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MYC is an oncogene responsible for excessive cell growth in cancer, enabling transcriptional activation of genes involved in cell cycle
regulation, metabolism, and apoptosis, and is usually overexpressed in gastric cancer (GC). By using siRNA and Next-Generation
Sequencing (NGS), we identifiedMYC-regulated differentially expressed Genes (DEGs) in three Brazilian gastric cancer cell lines
representing the histological subtypes of GC (diffuse, intestinal, and metastasis). The DEGs were picked using Sailfish software,
followed by Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using
KEGG. We found 11 significantly enriched gene sets by using enrichment score (ES), False Discovery Rate (FDR), and nominal
P-values. We identified a total of 5.471 DEGs with correlation over (80%). In diffuse-type and in metastatic GC cell lines, MYC-
silencing caused DEGs downregulation, while the intestinal-type GC cells presented overall DEGs upregulation afterMYC siRNA
depletion. Wewere able to detect 11 significant gene sets when comparing our samples to the hallmark collection of gene expression,
enriched mostly for the following hallmarks: proliferation, pathway, signaling, metabolic, and DNA damage response. When we
analyzed our DEGs considering KEGG metabolic pathways, we found 12 common branches covering a wide range of biological
functions, and three of them were common to all three cell lines: ubiquitin-mediated proteolysis, ribosomes, and system and
epithelial cell signaling inHelicobacter pylori infection.The GC cell lines used in this study share 14MYC-regulated genes, but their
gene expression profile is different for each histological subtype of GC. Our results present a computational analysis ofMYC-related
signatures in GC, and we present evidence thatGC cell lines representing distinct histological subtypes of this disease have different
MYC-regulated expression profiles but share a common core of altered genes.This is an important step towards the understanding
ofMYC’s role in gastric carcinogenesis and an indication of probable new drug targets in stomach cancer.

1. Introduction

Gastric cancer (GC) remains as an important cause of cancer-
related morbidity and mortality worldwide, with recent esti-
mates accounting for over 950.000 newdiagnosis and 720.000

deaths each year [1]. Treatment of GC at advanced stages re-
mains difficult, and the prognosis is still poor, partly as a result
of local recurrence, tumor invasion, and/or metastasis [2]

TheMYC oncogene, located at 8q24, is a key oncogene in
gastric carcinogenesis, and an increase in both copy number
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Table 1: Samples used in this study. Control siRNA samples are labeled as C and MYC-siRNA as M.

Cell line Samples (GEO) Sample Name GC Histological subtype

AGP01 GSM2147866 1C Ascitic fluid of intestinal GC
GSM2147867 1M Ascitic fluid of intestinal GC

ACP02 GSM2147868 2C Diffuse
GSM2147869 2M Diffuse

ACP03 GSM2147870 3C Intestinal
GSM2147871 3M Intestinal

and mRNA expression was classified as one of the driver
mutations in gastric tumors [3]. MYC amplification and
overexpression are present in 6-58% of all sporadic gastric
tumors [4–6], being more frequent in Brazilian samples [7–
9], usually as a result from gene amplification and chromoso-
mal translocations [2, 10].

Our research group previously reported thatMYCmRNA
and protein overexpression is a common finding in GC
samples and in some preneoplastic gastric lesions [7, 11–14]
from a Brazilian population, as well as in nonhuman primate
models of gastric carcinogenesis [15].We also established and
characterized threeGCcell lines, AGP01, ACP02, andACP03,
obtained from intestinal-type GC metastasis, diffuse-type
GC, and intestinal-type GC, respectively (Leal et al. 2009).
Those cell lines also carry genetic alterations commonly
found in Brazilian GC patients, such as MYC amplification
and overexpression and TP53 deletion [7, 13, 16].

