regulation’ and ‘Ribosomal biogenesis’. This under-
scores the idea that there are very few, if any, genes/processes that
respond uniformly across cell types in skeletal muscle in response
to exercise.

When looking at specific cell population responses to the
exercise stimulus employed here, the strongest transcriptional
changes were observed in mesenchymal cells, followed by endo-
thelial, monocyte, and myogenic populations. In addition to the
transcriptional response to exercise, the mesenchymal cell
population also represented a rather large proportion of the
skeletal muscle-derived cells, albeit divided into several distinct
subpopulations. The latter might be related to the heterogeneity
of these cells in terms of classification and functionality30,31.
However, a common feature of mesenchymal cells is their
importance for regeneration in different tissues, in particular their
role in remodeling the extracellular matrix32,33. Although the
importance of the extracellular matrix in the remodeling process
is gaining scientific attention, it has been underestimated in the
past compared to other mechanisms. The fact that mesenchymal
cells showed the strongest transcriptional response to exercise,
together with the enrichment of genes with biological functions
involved in tissue regeneration and remodeling reported in the
current study, seem to support the importance of mesenchymal
cells and extracellular matrix in skeletal muscle remodeling.
Furthermore, extracellular matrix remodeling provides a physical
link between vascular cells and their surrounding tissues, and it is
suggested to orchestrate increased capillarization
(angiogenesis)34. It follows that such angiogenic-induced tissue

Fig. 5 Exercise effects on myogenic cells. The effect of exercise on the myogenic cell populations fate was further investigated: a, b Three hours post-
exercise there was a significant change along the trajectories with a shift of 9.0 and 5.4% (p < 0.001 for both) in fast- and slow-twitch myogenic cells
respectively, indicating increased differentiation. Boxplots and ECDFs denote the position along pseudotime of the myogenic cells pre- vs. post-exercise.
c Venn diagram of exercise-regulated genes in the myogenic subpopulations. The larger exercise effect was observed among the undifferentiated PAX7+
satellite/myoblast subpopulation compared to the more mature subpopulations. A substantial portion of the exercise-regulated genes in the more mature
fast- and slow-twitch subpopulations were also regulated in the undifferentiated PAX7+ subpopulation. d Scatter/volcano plot presenting the
transcriptional effects of exercise for each myogenic subpopulation. Differentially expressed genes (fdr < 0.05) are highlighted where distinct color denotes
respective subpopulation. e In vitro validation experiments through analysis of gene expression of slow- and fast-twitch troponins in primary human
myoblasts undergoing differentiation. Boxplots depict gene-expression of TNNC2 and TNNC1 mRNA levels assessed through RT-PCR at baseline, after 4
and 9 days of differentiation towards myotubes. Statistical analysis was conducted through One-way ANOVA with the Tukey test as a post hoc. f C2C12
cells in proliferation versus differentiation media with gene expression analyzed using microarrays obtained through LIMMA. Where present the data in
boxplots are expressed as median, interquartile range, minimum and maximum values, and individual points are shown as black dots. Normalized
expression refers to log2(x) if not stated otherwise. SC satellite cells.
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remodeling is mainly driven by endothelial cells. Therefore, it was
not surprising that sprint exercise elicited a very strong effect on
endothelial cells transcription machinery. This transcriptional
response varied between subpopulations of endothelial cells,
suggesting that the different populations have diverse roles in
maintaining the vascular functions of capillaries, including the
response to an angiogenic stimuli (i.e., repeated sprint exercise).

The relative increase in the number of monocytes in skeletal
muscle tissue after sprint exercise was rather small, but in line
with what has been reported in microscopy-based studies. The
small increment in numbers was, however, accompanied by a
profound transcriptional response in monocytes, which contrasts
with the lack of transcriptional changes observed in the lym-
phocyte population after exercise25,35. These changes included a
strong upregulation of several adhesion molecules and cell cycle
markers, suggesting that the monocyte cell population was qua-
litatively influenced toward a proliferative stage in the hours
following an exercise bout. Overall, these changes imply an active
infiltration of monocytes from blood into the muscle, and a
subsequent transition regulation of pro-inflammatory mediators
such as NFKB and CXCL2, as well as the translatory machinery
driven by ribosome-expression.

