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Abstract
Chronic low back pain (chronic LBP) is both debilitating for patients but also a major burden

on the health care system. Previous studies reported various maladaptive structural and

functional changes among chronic LBP patients on spine- and supraspinal levels including

behavioral alterations. However, evidence for cortical reorganization in the sensorimotor

system of chronic LBP patients is scarce. Motor Imagery (MI) is suitable for investigating the

cortical sensorimotor network as it serves as a proxy for motor execution. Our aim was to

investigate differential MI-driven cortical processing in chronic LBP compared to healthy

controls (HC) by means of functional magnetic resonance imaging (fMRI). Twenty-nine sub-

jects (15 chronic LBP patients, 14 HC) were included in the current study. MI stimuli con-

sisted of randomly presented video clips showing every-day activities involving different

whole-body movements as well as walking on even ground and walking downstairs and

upstairs. Guided by the video clips, subjects had to perform MI of these activities, subse-

quently rating the vividness of their MI performance. Brain activity analysis revealed that

chronic LBP patients exhibited significantly reduced activity compared to HC subjects in

MI-related brain regions, namely the left supplementary motor area and right superior tem-

poral sulcus. Furthermore, psycho-physiological-interaction analysis yielded significantly

enhanced functional connectivity (FC) between various MI-associated brain regions in

chronic LBP patients indicating diffuse and non-specific changes in FC. Current results

demonstrate initial findings about differences in MI-driven cortical processing in chronic

LBP pointing towards reorganization processes in the sensorimotor network.
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Introduction
Low back pain (LBP) is a major health problem with a lifetime prevalence of 85% [1]. While
the majority of acute LBP patients recover within weeks, a small minority becomes chronic
(pain lasts> 6 months). Chronification is accompanied by psychosocial interferences and
causes enormous health care expenditure [2]. A wealth of studies have investigated possible eti-
ologies and consequences of chronic LBP by 1) focusing on ‘end organ dysfunction’, suggesting
structural and biomechanical abnormalities at the spinal level, as well as functional impair-
ments [3,4,5,6], 2) describing psychosocial and behavioral variables, such as fear avoidance
beliefs that strongly predict the transition from acute to chronic LBP [7,8,9,10,11], for review
see Linton [12] and by 3) reporting malfunctional neuroplastic changes on the supraspinal
level [13,14,15], for review see Wand et al. [16]. Spinal dysfunction and persistent pain may
result in altered sensorimotor integration and may subsequently lead to maladaptive cortical
changes in motor control [17]. Indeed, reorganization within primary motor cortex (M1) was
revealed by showing a discrete loss of trunk representation [14,18] and reduced anticipatory
postural adjustments (APAs) were reported in chronic LBP patients [19]. However, evidence
on cortical sensorimotor reorganization in LBP patients investigated by neuroimaging is
sparse. This is especially true for functional magnetic resonance imaging (fMRI) measures, as it
is challenging to investigate brain activity related to whole-body movements in an MR scanner
due to the fact that fMRI data quality is strongly sensitive to subject motion. Therefore, the
present investigation used motor imagery (MI) of activities of daily living as a proxy for
investigating cortical sensorimotor processing of motor execution (ME). In accordance to Jean-
nerod’s [20] ‘simulation or resonance theory of action’ hypothesis, MI, action observation and
simple understanding of motor actions correspond to a subliminal activation of the sensorimo-
tor system [21,22]. The MI-network comprises the premotor cortex (including the supplemen-
tal motor area [SMA]), the superior and inferior parietal lobule (SPL, IPL), the insula,
prefrontal regions as well as subcortical structures such as the basal ganglia, and the thalamus
[23,24,25,26]. MI has been studied extensively in healthy subjects [25,27,28,29], especially in
motor learning and is used to improve performance in sports [30,31]. Moreover, it may play an
important role in neuro-rehabilitation [32,33,34], however evidence for cortical functioning of
MI in chronic LBP patients is lacking.