Some consequences of excessive intracellular MYC levels
are genomic instability [17] and error-prone DNA repli-
cation caused by oncogene-induced replicative stress [18].
Even though there is an association between an increase in
MYC expression and gastric cancer, its exact role in gastric
tumorigenesis is not yet fully understood [19, 20] andmost of
the high-throughput studies carried so far concerning gastric
cancer genetics overlook MYC’s importance in this process
[2, 3, 21–24]

Bioinformatics has mostly been applied in basic sci-
ence research. Following the completion of human genome
sequencing, it has also facilitated numerous discoveries in
basic medicine, and several clinical applications of bioinfor-
matics have been reported, including clinical sequencing, an
emerging field of precision medicine [25]. In cancer research,
bioinformatics has been used to study cancer transcriptome,
early diagnosis, cancer grading, and prognosis prediction
[26].

In this study, we used RNA interference (RNAi) to block
MYC’s mRNA translation, followed by Ion Proton� semi-
conductor sequencing, in order to identify MYC’s regulation
signature in AGP01, ACP02, and ACP03 cell lines. We found
11 common pathways for the GC cell lines, which we believe
can help in the understanding of expression signatures in
different GC histological subtypes.

2. Materials and Methods

2.1. Cell Lines and siRNA Transfection. Three GC cell lines
previously established and characterized by our group were
used: AGP01, ACP02, and ACP03 [27]. The three cell lines

present chromosome 8 trisomy, MYC amplification [13, 27],
and TP53 deletion, which are common genetic alterations in
Brazilian gastric cancer patients [28] and in another GC cell
line developed in Brazil [29]. A cell culture of nonneoplastic
gastric mucosa cells (MNP01, Normal Gastric Mucosa Cell
Line 01) pooled from 10 patients without gastric cancer or
any other gastric disease, was also used to evaluate the gene
and protein expression after MYC-silencing and to validate
the knockdown results, as well as the MYC-regulated genes
identified after NGS.

A total of 3x105 cells were seeded into 6 cm2 plates for
each cell line for 24 h before transfection. Small interfering
RNAs (siRNA) targeting MYC (ON-TARGETplus Human
MYC (4609) siRNA Dharmacon, EUA) or scrambled control
siRNAs (ON-TARGETplus Non-Targeting Pool, Dharmacon,
EUA) were transfected into AGP01, ACP02, and ACP03 cell
lines using Lipofectamine RNAiMAX Transfection Reagent
(Thermo Fisher Scientific, EUA). Optimal transfection was
reached after 48 h, and total RNA and proteins were extracted
with TRIzol reagent (Thermo Fisher Scientific, EUA). All
siRNA experiments were performed three times. The sample
names and GEO access codes are shown in Table 1. All siRNA
experiments were carried out in biological triplicates.

2.2. Semiconductor Sequencing and Data Pretreatment. Total
RNA samples were first treated with DNAse-I to remove
any possible DNA contamination, and then the mRNA
was enriched using Dynabeads Oligo(dt)

25
(Thermo Fisher

Scientific, USA). The enriched mRNA was fragmented in
smaller fragments of 200 bps approximately, which were
attached to adapters with known sequences that were unique
for each sample. Samples were connected to magnetic beads
containing complementary sequences for the adapters and
then inserted in microwells where an emulsion-PCR for
cDNA synthesis was carried (illustra Ready-To-Go RT-PCR
Beads, GE Lifesciences). Our six cDNA libraries were submit-
ted to quantification and quality control using Agilent 2100
Bioanalyzer and were then loaded in Ion Proton V2 PI chip
using the IonPI� 200 SequencingKit v3 and sequenced using
Ion Proton� (Thermo Fisher Scientific, EUA) platform in a
single multiplex run.

Raw data reads obtained by primary sequencing using
Ion Proton� were submitted to quality control to calcu-
late alignment and to assess how the reads behave when
compared to the reference human genome (Hg19/GRCh37).
The aligned reads were mapped and quantified using TMAP
(Torrent Mapping Alignment Program), which supports dif-
ferent alignment algorithms [30–32]. Processed datasets were
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Table 2: Reads quantification afterMYC-siRNA.

