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Age and sex associated with changes in the functional brain network topology and
cognition in large population of older adults have been poorly understood. We explored
this question further by examining differences in 11 resting-state graph theory measures
with respect to age, sex, and their relationships with cognitive performance in 17,127
United Kingdom Biobank participants (mean = 62.83 ± 7.41 years). Age was associated
with an overall decrease in the effectiveness of network communication (i.e., integration)
and loss of functional specialization (i.e., segregation) of specific brain regions. Sex
differences were also observed, with women showing more efficient networks, which
were less segregated than in men (FDR adjusted p < 0.05). The age-related changes
were also more apparent in men than in women, which suggests that men may be more
vulnerable to cognitive decline with age. Interestingly, while network segregation and
strength of limbic network were only nominally associated with cognitive performance,
the network measures collectively were significantly associated with cognition (FDR
adjusted p ≤ 0.002). This may imply that individual measures may be inadequate
to capture much of the variance in the neural activity or its output and need further
refinement. The complexity of the organization of the functional brain may be shaped
by the age and sex of an individual, which ultimately may influence the cognitive
performance of older adults. Age and sex stratification may be used to inform clinical
neuroscience research to identify older adults at risk of cognitive dysfunction.

Keywords: resting-state fMRI, graph theory, age, sex, cognition

INTRODUCTION

The brain is topographically organized into distinct networks. In the recent years, neuroscientists
have examined networks to understand the brain function in preference to the classic study
of specific brain regions. There are several approaches to mapping these brain networks, with
one approach being resting-state functional magnetic resonance imaging (rs-fMRI). The rs-
fMRI measures the spontaneous brain activity as low-frequency fluctuations in bold oxygen
level-dependent (BOLD) signals and is used to understand the brain function (Wang J. et al., 2010).
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In network models of rs-fMRI data, functional brain networks are
summarized into a collection of nodes (i.e., brain regions) and
edges (i.e., magnitude of temporal correlation in fMRI activity
between regions) (Rubinov and Sporns, 2010; Bertolero et al.,
2018). This network model can then be used to study the global
and local properties of the functional brain networks (Table 1).
There is evidence that adult human brains are organized into
groups of specialized functional networks that are able to respond
to various cognitive demands (Wang J. et al., 2010). Therefore,
studying the organization of functional networks in the aging
brain may allow us to understand age-associated cognitive
changes, even in the absence of a brain disease (Burke and Barnes,
2006; Otte et al., 2015).

A reorganization of the functional networks in the brain has
been observed with aging and is also associated with changes
in cognition (Betzel et al., 2014; Chan et al., 2014; Song et al.,
2014; Geerligs et al., 2015; Zhang et al., 2016). Age-related
alterations have been associated with a less efficient global
network, decreased modularity, longer path lengths, and higher
clustering coefficient, which may suggest a shift to more local
organization in older age (Achard and Bullmore, 2007; Wang
L. et al., 2010; Geerligs et al., 2015; Zhang et al., 2016). These
changes in the topological functional network occurred most
pronouncedly in regions important for cognition. For instance,
high clustering coefficients in some frontal, temporal, and parietal
regions were related to a lower performance in verbal and visual
(VIS) memory functions (Sala-Llonch et al., 2014). Declines
in the default mode network (DMN), which comprises the
medial and lateral parietal, medial prefrontal, and medial and
lateral temporal cortices (Raichle, 2015), are reported in aging
brains and have been associated with memory consolidation
(Murman, 2015). In addition, it has been observed that age
has a mediating role in the correlation between local clustering
coefficients and verbal memory learning scores (Sala-Llonch
et al., 2014). Similarly, another cross-sectional study found that
the relationship between aging and general decline in cognition
could be mediated by changes in the functional connectivity
measures such as path length (Bagarinao et al., 2019).