The satellite and myoblast cell shares the basal lamina with the
skeletal muscle cell and is therefore well positioned to receive
signals from the myofibre, as well as from the local milieu. Since
its discovery in 1961, great efforts have been made to elucidate its
role, the mechanisms of activation, and their final fate36. Recent
single-cell studies have put forward several subpopulations of
myoblasts residing in the muscle of healthy individuals at rest13,37

and differences in response upon muscle injury38. Here we found
three distinct myogenic subpopulations of muscle cells with dis-
tinct responses to exercise. Traditionally, the key function of
myoblasts has been assumed to be fusion with the mature muscle
fiber upon muscle injury, but in later years new roles involving
the coordination of remodeling through the release of various
cytokines have been proposed1. Satellite cells are known to be
activated by microinjuries or muscle tension-induced signals
caused by many types of exercise15. Consistent with this, the
current protocol of maximal repeated sprint cycling induced
robust transcriptional changes in the muscle populations, of
which ~300 transcripts were associated with cell cycle, differ-
entiation, and transcriptional regulation.

Trajectory analysis of the muscle cells demonstrated that two of
the three myogenic subpopulations had a successive increase in
genes associated with differentiation toward slow- or fast-twitch
fibers, indicating an ongoing differentiation process. The finding
of myogenic subpopulations characterized by differential
expression of contractile elements, which we assume is caused by
different stages of early differentiation, was validated in vitro on
primary myoblasts cells and in a C2C12 cell-line. In line with this
concept, in human primary myoblasts, as well as in C2C12 cells,
there was a robust (logFC ~5) increase in gene-expression of both
fast- and slow-twitch troponin when cells were put in differ-
entiation media. This confirms that the regulation of these genes
is part of the early stages of differentiation in myoblasts and while
primary cultures and single-cell clusters cannot be assumed
entirely pure in terms of cell-type and a contribution of termin-
ally differentiated myonuclei cannot be ruled out, the C2C12 data
show that this is indeed a characteristic of the early differentiating
myogenic cell. This continuous upregulation of slow- and fast-
twitch characteristics was paralleled by a corresponding down-
regulation of transcripts associated with early stages of satellite
cell differentiation, such as MYOD1 and MYH839,40. Following
exercise, there was a significant shift along the trajectory indi-
cating a surge in the transcriptional programs associated with
maturity in both fast- and slow-twitch (TNNI2+ and TNNI1+)

subpopulations. Interestingly, this shift was somewhat larger, and
more genes were regulated by exercise, in the slow-twitch
TNNI1+ compared to fast-twitch TNNI2+ subpopulation.
Given the phenotypic adaptations associated with repeated sprint
training favoring a more oxidative muscle phenotype, it is
tempting to speculate that the first steps of this adaptive process
are already visible in the transcriptome of individual myoblasts
after a single exercise session. However, whether the trajectory
data reported here influences the skeletal muscle phenotype, i.e.,
the increase in myonuclear content and modification of slow-
and/or fast-twitch fiber composition over time on a stimulus-
dependent manner, remains to be confirmed. Overall, the current
study supports the use of scRNA-seq to better characterize the
cell-specific responses to exercise in human skeletal muscle tissue.
Given that this tissue is available for analysis and can be remo-
deled in a controlled manner, this strategy could be a powerful
addition to experiments performed in animals and cells and could
provide new information about peripheral remodeling processes,
including plausible cell-cell interactions.

The present study is focused on outlining the immediate effects
of a single bout of exercise on the cellular transcriptional land-
scape in the skeletal muscle, but it is important to underscore that
the study has several limitations with regards to generalizability
due to the small number of subjects investigated. This means that
only baseline features and exercise effects that are preserved in all
subjects can be delineated and potential differences across sub-
jects’ sex and age may pass undetected. Despite this limitation, we
have shown that scRNA-seq analysis of skeletal muscle tissue is
capable of quantifying and delineating cell populations in a highly
reproducible manner, both in terms of repeatability and across
different subjects. The scRNA-seq analysis presented in this study
provided additional information to RNA-seq analysis in terms of
transcriptional response in cell types other than the muscle fibers.
We show that a single bout of exercise leads to distinct cell type-
specific transcriptional responses where the strongest response
was observed in mesenchymal, endothelial, and myogenic cells,
suggesting that these cells are specifically involved in skeletal
muscle remodeling. Finally, we show that myogenic cells in
human skeletal muscle can be divided into three groups char-
acterized by different degrees of cell maturation, and that exercise
stimulates subpopulation of undifferentiated stem/progenitor
myogenic cells to mature toward slow- or fast-twitch fibers, a
process that may be involved in the specific phenotypic adapta-
tions induced by the stimulus used in the current experiments.