Sample name Total Reads Total Mapped Reads Gene mapping rate Expressed genes
1C 13.319.736 12.944.452 97.18% 14.594
1M 11.043.607 10.771.298 97.53% 10.709
2C 12.021.142 11.751.830 97.76% 9.859
2M 11.701.695 11.481.863 98.12% 8.793
3C 12.772.535 12.546.479 98.23% 7.988
3M 12.430.807 12.112.157 97.44% 10.685

uploaded to GEO (Gene Expression Omnibus) under the
access number GSE81265.

2.3. Identification and Statistical Analysis of DEGs. Sailfish
software pack [33] and the RPKM (Reads Per Kilobase per
million mapped reads) [34, 35] were used to significance
analysis of DEGs between control and MYC-silenced
samples. To identify the DEGs between two paired samples,
we used the Audic-Claverie test [36]. Fold-change (FC)
was calculated as the log

2
ratio between the silenced (M)

and the control (C) sample. We used a p-value correction
corresponding to differential expression tests using Bonfer-
roni correction [37]. Our cut-off for DEGs definition was
established as a False Discovery Rate (FDR) < 0.05 [38] and
|log2 (FC)| > 1. DEGs were plotted using Multiplot v2, which
exhibits personalized gene expression profiles (http://soft-
ware.broadinstitute.org/cancer/software/genepattern/mod-
ules/docs/multiplot/2).

2.4. Functional Enrichment Analysis. We used Gene Set
Enrichment Analysis (GSEA) [39] to identify significantly
enriched gene sets between siRNA control versus MYC-
silenced and vice versa. The gene expression changes per-
ceived by DEGs were related to biologically enriched path-
ways found in GSEA.The gene expression datasets used were
collections H (Hallmark gene set) [40] and C2 (curated gene
set: KEGG), publicly available at MsigDB [41]. The standard
parameters defined by Subramanian et al. were used in our
analysis. The statistical significance of GSEA analysis was
determined by 100 permutations, the enrichment maps were
created to significant (P < 0.05 and False Discovery Rate
(FDR) < 0.25) gene sets, and GraphPad Prism� Software was
used to graphically represent our data.

2.5. Real-Time Quantitative PCR (RT-qPCR). To confirm
the silencing effect of siRNA on MYC expression, we used
real-time quantitative PCR to evaluate its expression in
relation to the expression found for the normal gastric
mucosa cell line MN01. All tests were made in triplicate
and using TaqMan� probes as assays-on-demand products
for gene expression (Life Technologies, EUA) (MYC:
Hs00153408 m1). The fourteen DEGs identified by our
analysis (SKIV2L2:Hs00299011 m1, SRPRB:Hs00253639 m1,
JUNB: Hs00357891 s1, BNIP3: Hs00969291 m1, RAB22A:
Hs00221082 m1, TMED2: Hs00607277 m1, ACAT1: Hs00608002
m1, NDUFV2: Hs00221478 m1, LBR: Hs01032700 m1,
NCL: Hs01066668 m1, AAAS: Hs00210351 m1, ATXN2:

Hs00268077 m1, LGMN: Hs00271599 m1, and CDKN1B:
Hs00153277 m1) were also analyzed and validated by real-
time quantitative PCR. The expression of those genes was
calculated relative to their expression in the normal gastric
mucosa cell line MN01.

3. Results

3.1. Quantification of GCs Transcripts and Identification of
DEGs Using NGS. In this study, we used next-generation
sequencing based in semiconductors, as well as RNA-Seq,
to quantify the transcripts and its isoforms in three gastric
cancer cell lines, ACP02, ACP03, and AGP01, before and
after MYC-silencing using siRNA. The use of siRNA to
reduce MYC expression in the three gastric cancer cell line
used in this study was very effective, reducing MYC mRNA
expression in 73% for AGP01, in 84% for ACP02, and in 77%
for ACP03.