Previous studies have also shown sex differences in the
organization of brain functional networks using graph theory
measures. Men showed network segregation (i.e., specialized
processing of the brain at a local level), whereas women
showed more network integration (i.e., how rapidly the brain
can integrate specialized information at a global network level)
(Zhang et al., 2016). Another study observed that men had a
higher clustering coefficient in the right hemisphere than in
the left hemisphere (Tian et al., 2011), suggesting that men
had greater specialization of the right hemisphere. In addition,
age-related differences in the reorganization of the functional
connectivity may also differ by sex, with men showing increasing
between-network connectivity (Goldstone et al., 2016) while
women exhibiting less age-related decreases in the DMN and
LIMB network (Scheinost et al., 2015). It is noteworthy that age-
related changes in cognition also differ by sex. For instance, a
recent study has observed that while women had significantly
higher baseline global memory, executive function, and memory
performance than men, they showed significantly faster declines

in the global memory and executive function (Levine et al.,
2021). Another study found that older men had steeper rates of
decline on measures of perceptuomotor speed and integration
as well as visuospatial abilities (McCarrey et al., 2016). Taken
together, the findings show that sex may influence age-related
functional reorganization in the brain and that improving our
understanding of this may shed light onto why some cognitive
abilities differ substantially by sex (Ritchie et al., 2018).

There is evidence to show that changes in cognition may
be due to the changes in the functional network connectivity.
Segregated functional networks, for instance, seemed to be
associated with better long-term episodic memory and fluid
processing (Wig, 2017). However, there have been mixed
findings regarding how resting-state functional connectivity
(RSFC) differences relate to cognitive performance. One
longitudinal study found the age-related decline of within-
network connectivity in the DMN and executive control
network but without associations with cognitive decline,
whereas an association of between-network connectivity of the
DMN and executive control network with processing speed
was also observed (Ng et al., 2016). In contrast, another
longitudinal study showed positive associations between within-
network connectivity of the DMN and memory performance
(Persson et al., 2014).

One previous cross-sectional study has investigated the
functional network architecture of older adults with respect to
age, sex, and cognitive performance (e.g., attention, episodic
and working memory, executive function, and language) in a
cohort of 722 participants with ages between 55 and 85 years
(mean age of 67.1 years) (Stumme et al., 2020). They found
RSFC reorganization with respect to age, particularly in the
VIS and sensorimotor networks, which may suggest that these
networks may mediate age-related differences in cognitive
performance. In addition, the authors observed that men showed
higher network integration, whereas women showed more
segregation, which may possibly facilitate sex-related differences
in cognitive performance.

This study aims to extend previous work by first examining
age, sex, and cognitive function in association with functional
network properties but in a much larger sample of 17,127
United Kingdom Biobank participants. Additionally, a more
extensive range of graph theory measures, which assess the global
and local properties as well as the strength of the network,
are examined as summarized in Table 1. These measures are
global efficiency, characteristic path length, Louvain modularity,
transitivity, strength of default, DAN, frontoparietal, LIMB,
salience, somatomotor (SM), and VIS networks, which are
typically found to change with aging (Song et al., 2014), and are
involved in multiple neuropathological processes (Lebedev et al.,
2014; Khazaee et al., 2015; Munilla et al., 2017).

MATERIALS AND METHODS

Participants
The data from 20,598 participants of European ancestry with rs-
fMRI scans from the United Kingdom Biobank (aged between 44
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TABLE 1 | Graph theory measures and their association with age and age-related diseases.

Graph theory measures Definition Associations with age and aging-related diseases

Global efficiency How effectively the information is transmitted at a global level and is the
average inverse shortest path length. Higher values imply greater
efficiency.

Older age was associated with reduced global efficiency
compared with that in younger participants (Achard and
Bullmore, 2007)

Characteristic path length It is the average of all the distances between every pair of nodes in the
network. It reflects the integrity of the network and how fast and easily
information can flow within the network. A shorter characteristic path
length reflects more efficient transmission of information.

Older age was associated with longer characteristic path
lengths compared with those in younger participants
(Sala-Llonch et al., 2014)

Louvain modularity Community detection method, which iteratively transforms the network
into a set of communities or modules, each consisting of a group of
nodes. Higher modularity values indicate denser within-modular
connections but sparser connections between nodes that are in
different modules.

Brain networks in the elderly showed a decreased modularity
(less distinct functional networks), but findings were mixed
(Chan et al., 2014)

Transitivity Total of all the clustering coefficients around each node in the network
and is normalized collectively. Higher values represent greater
specialization of the brain.

Patients with Alzheimer’s disease (AD) showed lower normalized
clustering coefficient (i.e., transitivity) (Supekar et al., 2008)

Strength Sum of all neighboring edge weights. High connectivity strength
indicates a stronger connectivity between the regions.