Methods
Study participants. Three healthy individuals (one female and two males) were
recruited for the study by advertisements at the university and local community.
Inclusion criteria were healthy adults 18–50 years of age, physically active on a
regular basis (at least twice per week). Exclusion criteria were active medication of
any kind, participation in athlete-level organized sports and regular use of any
tobacco products. Subjects fulfilling these criteria announcing interest to participate
were enrolled on a regular basis until three experiments had been conducted. The
study was conducted in alignment with the declaration of Helsinki and was
approved by the National Swedish ethical council (accession number 2019-04027),
oral and written informed consent was obtained from all participants.

Exercise bouts and biopsies. Each subject underwent two muscle biopsies of the
vastus lateralis using the Bergstrom technique41 (one from each leg in randomized
order) extracting approximately 1 g of tissue, one biopsy immediately before and
one 3 h post-exercise. The exercise intervention comprised 3 × 30 s all-out sprints
on a mechanically braked cycle ergometer (Monark 894E, Varberg, Sweden)
against a breaking force equivalent to 0.075 kg/kg body weight, as previously
described42. In brief, preceding the first interval each subject completed a short
warm-up (2.5 min), followed by 3 sprint intervals each separated by 2 min of
unloaded cycling. The final interval was followed by 2 min of unloaded cycling
serving as a cool-down. Immediately after collection, the muscle biopsies were
cleaned of visible adipose and connective tissue and were then minced into small
pieces (<1 mm3) in basal medium DMEM-F12 GlutaMAX (Gibco Invitrogen)
containing 0.5% human serum albumin, 1% ABAM, collagenase B (2 mg/ml, cat
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no. 11,088 807,001, Roche, Germany) and dispase II (2 mg/ml, Sigma, cat. no.
D4693-1G) and incubated for 1 h in an orbital shaker at 150 rpm and 37 °C with
trituration every 15 minutes to dissociate muscle-derived cells. Enzymatic dis-
sociation was terminated by placing the sample on ice for 5 min and the cell
suspension passed through 70, 40, 30, and 20 μM pluriStrainers (pluri Select) to
remove myofiber debris. Removal of cellular debris from viable cells was performed
on the filtered cell solution by density gradient using Debris Removal Solution
(Miltenyi Biotech, cat no. 130-109-398) according to manufacturers’ instructions
and cells were resuspended in 1 ml PBS containing 1% human serum albumin.
Removal of red bloods cells from the cell suspension was performed using Red
Blood Cell Lysis solution (Miltenyi Biotech, cat no. 130-094-183) following man-
ufacturers’ instructions. The solution ensures optimal lysis of erythrocytes with
minimal effect on all cell types obtained from tissue samples. Cells were resus-
pended in 400 μl PBS containing 1% human serum albumin and passed through a
20 μM pluriStrainer into a 1.5 ml Eppendorf tube pre-coated in PBS/10% human
serum albumin to prevent cell adherence to the container surface. Samples were
stored on ice prior to single-cell RNA sequencing in a 10X core facility for library
preparation and high-resolution single cell sequencing based on the well-
established 10X protocol.

Statistics and reproducibility. The experiments are based on the three subjects
with samples from two timepoints and all statistics on organism, tissue, and cell-
population is based on these replicates. Within (pre vs post exercise) and between
cell-population differential expression analysis considered cells as replicates with
ranked-order non-parametric statistics as outlined below. Cell-validation experi-
ments are based on n= 3 biological replicates for both human primary and C2C12-
cells.