Our NGS sequencing of six libraries generated over 75
million reads, which, after enrichment, were mapped within
the reference genome in over 99% of the samples and in
over 98% of the reference transcriptome (Table 2), and the
distribution of the amplified segments was consistent in all
samples. Table 2 also shows in average how many genes were
identified for each sample.The average reads produced by Ion
Proton� ranged between 125 and 130 bps.

According to our cut-off (FDR < 0.05 and |log
2
(FC)| >

1), we obtained a distinct amount of DEGs between siRNA
control versusMYC -silenced samples. Using Multiplot (v2),
we identified 1.556 downregulated and 917 upregulated DEGs
for AGP01; for the diffuse-type cell line (ACP02), we found
4.098 downregulated versus 1.229 upregulated DEGs; finally,
for ACP03, an intestinal-type cell line, we identified 3.272
upregulated versus 842 downregulated DEGs (Figure 1). Our
results indicate that it is possible to discern histological
subtypes of GC by analyzing itsMYC-related gene expression
pattern.

A total of 16.777 genes from our six datasets obtained by
RNA-Seq (GSE81265) were inserted in an expression matrix
normalized by RPKM and, after that, used for enrichment
comparing with expression datasets from collections H and
C2. By applying GSEA, we looked for gene sets which
presented enrichment only in siRNA control samples, but not
in MYC -silenced samples, likely MYC targets, and found 11
significant gene sets (P < 0.05 and FDR < 0.25), as shown in
Table 3. We found a total of 7903 genes, and 5471 (69.2%) are
enriched in siRNA control samples, presenting a very high
correlation between biological replicates and libraries (80%).

http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/multiplot/2
http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/multiplot/2
http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/multiplot/2
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Figure 1: Volcano plots of DEGs for three GC cell lines afterMYC-silencing. log
2
Fold-change and P-values (-log

10
) are shown for DEGs with

(|log
2
(FC)| > 1 and p ≤ 0.05). (a) DEGs for AGP01. (b) DEGs for ACP02. (c) DEGs for ACP03. Density is a special-case calculation which is

only used in advanced shading. It considers only the operands for this calculation are the X and Y values of the graph axes.
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Figure 2: Panel with 11 gene sets enriched for three GC cell lines after MYC-silencing. Each gene set was represented on the Enplot by its
normalized enrichment score (NES) and False Discovery Rate (FDR), along with its heatmap showing the gene expression for each gene.

The enrichment maps obtained are shown in Figure 2, where
we created a panel of 11 gene sets significantly enriched.

3.2. MYC-Silenced GC Cells Lines from Different Histological
Subtypes ShowDistinctMYC-Dependent Expression Profiles. We

then evaluated the metabolic pathways more likely to be
MYC-regulated as shown by GSEA, listing those genes in the
categories described as hallmarks of gene expression [40] and
found that they are related to cellular proliferation, pathway,
cellular signaling, metabolic processes, and response to DNA
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Table 4: The 14 common DEGs for three GC cell lines afterMYC-siRNA and the gene set hallmarks they were enriched in.

Hallmark Name: Gene Symbol Rank in Gene List Rank Metric Score Running (ES)
PROTEIN SECRETION BNIP3 1438 6.0E-01 0.522
UNFOLDED PROTEIN RESPONSE SKIV2L2 1051 7.2E-01 0.508
UNFOLDED PROTEIN RESPONSE SRPRB 1442 6.0E-01 0.506
REACTIVE OXIGEN SPECIES PATHWAY JUNB 1969 4.8E-01 0.491
G2M CHECKPOINT LBR 817 8.2E-01 0.451
OXIDATIVE PHOSPHORYLATION NDUFV2 1542 5.7E-01 0.444
APOPTOSIS CDKN1B 2405 4.0E-01 0.420
PROTEIN SECRETION RAB22A 289 1.2E+15 0.408
CHOLESTEROL HOMEOSTASIS ATXN2 945 7.6E-01 0.382
CHOLESTEROL HOMEOSTASIS LGMN 445 1.1E+16 0.367
OXIDATIVE PHOSPHORYLATION ACAT1 840 8.1E-01 0.367
PROTEIN SECRETION TMED2 254 1.3E+16 0.326
DNA REPAIR AAAS 1109 7.0E-01 0.313
G2M CHECKPOINT NCL 328 1.2E+13 0.289
ES: enrichment score.