Age-related differences were observed in network-level
functional connectivity such as increases in auditory network
and decreases in connectivity in the visual, frontoparietal, dorsal
attention, and salience network. However, findings were mixed
(Betzel et al., 2014; Song et al., 2014; Geerligs et al., 2015)

and 80 years) (Sudlow et al., 2015) were accessed in March 2019.
The imaging assessment took place at three different assessment
centers: Manchester, Newcastle, and Reading, United Kingdom.
This project was approved by the National Health Service
National Research Ethics Service (approval letter dated June 17,
2011, ref. 11/NW/0382), project 10279. All data and materials are
available via United Kingdom Biobank1.

Imaging Preprocessing and Graph
Theory Analysis
All participants underwent an rs-fMRI scan on a Siemens Skyra
3T scanner (Siemens Medical Solutions, Erlangen, Germany).
The rs-fMRI that was obtained using a blood oxygen level-
dependent (BOLD) sequence and an echo-planar imaging (EPI)
sequence (TR = 0.735 s, TE = 39 ms, FoV = 88 × 88 × 64,
voxel resolution 2.4 mm × 2.4 mm × 2.4 mm) lasted for
∼6 min (for more details, see2). We analyzed the rs-fMRI data
that were previously preprocessed by the United Kingdom
Biobank (Alfaro-Almagro et al., 2018). The preprocessing
steps involved motion correction, intensity normalization,
smoothing [i.e., Gaussian kernel of full width at half maximum
(FWHM), 5 mm], high-pass temporal filtering, EPI unwarping,
and gradient distortion correction. Independent Component
Analysis (ICA) + FMRIB’s ICA-based X-noiseifier (FIX)
processing (Beckmann and Smith, 2004; Griffanti et al.,
2014; Salimi-Khorshidi et al., 2014) was then used to remove
structural artifacts. Participants with motion of > 2 mm/degree
of translation/rotation were removed. After the image
preprocessing and quality control, 18,500 participants remained.

The regions of interest (ROIs) used to construct the network
properties were selected from the Schaefer atlas (Schaefer et al.,
2018), corresponding to 100 cortical regions classified into

1http://www.ukbiobank.ac.uk
2https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf

seven resting-state networks, namely, frontoparietal control,
DMN, DAN, salience ventral attention, LIMB, SM, and VIS
networks (Figure 1 and Supplementary Table 1). 3dNetCorr
command from the analysis of functional neuroimaging (Cox,
1996) was used to produce the network adjacency matrix for
each participant. The mean time-series for each region was
correlated with the mean time-series for all other regions and
extracted for each participant. Furthermore, these time courses
are used to estimate the size of signal fluctuation in each node,
as well as to estimate the connectivity between pairs of nodes
using L2-regularization (rho = 0.5 for ridge regression option in
FSLNets). More details can be found in the study by Miller et al.
(2016). A partial correlation, r, between all pairs of signals was
computed to form a 100-by-100 (i.e., Schaefer atlas) connectivity
matrix, which was then Fisher z-transformed. Self-connections
and negative correlations were set to zero. As rs-fMRI can vary
across magnitude, the use of undirected weighted matrices may
provide a more comprehensive picture of the functional brain
networks. The stronger the weights, the stronger the connections
between nodes. In addition, we used an undirected graph because
the rs-fMRI data do not permit inferences about the possible
direction of information flow. However, the undirected graph is
useful as it allows us to identify existing connections between
specific pairs of network nodes (Fornito et al., 2016). Therefore,
we used weighted undirected matrices in our study.

All graph theory measures were derived using the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). Functional
integration can be assessed by global efficiency, which refers
to the transmission of information at a global level, and
characteristic path length, which is the average shortest distance
between any two nodes in the network. To assess network
segregation, which characterizes the specialized processing of
the brain at a local level, we calculated the Louvain modularity
and transitivity. Louvain modularity is a community detection
method, which iteratively transforms the network into a set
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FIGURE 1 | Schematic representation of brain network construction using Schaefer et al. (2018) parcellation to derive the weighted and undirected functional brain
network graph. The figure is taken from Foo et al. (2021) https://www.nature.com/articles/s41598-021-94182-9.

of communities, each consisting of a group of nodes. Higher
modularity values indicate denser within-modular connections
but sparer connections between nodes that are in different
modules. Transitivity refers to the sum of all the clustering
coefficients around each node in the network and is normalized
collectively. Finally, strength (i.e., weighted degree) is described
as the sum of all neighboring edge weights. High connectivity
strength indicates a stronger connectivity between the regions,
which provides an estimation of functional importance of each
network. Subsequently, we averaged the two hemispheres to
derive a value for each node and averaged within each network
to derive a value for each of the 7 networks for strength
measures. A total of eleven graph theory measures were used in
the current study.