Mononuclear cell single-cell sequencing. For each sample, an aliquot of cells was
taken and stained for viability with calcein-AM and ethidium-homodimer1 (P/N
L3224 Thermo Fisher Scientific). In accordance with 10X standard procedure, a
single-cell RNA library was generated using the GemCode Single-Cell Instrument
(10x Genomics) and Single Cell 3’ Library & Gel Bead Kit and Chip Kit (10x
Genomics). The sequencing ready library was purified with SPRIselect, quality
controlled for sized distribution and yield (LabChip GX Perkin Elmer), and
quantified using qPCR (KAPA Biosystems Library Quantification Kit for Illumina
platforms P/N KK4824). Finally, the sequencing was done using HiSeq2500
instrument (Illumina). Both the pre- and post-exercise libraries from subject #3
were re-sequenced to address the reproducibility of the analysis pipeline.

Data pre-processing. The Cell Ranger suite43 (v3.1) of analysis was used to
demultiplex sequencing results generated by Illumina sequencer into FASTQ files
and subsequent alignment to reference genome, GRCh38. All following analytical
steps were performed either in Python44 (v3.7.0) using the Scanpy45 v1.4.6 package
or R46 (v3.6.0) using Seurat17 v3.0.1 package if not stated otherwise.

Data output from Cell Ranger was constituted by a total of 81,046 libraries. The
Seurat pre-processing step of the scRNA-seq data included removal of low-quality
cells by retaining the cells with ≥200 and ≤3000 expressed genes, and the exclusion
of the genes expressed in ≤20 cells. To ensure that only high-quality cells are
considered in the downstream analysis, cells with mitochondrial gene content
≥15% of the total genes detected were also excluded from further analysis. A high
mitochondrial gene content is a feature associated with apoptotic and lysing cells.
Thus, inclusion of cells with high mitochondrial gene-content could contaminate
the pooled datasets with gene expressions linked to cell-death. The filtering steps
excluded 12,035 cells (15%) from the original merged dataset, leaving 69,011
libraries. Global-scaling normalization method was used to account for differences
in the library sizes by dividing gene-wise expression of each cell with the total
expression, multiplication with the scaling factor (1e4), and log-transformation
with a pseudo-count.

Considering gene cell to cell variability can greatly influence following
downstream analysis, we have identified a subset of 2000 genes exhibiting high
variability across the cells. Prior to performing an unsupervised dimensional
reduction technique on the previously identified subset, the cell-gene matrix was
Z-transformed to reduce the weight of the genes characterized by high expression.
Based on inspection of the elbow-plot seven principal components (PCs) were
considered as a representation of underlying data structure and used as input to
batch balanced κ nearest neighbors (BBKNN v1.3.9) algorithm47 to correct for
confounding sources of variation. As the input dataset was large, BBKNN was used
due to its benchmarked fast time performance at scale. The default parameters of
BBKNN were used, as provided by Scanpy v1.4.6. Leiden graph clustering was
performed on the BKNN neighborhoods and visualized with the UMAP
algorithm48,49.

Among the main drawbacks of suspension single cell sequencing methods, is
the propensity to form doublets and multiplets. Traditionally, the impact of this has
been addressed by library size filtering. To account for these technical artefacts and
to improve the identification of DE genes, we implemented a doublet detection tool
(R package DoubletFinder50 v2.0.3). The doublet identification pipeline was
applied to each sample individually following the pre-processing steps conducted
with Seurat, using the no-ground-truth alternative of the pipeline. The doublet

formation rate used in the pipeline was assumed to be 7.5% and number of
generated artificial doublets was set to default. Optimal neighborhood size
parameter was selected using mean-variance normalized bimodality coefficient
maximization. In total, 5175 doublets and 489 singlets belonging to the four
clusters with a high degree of doublets infiltration (>60%) were identified and
removed from further analysis.

Differential expression. Differential gene expression analysis was used to identify
potential cell type specific markers and to assess the shift in gene expression of
individual clusters as an effect of exercise using Wilcoxon signed-rank test. A gene
was considered as a potential marker/distinguishing feature of a cluster, if it was
significantly upregulated in the cluster, compared with the rest cell population
(fdr < 0.05), and being detected in ≥50% of the cells in the cluster. Differential
expression of the exercise effect was assessed by comparing cells within each cluster
isolated before and after the exercise bout. A gene was deemed as differentially
expressed at fdr < 0.05 and when expressed in >50% of the cells within the cluster,
both before and after exercise bout.