damage (Table 3). We refined the raw data sets obtained
from our GC cell lines, identifying the DEGs for each of
the 11 gene sets for collection H that were enriched for
the Control siRNA phenotype. Figure 3 shows the ranks for
enriched DEGs when compared to collection H with their
average enrichment score (ES) for each analysis. Part of
these results generated in this analysis is in Table 1 (see
Supplementary Materials), which show the most enriched
DEGs in the set gene MYC TARGETS V1.

The diffuse-type cell line (ACP02) presented 149 enriched
DEGs by GSEA, 3 up- and 146 downregulated. Genes
enriched with ranks above 15.000 fit the downregulated
profile and were emphasized for gene sets such as MYC
target V1, protein secretion, and reactive oxygen species
pathway (Figure 3(a)). On the other hand, ranks above 30.000
were enriched for downregulated DEGs, presenting gene sets
described as protein secretion, MYC target V1, unfolded
protein response, and reactive oxygen species pathway
(Figure 3(b)). Meanwhile, the intestinal-type cells (ACP03)
showed 85 DEGs, 76 up- and 9 downregulated; genes with
ranks above 20.000 were upregulated for pathways such as
protein secretion,MYC target V1, and reactive oxygen species
pathway (Figure 3(c)); downregulated geneswith ranks above
15.000 presented enrichment emphasis for GM2-checkpoint,
protein secretion, MYC target V1, reactive oxygen species
pathway, and unfolded protein response (Figure 3(d)). For
the metastatic samples (AGP01), 65 enriched DEGs were
identified by GSEA, 25 up- and 40 downregulated, and the
gene sets were enriched with ranks above 20.000 for both
DEGs profiles. Upregulated sets (Figure 3(e)) were enriched
for GM2-checkpoint, protein secretion, MYC target V1, and
reactive oxygen species pathway, while the downregulated
profile had emphasis for Oxidative Phosphorylation, MYC
target V1, protein secretion, and reactive oxygen species
pathway (Figure 3(f)).

In the 11 gene sets from collection H that were used for
DEGs enrichment, we identified the genes with higher ES.We
used this strategy to identify similar genes that overlap as a
consensus grouping as described elsewhere [40], so it would

be easier to identify MYC-regulated genes. We identified
DEGs for the three GC cell lines that were enriched when
compared to collection H, with ranks above 2.000.TheMYC
target V1 gene set was identified as the most enriched for our
studied cell lines, with higher ES scores for the genes SNRPD2
and TYMS. When we compared the enriched genes found for
collection H for ACP02 and ACP03, we noticed that some
genes presented enrichment ranks that were also common for
the metastatic cells (AGP01) (Figures 4(a)–4(c)).

The same analysis was applied to identify enriched DEGs
found for KEGG pathways, to deepen our understanding
about the genes involved in the MYC-related carcinogenesis
for the stomach. The enrichment maps for KEGG [42]
are shown in Figures 4(d)–4(f), presenting 12 significantly
enriched pathways found using GSEA, suggesting that GC
has multiple altered pathways that lead normal gastric
mucosa into the carcinogenic process. These pathways were
defined by a normalized enrichment score (NES) > 1.47.
The average t-statistic for the genes was calculated for each
KEGG pathway using permutation tests with 100 repetitions.
The enrichment plot for three common pathways altered
in all our cell lines is presented in Figure 4(g) (ribosome-
hsa03010), which presented the highest ES among the cells,
Figure 4(h) (ubiquitin-mediated proteolysis-hsa04120), with
the highest ranks in our gene list, and Figure 4(i) (epithelial
cell signaling in Helicobacter pylori infection-hsa05120). For
more details on the DEGs enriched with KEGG, see Table 2
in Supplementary Materials.