Cognition
Cognitive assessments were administered on a touchscreen
computer and were acquired at the imaging visit (instance
2). Seven tests from the United Kingdom Biobank battery
of tests were selected to represent three cognitive domains
(Kendall et al., 2017; Cox et al., 2019), namely, processing
speed, memory, and executive function, in this study. All
test scores were first z-transformed and then averaged to
form domain scores. Processing speed domain included the
following tests: “Reaction Time” (i.e., average time to correctly
identify matches in a “snap”-like card game task), “Trail
Making A” (i.e., time taken to complete a numeric path), and
“Symbol Digit Substitution” (i.e., number of correct symbol
number matches within the time limit). “numeric memory”
(i.e., maximum number of digits remembered correctly) and
“pairs matching” (i.e., number of incorrect visual matching)
represented the memory domain, whereas “Trail Making
B” (i.e., time taken to complete an alphanumeric path)
and “fluid intelligence” (i.e., total number of questions that
required logic and reasoning correctly answered) formed the
executive function domain. Global cognition was computed
by averaging the domain scores and z-transformed. After
including those with cognition and graph theory data, the

final sample in this study was 17,127 United Kingdom
Biobank participants.

Statistical Analysis
Statistical analyses were performed using the R software (version
4.0.0) (R Core Team, 2020). The graph theory measures were
normalized using ranked transformed within the “rntransform”
function in R from the GeneABEL package (Karssen et al., 2016),
and age was z-transformed for the regression analysis. In line
with the previous studies (Elliott et al., 2018), we controlled
for imaging covariates, including head size, head motion from
rs-fMRI, and volumetric scaling factor needed to normalize
for head size, as well as scanning site and education. The
network measures were residualized for imaging covariates and
assessment center and used in all subsequent analyses.

To explore age effects and sex-related changes in the networks,
a multiple linear regression that modeled the targeted property of
networks as the dependent variable and age, age2, sex (female = 0,
male = 1), years of education, and age-by-sex and age2-by-sex
interactions as predictors was undertaken. In addition, separate
multiple linear regressions were performed to study whether the
network measures influenced cognitive functions (i.e., dependent
variable) with covariates as in the previous model.

The multivariate analysis was carried out to further examine
the joint effect of the network measures on cognitive functions
after accounting for the same set of covariates in the univariate
model. Since the network measures are correlated, we used
the penalized regression analysis using the glmnet algorithm as
implemented in the r package caret (Kuhn, 2015). The glmnet
uses two penalty functions with tuning parameters to shrink the
beta coefficients in the generalized linear model (glm). We used
the elastic net glm model with default options to identify the
optimum tuning parameter estimates. Network measures and the
covariates with non-zero regression co-efficient in the training
step was fit with the linear regression model. Likelihood ratio
tests, p-values, and the incremental r-square were computed by
comparing the model with network measures (i.e., full model),
again a model with only the covariates (i.e., base model).
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TABLE 2 | United Kingdom Biobank sample characteristics and descriptive statistics (mean ± standard deviation) of graph theory measures and cognition measures
in women and men.