Annotation and ontologies. Transcriptome-based annotations do not have a gold
standard approach for definitively annotating a cluster. Therefore, the Leiden-
based clusters generated above were annotated by a multi-step process, to
strengthen the validity of the final annotations. Three main steps were included in
the annotation scheme: first utilizing a cluster-based annotation toolkit,
scCATCH18 v2.0; second compiling cluster-specific marker genes (log2FC > 0,
fdr < 0.05 and percentage of expressed cells ≥50%) which were compared against
the CellMatch cell-type specific marker gene database; and third comparing the
expression profiles of each cluster against cell-type specific transcriptome profiles
provided by the Human Gene Atlas. Annotations which were consistent in ≥2 steps
were used to give the final annotation of the cell clusters.

ScCatch is an annotation tool that parses transcriptome matrices and generates
a ranked list of annotations. Following Leiden-based clustering, the gene matrices
were parsed through scCatch. The top generated annotations were taken into
consideration in the following steps of the annotation scheme. Cluster-specific
marker genes (log2FC > 0, fdr < 0.05, and percentage of expressed cells ≥50%),
which had been generated by differential gene expression between the clusters
against all other clusters at baseline, were compared against the cell-type specific
markers available in the CellMatch reference database18. Resultantly, a list of
annotations was produced and compared against the scCatch results, to ensure that
the annotations were consistent. Furthermore, the expression profiles of each
cluster were also compared with cell-type specific transcriptome profiles provided
by the Human Gene Atlas to strengthen the annotation validity. Potential increases
in cellular abundance following exercise were assessed for each cell type by one-
sided Wilcoxon tests.

To facilitate the biological interpretation of the exercise effect on each annotated
cell type, gene set enrichment analysis was also performed using the R package
ClusterProfiler51 v3.10.1, adjusting for the background of the genes detected in
each individual cluster. Solely terms with fdr < 0.05 were considered as significant
for each given cluster. Thus, several biological terms were coupled with each cluster
to strengthen the interpretability of the cell-type annotation.

Principal curve analysis and exercise effect in muscle cells. To characterize the
transition from undifferentiated to more differentiated cells along myogenic lineage
as an effect of acute exercise, a principal curve analysis was performed. From the
dataset, three myogenic clusters were isolated and PCA was reperformed to update
the shared PCA-space of the corresponding clusters. The first seven PCs were used
to calculate two lineages, originating in the PAX7+ cluster and ending in the
TNNI1+ and the TNNI2+ clusters, respectively. The R package princurve52,53

v2.1.3 was used to calculate the non-parametric principal curves. A pseudotime
value was defined as the coordinate when orthogonally projecting a cell onto the
principal curve, as previously described by the slingshot pipeline54. In order to
compare the transition in gene expression along each principal curve, the linear
relationship between PC1 loading, containing the largest degree of variance, and
normalized gene expression level were calculated for canonical myogenic cell
markers. To quantify the overall shift along the pseudotime between pre- vs. post-
exercise, empirical distribution functions (ECDFs) were calculated and compared
using Wilcoxon signed-rank test.

Comparison with whole-tissue RNA-sequencing data. Comprehensive profile of
gene expression in human skeletal muscle was defined using RNA-seq data
obtained from GTEx database (release v7) consisting of 564 individuals. Library
normalization to logCPM was done using edgeR package (v3.24.3). A total of 5844
genes with mean logCPM >4 were considered as detected in human skeletal
muscle. For the single-cell analysis genes expressed in ≥50% cells and in at least one
of the identified cell types with the mean log1p expression >0 were considered as
detected in human skeletal muscle on the single-cell level, resulting with the total of
1946 unique genes. RNA-seq data pre and 3 h after a single bout of exercise was
obtained from the recent publication by Norrbom et al.22. Genes differentially
expressed at fdr < 0.05 were deemed to be exercise-regulated in the RNA-seq
analysis.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04088-z