We identified enrichedDEGs common to all threeGCcell
lines used in this study and represent them as Venn diagrams
constructed by the InteractiVenn platform [43]. We found
14 DEGs that are shared enriched in both AGP01, ACP02,
and ACP03 cell lines (Figure 5(a)), which are likely to be
MYC targets according to our analysis. When we search for
gene function in different databases (Figure 5(b)), most of
them (14.78%) are involved in protein secretion, followed
by unfolded protein response (14.39%) and reactive oxygen
species pathway (13.91%). Table 4 shows the 14 individual
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Figure 3: Ranks for enriched DEGs when compared to collection H with their average enrichment score (ES) for each analysis. (a) ACP02
upregulated DEGs, ranks (4.640 to 19.433), and ES (0.30 to 0.47). (b) ACP02 downregulated DEGs, ranks (9.245 to 30.875), and ES (0.29 to
0.41). (c) ACP03 upregulated DEGs, ranks (6.853 to 25.475), and ES (0.30 to 0.47). (d) ACP03 downregulated DEGs, ranks (5.530 to 19.433),
and ES (0.27 to 0.53). (e) AGP01 upregulated DEGs, ranks (5.480 to 21.804), and ES (0.27 a 0.47). (f) AGP01 downregulated DEGs, ranks
(6.060 to 21.134), and ES (0.30 a 0.44).
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Figure 5: Common DEGs enriched in three GC cell lines afterMYC-silencing. (a) Using Venn diagram, we were able to identify 14 common
DEGs among AGP01, ACP02, and ACP03, but each one of them also has a unique set of DEGs. (b) Identification of the 14 commonDEGs in 8
enriched hallmarks of collection H, represented by the % of its correspondent ES, ES scores are shown inside the pie chart for each hallmark.
(c). Heatmap for the expression of the 14 common DEGs shared for three GC cell lines afterMYC-silencing. Blue represents downregulation
while red means upregulation. Notice that, even for the 14 common genes, each cell line has a different expression pattern. Relative read
expression was normalized using log

2
Fold-change between MYC-silenced/control siRNA. (d) Heatmap for the relative gene expression

obtained by RT-qPCR for the 14 identified DEGS for the AGP01, ACP02, and ACP03 cell lines. (e) The overall expression for the 14 DEGs is
downregulated in the ACP02 cell line when compared to AGP01 cells. (f)The gene expression levels were increased in ACP03 cell line, but no
statistical difference was found. (g) Relative gene expression was increased for ACP03 when compared to ACP02. Wilcoxon matched-pairs
signed rank test was used to compare the relative gene expression levels (∗P <0.05, ns: not significant, and ∗∗∗P <0.0001).
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DEGs as well as the gene expression hallmarks they are
involved, ranks and ES. We show a heatmap (Figure 5(c))
of the 14 shared DEGs in clusters grouped using the GENE
E tool (https://software.broadinstitute.org/GENE-E/), where
downregulation is expressed in blue and upregulation in red.
Most genes for ACP02 (diffuse-type GC) presented down-
regulation, while for ACP03 (intestinal-type GC) the same
genes presented themselves as upregulated. The metastatic
cell lineAGP01, even though its original tumorwas intestinal-
type, presented mixed expression patterns with predominant
downregulation.