Women Men t-value p-value

Age, years (range) 62.21 ± 7.23(45 − 80) 63.53 ± 7.55(45 − 80) −11.660 <0.001

Education, years 15.44 ± 4.75 16.06 ± 4.70 −8.540 <0.001

Graph theory measures

Eglob 0.180 ± 1.010 −0.205 ± 0.952 25.573 <0.001

Charpath −0.199 ± 1.009 0.234 ± 0.904 −28.919 <0.001

Louvain modularity −0.086 ± 1.014 0.123 ± 0.964 −13.758 <0.001

Transitivity 0.071 ± 0.989 −0.089 ± 0.992 10.544 <0.001

DMN 0.191 ± 1.006 −0.227 ± 0.942 28.021 <0.001

DAN 0.199 ± 1.005 −0.230 ± 0.945 28.643 <0.001

FPCN 0.149 ± 1.019 −0.176 ± 0.950 21.499 <0.001

LIMB 0.160 ± 0.991 −0.203 ± 0.973 24.158 < 0.001

SVAN 0.185 ± 1.010 −0.225 ± 0.935 27.415 <0.001

SM 0.024 ± 1.026 −0.037 ± 0.923 3.992 <0.001

VIS 0.194 ± 1.004 −0.222 ± 0.943 27.807 <0.001

Cognition

Memory 0.01 ± 0.943 0.11 ± 1.002 −4.604 <0.001

Executive 0.12 ± 0.928 0.13 ± 0.990 −0.616 0.538

Processing speed 0.18 ± 0.945 0.14 ± 0.964 1.968 0.049

Global cognition 0.14 ± 0.917 0.16 ± 0.983 −1.178 0.239

Analyses were conducted using independent samples t-test for continuous variables.
Graph theory measures and cognition are in z-scores, i.e., negative value represents poorer score, except for characteristic path length. Eglob, global efficiency; Charpath,
characteristic path length; VIS, strength of visual network; SM, strength of somatomotor network; DAN, strength of dorsal attention network; SVAN, strength of salience
network; LIMB, strength of limbic network; FPCN, strength of control network; DMN, strength of default network.

False discovery rate-adjusted p-values were obtained by using
Benjamini and Hochberg (1995) procedure as implemented in
the R function p. adjust.

RESULTS

Sample Characteristics
The current sample of 17,127 participants is a group of generally
healthy middle-aged and older adults (range = 45.17–80.67 years,
mean age = 62.83 ± 7.41 years) after including only samples
with cognition and graph theory data. Of this sample, 9,037
were women and 8,090 were men, with an overall mean of
15.73 ± 4.74 years of education. Significant differences were
observed for the demographics, graph theory measures, and
memory scores between men and women (Table 2). Figure 2
shows the significant correlations between the network measures,
except for transitivity, which was not significantly associated with
any other measures.

Age- and Sex-Related Differences in
Functional Brain Network
Figure 3 and Table 3 summarize the results of age- and
sex-related differences in the graph theory measures. Global
efficiency, Louvain modularity, and strength of the networks
decreased significantly with age, whereas characteristic path
length and transitivity increased significantly with age. The only
exceptions were that strength of default and salience networks
were not significantly associated with age.

Sex was significantly associated with all measures, except
for transitivity. Men appeared to have lower global efficiency,
transitivity, and strengths of all the networks, as well as longer
characteristic path lengths compared with those in women. Men
showed increased Louvain modularity compared to women.

Age and sex interaction were negatively associated with
Louvain modularity and strength of visual, limbic, and default
networks. This implies that age-related changes in these measures
were more apparent in males than females.

Association of Network Measures With
Cognition
We examined the network influence on cognition after
controlling for age, age2, sex, and education. Although none of
these results would survive correction for multiple testing, we
reported the results that were nominally significant. Louvain
modularity showed positive associations with global cognition,
whereas transitivity was negatively associated with memory. The
strength of limbic network also showed negative associations with
global cognition and memory (Supplementary Table 2).

We further examined this relationship to see if it was
moderated by age and sex. However, none of the interaction
effects between network measures and age or sex on cognition
was significant (Supplementary Table 3).

Multivariate Analysis Between Network
Measures and Cognition
Given the significant correlations between the network measures,
we further investigated whether the joint effect of the network
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FIGURE 2 | Correlations between the graph theory measures. * p < 0.05, ** p < 0.01, and *** p < 0.001. Eglob, global efficiency; Charpath, characteristic path
length; VIS, strength of visual network; SM, strength of somatomotor network; DAN, strength of dorsal attention network; SVAN, strength of salience network; LIMB,
strength of limbic network; FPCN, strength of control network; DMN, strength of default network. The figure is taken from Foo et al. (2021)
https://www.nature.com/articles/s41598-021-94182-9.

measures contributed to cognition after controlling for age,
sex, and education variables. A summary of the results of
each of the examined models are presented in Supplementary
Table 4. We observed that while the R2 difference between
the base model (age, age2, sex, and education) and the full
model with the network measures was small, the joint effect
of the network measures still significantly contributed to
cognition (Table 4).