12 COMMUNICATIONS BIOLOGY |          (2022) 5:1121 | https://doi.org/10.1038/s42003-022-04088-z | www.nature.com/commsbio

www.nature.com/commsbio


Skeletal muscle biopsy, myoblast isolation, and cell culture. Myoblasts were
isolated from a 25-year male as previously described55 and stored in cryotank.
Myoblasts were thawed and cultivated to expand and proliferate on Geltrex
(A1413301, Thermo Scientific) coated plates in a serum-free chemically defined
medium (P-CDM), modifications from WO 2010/031190 A1. P-CDM consist of
three base media RMPI1640 (#11875093, Thermo Scientific), Ham’s F12
(#11765054, Thermo Scientific) and MCDB120 (MBS652968, MyBioSource, Inc.)
mixed 1:1:1, and supplanted with 2 mM L-Glutamine (#25030081, Thermo Sci-
entific), 1X ITS-A (#51300044, Thermo Scientific), 1:2000 Fatty acid supplement
(F7050, MERCK), 0.39 mg/ml Dexamethasone (D4902, MERCK), 0.5 mg/mL
bovine serum albumin (A2153, MERCK), 0.5 mg/ml Fetuin (F3385, MERCK),
4 ng/ml bFGF (NBP2-34921, Novus Biologicals), 4 ng/ml FGF4 (NBP2-34864,
Novus Biologicals), 4 ng/ml EGF (NBP2-34952, Novus Biologicals) and 4 ng/ml
IGF-1 (#100-11, PeproTech). The myoblasts were replated on Geltrex-coated wells,
and when cells reached 50% the myoblasts were harvested. For differentiation
towards myotubes, the myoblasts were grown in a differentiation medium (D-
CDM) which have the same base chemically defined medium as above but was
supplemented with 2mM L-Glutamine (#25030081, Thermo Scientific), 1X ITS-A
(#51300044, Thermo Scientific), 1:2000 Fatty acid supplement (F7050, MERCK),
0.5 mg/mL bovine serum albumin (A2153, MERCK), 0.5 mg/mL Fetuin (F3385,
MERCK) and 4 ng/ml IGF-1 (#100-11, PeproTech) for four and nine days before
they were harvested. All the harvested cells were washed with PBS, detached with
TrypLE (#12605028, Thermo Scientific), transferred to tubes, and spun at 350 G for
five minutes, supernatant removed, TRIzol reagent (#15596018, Thermo Scientific)
added, and stored at −20 °C for further processing. Total RNA was isolated using
the Direct-zol RNA Miniprep kit (R2052, Zymo Research) according to manu-
facturer protocol. The total RNA was measured in a DS-11 FX machine (DeNovix),
and 60 ng of RNA was converted into cDNA using iScript™ Advanced cDNA
Synthesis Kit (#1725038, Bio-Rad). Five nanograms of cDNA were used per SYBR
green qPCR reaction with iTaq Univer SYBR Green Supermix (#1725124, Bio-Rad)
using primers targeting the specific genes of interest in a CFX96 Touch Real-Time
PCR Detection System (Bio-Rad). Expression levels were expressed as 2^-(deltaCT)
arbitrary units in relation to GAPDH and differential expression was analyzed
using one-way ANOVA with Tukey’s honest significance test as post hoc test.

C2C12-experiments. Mouse immortalized myoblasts from the C2C12 cell-line
exposed to proliferating (n= 3) and differentiating (n= 3) media analyzed on
Affymetrix Mouse Expression 430 A Array were obtained through gene-expression
omnibus (GDS2151) and analyzed for log2FC differential expression using
LIMMA56 where fdr < 0.05 was considered significant.

Data availability
Raw- and processed sequencing data is publicly available through Gene-Expression
omnibus (GEO) accession number GSE214544. Complete composition can be found in
Supplementary Data 1. Complete marker-gene differential expression can be found in
Supplementary Data 2, 3, and 4. Complete exercise-differential expression and ontology
analysis can be found in Supplementary Data 5–9. Gene expression data from cell
validation experiments can be found in Supplementary Data 10. The source data
underlying Figs. 1d, 2d, 3a, 3d–h, 4b, c, 5a, b, e, f it can be found in Supplementary
Data 10. Complete microarray gene-expression data from C2C12 cells can be found
through GEO accession number GDS2151.

Code availability
All code used in this paper has been deposited on GitHub and is available under https://
github.com/HypoChloremic/scMuscle (https://doi.org/10.5281/zenodo.7126070).
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