3.3. The 14 MYC-Regulated DEGs Show Distinct Expression
Profiles for Each GC Histological Subtype. Our in silico anal-
ysis identified a core set of 14 DEGs (Figure 5(a)) who are
MYC-regulated, but whose expression profile is distinct for
each GC cell line since they represent different histological
subtypes.We validated the gene expression profiles presented
by the AGP01, ACP02, and ACP03 after MYC-silencing by
RT-qPCR in the cDNA obtained originally for each cell
line and compared them with their expression in the MN01
cell line. Our results point out that the 14 identified DEGs
are under MYC transcriptional regulation (Figure 5(d)). The
ACP02 cell line presented mostly downregulation for the
expression of the 14 DEGs (Figure 5(c)); on the other hand,
ACP03, the same 14 genes, were upregulated; AGP01 results
were mixed, with some genes showing downregulation and
others showing downregulation. Our gene expression results
(Figure 5(d)) confirm our in silico analysis (Figure 5(c)).

Each cell line used in this study represents a GC histo-
logical subtype: AGP01 was obtained from the ascitic fluid of
intestinal-type GC, representing a metastatic disease, while
ACP02 was developed from a diffuse-type stomach cancer
patient and ACP03 origin was an intestinal-type gastric
tumor.

We compared the mRNA expression measured by RT-
qPCR for our identified DEGs to assess whether the gene
expression of those 14 genes was enough to statistically
distinguish each cell line. When comparing ACP02 versus
AGP01 (Figure 5(e)), we noticed a significant gene expres-
sion downregulation for ACP02; confronting ACP03 versus
AGP01 indicated an increase inmRNA relative quantification
(Figure 5(f)) for ACP03; however, those results were not
significant; the comparison between ACP02 versus ACP03
confirmed that the 14MYC-regulated DEGs are significantly
more expressed in the ACP03, the intestinal-type cell line,
than in ACP02 (Figure 5(g)).

Taken together, our results indicate that, even though
MYC-related carcinogenesis alters the same 14 genes in
GC cell lines representing the most common histological
subtypes, howMYC causes GC carcinogenesis is different for
each disease presentation and it is possible to distinct them
by using expression signatures.

4. Discussion

A key goal of cancer studies is to systematically characterize
the cellular and molecular mechanisms involved in the
disease and its distinct stages, to identify both potential

biomarkers and new probable drug targets [44]. The molec-
ular profile of gastric cancer is heterogeneous, partly due to
different classification systems [45] and, in order to clarify the
true molecular origins of GC, both the Cancer Genome Atlas
[22] and theAsianCancer ResearchGroup [46] published the
molecular subtypes of gastric cancer, with remarkable overlap
between the two models. Therefore, several genes have been
implied as biomarkers for GC subtypes, such as RHOA,
EGFR, PDL, CDH1, TP53, and JAK2. However, those studies
use samples from populations in which the disease incidence
is highest, and few studies have examined populations in
which the incidence of this disease is lower, such as Brazil
[47]. There is evidence that GC incidence varies between
countries greatly because the genetic heterogeneity exhibited
by human populations [48], and it has already been showed
that there is a unique gene expression signature for Brazilian
cases of intestinal-type GC [47]. Our study helps to highlight
the molecular profiles of Brazilian GC cell lines, which can
help greatly our understanding about the molecular basis of
GC in South America.

Most NGS studies investigate GC by comparing tumor
versus nontumoral tissue, analyzing global gene expression
patterns, copy number variation, and othermolecular charac-
teristics, and most of the high-throughput studies carried so
far concerning gastric cancer genetics overlookMYC’s impor-
tance in this process [2, 3, 21–24]. Our results are relevant
becauseMYC overexpression is a key finding in Brazilian GC
samples [8].Therefore, we reduced the expression of this gene
using siRNA to identify the MYC-related signature in GC
cell lines, comparing nonsilenced with silenced samples. We
identified a total of 5.471 DEGs, and 11 significant gene sets,
including classicMYC targets represented byMYC target V1.