DISCUSSION

Changes to resting-state networks due to aging arguably reflect
more fundamental alterations or adaptations at the general level
of brain function (Jockwitz and Caspers, 2021). Graph theoretical
approaches may be the most integrative way to investigate the
RSFC as it studies the connectivity at both nodal and systems
levels (Jockwitz and Caspers, 2021). Therefore, in this study, we
examined the topological age and sex relationship with functional
brain networks, using graph theory measures, and cognition. We
observed that most functional brain network measures showed a
decreasing strength of connectivity as well as reduced efficiency

of communication and specialization between the networks
with aging. However, the default mode and salience networks
were an exception to this finding, with no significant results
observed. In addition, there were significant sex differences
in brain functional network topology where women showed
greater efficiency of networks and network strength but less
modularity than men. Further, age-related changes were more
apparent in men than in women. Finally, the collective effect
of the network measures contributed significantly to cognitive
performance, with the highest correlation being with processing
speed. However, no one network measure was significant after
multiple testing adjustment.

We observed that global efficiency correlated negatively with
age, whereas characteristic path length correlated positively with
age, which was similar to a previous study (Sala-Llonch et al.,
2014). This suggests an overall age-related decrease in the
effectiveness of the communication between brain regions. In
addition, the finding that modularity decreases with age has also
been reported previously (Song et al., 2014). This implies that
increasing age is associated with a less differentiated functional
modular structure, which may be either due to the increase in
between-network connections or the decrease in within-network
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FIGURE 3 | Age- and sex-related differences in the graph theory measures. Lines represent the fitted values for men (blue) and women (red) separately. The middle
line shows the fitted equation evaluated at the mean value of education for each sex, while the top and lower lines represent confidence bands. The figure is taken
from Foo et al. (2021) https://www.nature.com/articles/s41598-021-94182-9.

connections or both (Chan et al., 2014; Song et al., 2014). At
younger ages, functional brain networks are more segregated
with every network being relatively specialized for distinct mental
processes (Chan et al., 2014). The data suggest that there is some
loss of functional specialization of specific brain networks as the
brain ages (Goh, 2011), which may be important for cognitive
reserve and compensation in older adults. Furthermore, we
showed age-related decline in all of the other network strengths,
excluding the DMN and salience network. However, results for
other networks from previous studies are more complex. For
instance, Betzel et al. (2014) found a within-network decline for
higher order control and attention networks but stability for

visual and somatomotor networks, while another study (Song
et al., 2014) showed an increased global and local efficiency
in the sensorimotor network in older compared with that in
younger adults. Taken together, our data and others suggest age-
related vulnerability in global network measures as well as specific
network strengths.

Importantly, we did not observe any age-related decline
in the DMN and salience network. Prior works suggest that
within-network posterior DMN connectivity, including the
angular gyrus, anterior cingulate cortex (ACC), precuneus,
dorsal prefrontal, and inferior parietal lobe, decreases with
age (Betzel et al., 2014; Chan et al., 2014; Song et al., 2014;
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TABLE 3 | Age- and sex-related differences in graph theory measures.

Graph theory measures β age SE age β sex SE sex β age × sex SE age × sex Padj age Padj sex Padj age × sex

Eglob −0.108 0.011 −0.170 0.021 −0.014 0.016 3.74E-21* 1.29E-15* 0.391

Charpath 0.043 0.011 0.226 0.021 0.034 0.016 1.67E-04* 3.78E-26* 0.068

Louvain modularity −0.181 0.011 0.166 0.021 0.046 0.016 1.05E-57* 2.96E-15* 0.016*

Transitivity 0.072 0.011 −0.042 0.021 0.024 0.016 4.55E-10* 0.048* 0.179

DMN 0.004 0.011 −0.287 0.021 −0.044 0.016 0.772 4.28E-41* 0.016*

DAN −0.055 0.011 −0.181 0.021 −0.006 0.016 1.71E-06* 2.27E-17* 0.681

FPCN −0.025 0.011 −0.194 0.021 −0.015 0.016 0.032* 1.11E-19* 0.391

LIMB 0.142 0.011 −0.263 0.021 −0.043 0.016 3.14E-36* 3.04E-35* 0.016*

SVAN 0.000 0.011 −0.223 0.021 −0.026 0.016 0.971 2.29E-25* 0.145

SM −0.093 0.011 −0.090 0.021 −0.031 0.016 5.86E-16* 2.27E-05* 0.093

VIS −0.071 0.011 −0.106 0.021 −0.076 0.016 5.12E-10* 6.80E-07* 1.21E-05*

*Represents significance.
β, beta; SE, standard error, Padj, adjusted p-value; age × sex, age and sex interaction.

TABLE 4 | Multivariate analysis of the joint effect of the network measures with cognitive function.

Cognitive domains df LR R2 full model R2 base R2 diff Padj

Processing speed 7 3.224 0.239 0.237 0.002 0.002

Executive function 9 3.503 0.132 0.128 0.004 5.29E-04

Memory 8 3.650 0.045 0.041 0.004 5.29E-04

Global cognition 3 4.480 0.188 0.184 0.004 7.75E-05

df, number of network measures in the model; LR, likelihood ratio, diff, difference; Padj, adjusted p-value.
Networks included in the final model:
Processing speed—age, age2, sex, education, Louvain modularity, transitivity, strength of visual network, strength of somatomotor network, strength of dorsal attention
network, strength of salience network, and strength of limbic network.
Executive function—age, age2, sex, education, Louvain modularity, transitivity, strength of visual network, strength of somatomotor network, strength of dorsal attention
network, strength of salience network, strength of limbic network, strength of control network, and strength of default network.
Memory—age, age2, sex, education, global efficiency, transitivity, strength of visual network, strength of dorsal attention network, strength of salience network, strength
of limbic network, strength of control network, and strength of default network.
Global cognition—age, age2, sex, education, Louvain modularity, transitivity, strength of visual network, strength of somatomotor network, strength of dorsal attention
network, strength of limbic network, strength of control network, and strength of default network.
Full model includes network measures and base model includes only covariates.

Geerligs et al., 2015; Stumme et al., 2020). In contrast, within
the older adult population, DMN as a whole remains relatively
stable (Jones et al., 2011; Stumme et al., 2020). This finding
is important as it shows that anterior-posterior DMN has
differential vulnerability to age-related changes. Moreover, the
salience network seems to remain relatively stable throughout
the lifespan (Chan et al., 2014; Varangis et al., 2019) as well
as in older age (Siman-Tov et al., 2017; Stumme et al., 2020).
Interestingly, the DMN and salience network have also been
implicated in age-related diseases such as Alzheimer’s disease
(AD) and depression. One study observed that individuals
with AD showed a moderate decrease of within-network DMN
between the posterior cingulate cortex and right hippocampus
as compared with healthy controls, but no differences were
evident for whole-network DMN (Grieder et al., 2018). Further,
compared with older adult controls, individuals with AD showed
a significantly decreased within-network functional connectivity
in the frontoinsular cortices and increased FC in medial
prefrontal cortex in the salience network (He et al., 2014).
Similarly, older adults with depression demonstrated higher
within-network DMN in the left precuneus, subgenual ACC,
ventromedial prefrontal cortex, and lateral parietal regions
than controls (Alexopoulos et al., 2012). In addition, regarding

the salience network, within-network bilateral anterior insula
showed a decreased connectivity, but bilateral ACC showed an
increased connectivity in middle-aged adults with depression
compared with controls (Manoliu et al., 2014). These findings
suggest that while the whole DMN may be preserved, within-
network posterior DMN may be vulnerable to aging and aging-
related diseases.

The topology of functional brain networks differed by sex.
We detected significant sex effects on all the assessed graph
theory measures. Consistent with results from Zhang et al. (2016),
showing that female brains facilitated functional integration in
young adults, we found that in older individuals, women indeed
had a higher global efficiency and shorter characteristic path
length than men. Similarly, congruent with previous findings,
we also observed women had higher normalized clustering
coefficients (i.e., transitivity) than men (Zhang et al., 2016).
However, men exhibited stronger Louvain modularity, which
suggests that there may be sex differences even within network
segregation. It has previously been reported that women tend to
exhibit overall higher within-network RSFC (Allen et al., 2011),
which is consistent with our finding that women had higher
network strengths than men. Similarly, consistent with previous
findings that women show less age-related decreases in RSFC
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in the default and limbic network (Scheinost et al., 2015), we
found that age-related changes in strengths of the limbic and
default networks in addition to Louvain modularity and strength
of visual network were more apparent in males than females.
This suggests that aging-related changes in the functional brain
network are different in the two sexes and that this difference
may in part account for the differential vulnerability in cognitive
decline between men and women.