We hereby present the computational analysis of gene
sets identified after MYC-silencing in Brazilian GC cell lines
[13, 27], who carry genetic alterations commonly found in
Brazilian GC patients [7, 13, 16]. This oncogene promotes
cell growth acting as a transcription factor regulating cell
cycle, metabolism, and cell survival [49]. We found DEGs
upregulation only for the intestinal-type cell line (ACP03),
while the diffuse-type (ACP02) and the metastatic GC cells
(AGP01) presented overall gene expression downregulation;
when looking at individual genes between ACP02 and
AGP01, it is still possible to distinguish between them by
MYC-related gene expression. It is important to notice that
MYC has a dual-role in the carcinogenic process, selectively
activating and inactivating different gene sets [50–52]. Taken
together, we present evidences supporting the fact that MYC
deregulation has an important role in gastric carcinogenesis
[14] and that MYC-related signatures in gastric cancer are
different for each histological subtype of this disease, which
is clinically relevant [47, 53].

One of the main forms of MYC protein regulation in
normal cells is through its targeted degradation by the
ubiquitin-proteasome system [54], which was one of the
KEGG enriched pathways found in our analysis (Figure 4).
Thismeans that, in aMYC-overexpression condition, like GC
[7], not only this gene and its protein are more produced,
but they are also less destroyed because it diminishes the
expression of E3 ubiquitin-ligases, such as Fbw7 and HectH9,
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contributing to prolonged MYC protein half-life and ampli-
fication of its effects [55]. Ubiquitin-ligases, including the
MYC-regulated Fbw7, have recently evolved as promising
therapeutic targets for the development of novel anticancer
drugs [56].

Other pathways involved in MYC-related gastric car-
cinogenesis found by our study are known targets, such
as ribosome and cell cycle control genes, which are hardly
druggable. When taken together, the 12 different pathways
we found under MYC control for gastric carcinogenesis
represent many biological functions, meaning that MYC
overexpression in GC disturbs almost all the regular cellular
processes in favor of tumor development [52]. Another
interesting gene set includes glucose metabolism, which is
an area of growing interest in cancer research [57], and it
has been shown that MYC directs the activation of aerobic
glycolysis, a hallmark of cancer metabolism known as War-
burg effect, and pretty much all genes involved in glycolysis
and most of the ones responsible for glutaminolysis [57,
58].

We were also able to pinpoint 14 enriched DEGs in all the
three GC cell lines used in this study that might represent
the common set of MYC-regulated genes in gastric carcino-
genesis (Table 4). This is important because it shows that,
even though we have represented distinct GC histological
subtypes and disease stages, there is still a core set of genes
regulated by MYC involved in the carcinogenic process. We
also did not find other reports in the literature concerning
those 14 genes and high-throughput analysis of gastric cancer
[1, 22, 26, 44–46, 53, 59–64]. Even when we consider the
molecular signatures presented by Brazilian intestinal-type
GC [47], we could not find any concordance for the 14 genes
found by our study, but it is important to consider that Binato
et al. [47] did not take into account MYC overexpression
in their samples. Therefore, the unique DEGs found in this
paper represent new and important findings concerning the
process of gastric carcinogenesis regulated by MYC in the
Brazilian population.

Even though additional studies are needed to validate our
results, we present strong evidence thatMYC-regulated genes
in GC have different expression patterns when we consider
histological and disease stage differences; however, they still
share pathways and core genes involved in the carcinogenic
process.
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Comparisons,” pp. 1–9, 2007.

[38] Y. Benjamini andD.Yekutieli, “The control of the false discovery
rate in multiple testing under dependency,” The Annals of
Statistics, vol. 29, no. 4, pp. 1165–1188, 2001.

[39] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, and
B. L. Ebert, “Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide,” 2005.

[40] A. Liberzon, C. Birger, H. Thorvaldsdóttir, M. Ghandi, J. P.
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