The functional connectivity architecture in the brain has
been associated with cognitive performance in older adults
independent of age, sex, and education in this study. We observed
that decreased Louvain modularity was nominally associated with
a decline in global cognition. Individuals with less segregated
networks exhibited poorest memory ability after controlling for
age, which may suggest that network segregation may be an age-
invariant marker of individual differences in cognition (Chan
et al., 2014). However, we also saw that decreased transitivity
was nominally associated with better memory performance. It
is possible that different markers of network segregation have
varying degrees and direction of influence on cognition. In
addition, prior evidence from cognitive training interventions
has shown that higher modularity at baseline in older adults
was associated with greater cognitive training improvements,
especially in sensory-motor processing (Gallen et al., 2016).
Furthermore, given that the limbic network derived from
the Schaefer parcellation comprises the orbitofrontal cortex
and temporal pole, and these regions are associated with
memory formation (Petrides et al., 2002) and executive function
(Robinson et al., 2014), it supports our finding that the strength
of the limbic network showed negative associations with memory
and executive function. While there is nominal significance
between individual network measures and cognition, the joint
effect of all the network measures contributed significantly to
cognition after accounting for age, sex, and education. This
suggests that cognitive decline observed in older adults may be
partially explained by independent changes in brain functional
network organization. It also implies that individual network
measures may be inadequate to capture much of the variance
in neural activity and the functional output. Future studies
are needed to combine various strategies to more holistically
understand the network topology in relation to cognition.

The strengths of this study include a well-characterized large
middle- and older-aged cohort, uniform imaging methods, the
inclusion of a range of network measures associated with age
and aging-related diseases, and the examination of a number
of cognitive domains. This is the largest study of its kind
thus far. However, limitations should also be considered. First,
this study is cross-sectional, which precludes the ability to
detect subtle changes in the functional brain topology over time
within individuals. Second, while using weighted undirected
matrix circumvents issues surrounding filtering/thresholding
the connectivity matrix to maintain significant edge weights
represented in a binary matrix, there are inherent difficulties
associated with the interpretation of the results. As brain
signals recorded from resting-state fMRI are typically noisy, it
is possible that edge weights may be affected by non-neural
contributions (De Vico Fallani et al., 2014). Despite this, with

careful denoising of the resting-state fMRI data (Power et al.,
2017; Parkes et al., 2018) and covarying for motion, it is
possible to minimize the noise in the data. Given that we have
performed motion correction and included it as a covariate
as well as performed regularization on the imaging data, we
are confident that the estimation of the partial correlation
matrix derived for the subsequent analysis of the graph theory
measures is valid. Moreover, while we were only interested in
investigating the whole network functional connectivity, given
the findings from DMN and salience network, it may be
beneficial to look at individual nodes within the network to
more holistically capture the nodal topology. One such way is
to examine centrality measures including within-module degree
and participation coefficient to understand the contribution of
within/between network connections to network modularity and
strength. Additionally, given that hemispheric lateralization may
be important to the functional specialization in humans, future
studies may investigate this further. Finally, given the principles
of neurobiology, we assumed that network properties influence
cognition and not the other way around. This question needs
to be examined longitudinally to confirm the directionality of
the relationship.

CONCLUSION

In conclusion, in this large population-based study, age
was associated with decreased overall network integrity and
specialized processing of the brain at a local level. Women had
better functional network topology properties than men, with
men tending to have denser within-network connections but
sparser between-network connections. This work demonstrates
the complexity of functional brain organization that is shaped by
age, sex, and other factors, which ultimately may influence the
cognitive performance of older adults. Given this significance,
future fMRI studies should account for age and sex in the
covariates. This work may also potentially distinguish between
normal and pathological aging in the sexes.
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