Therefore, the aim of the current study was to investigate the functioning of the MI-network
in chronic LBP patients using a visually guided MI paradigm by means of fMRI. Due to the
paucity of studies related to MI in chronic LBP patients our hypothesis was confined to expect-
ing differential MI-related activity and functional connectivity (FC) in chronic LBP patients
compared to healthy controls (HC), indicating potential maladaptive alterations in the sensori-
motor network. A better understanding of sensorimotor reorganization processes in chronic
LBP patients might help to broaden the basis for a better understanding of motor control
impairments and to develop novel approaches for therapeutic MI-guided interventions.

Materials and Methods

Participants
Thirty-three subjects participated in this study. Twenty-nine subjects, fifteen chronic LBP
patients (mean age 39.7 years; SD 13.5 years; 4 women) and fourteen HC (mean age 33.6 years;
SD 12.6 years; 9 women) were included in the final analysis. Four subjects (two HC and two
chronic LBP patients) had to be excluded due to excessive head movements (>2.5 mm). Sub-
jects were recruited by online advertisement and word-of-mouth recommendation. Groups
were age- and gender-matched (Mann-Whitney U-test for age and Fisher-Yates-test for
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gender, p>0.05). One patient was left-handed, all others were right-handed according to the
Edinburgh Inventory for the assessment and analysis of handedness [35]. The fMRI-images of
the left-handed subject were flipped to account for possible differential activations related to
handedness. Inclusion criteria for patients were non-specific chronic LBP (neither traumatic
nor inflammatory in origin) with a duration of longer than six months. The Pain Detect Ques-
tionnaire [36] was used in order to assure that patients fulfilled the inclusion criteria (e.g. no
radiculopathy). Exclusion criteria for the HC were acute and/or recurrent back pain within the
last six months and past chronic pain episodes. No participants had a history of psychiatric or
neurological disorder. All subjects provided written informed consent for the participation in
the experiment that was part of a study approved by the Ethics Committee of the Canton of
Zurich (KEK-ZH 2012-0029) and conducted in accordance with the Declaration of Helsinki.
Subjects were financially compensated for their participation.

Study design
Behavioral assessments. Preceding the fMRI experiment, all participants completed the

State and Trait Anxiety Inventory (STAI) which measures state and trait anxiety levels [37]. To
assess LBP complaints, patients were asked about location and duration of their back pain and
they filled in the Pain-Detect questionnaire [36] which collects data on pain quality and mea-
sures pain intensity on an 11-point Numeric Rating Scale (NRS). In addition, patients filled in
the Bournemouth questionnaire [38] for the assessment of psychosocial factors and the Tampa
Scale of Kinesiophobia (TSK) questionnaire [8].

Experimental protocol. The stimuli presented during the fMRI measurements consisted
of 4s video clips showing whole-body activities of daily living (“Activities”) as well as walking
(“Walking”). Activities of daily living were shoveling soil, lifting a flowerpot and vacuum clean-
ing under a coffee table, whereas the walking videos were comprised of walking on even ground
as well as walking up and down on stairs (Fig 1). The video clips were recorded from a third-
person perspective which corresponded to the representation of the movement as if the subject
was a spectator and another person performed the action [11,39]. The task consisted of visually
guided MI as it has been shown that MI under visual guidance (i.e. simultaneous action obser-
vation) elicits stronger cortical activations within the ME network than conventional MI
[40,41,42,43]. While watching the video clips, both HC and chronic LBP patients were
instructed to imagine themselves performing the activities without actually executing them.
Preceding the scanning session both groups performed visually guided MI of each activity
once. The chronic LBP patients additionally rated the painfulness of those activities on a visual
analogue scale (VAS) which was anchored with the endpoints ‘no pain’ (0) and ‘worst pain
ever’ (10). During the scanning session video clips were presented by using MR compatible
goggles (Resonance Technology Inc., Northridge, USA) that were connected to a notebook
computer running the Presentation software (Neurobehavioral Systems, Davis, CA). The fMRI
session consisted of 30 trials. Each of the six video clips was presented five times in pseudo-ran-
domized order (no more than two identical consecutive trials). After each video clip, subjects
rated the vividness of MI performance of the specific activity on a VAS which was anchored
with the endpoints ‘very bad’ (0) and ‘very good’ (10). The ratings were carried out by using an
MR compatible trackball (Current Designs Inc., Philadelphia, USA) that moved a cursor on
the displayed VAS scale. The rating task was followed by an inter-stimulus interval (ISI: black
screen with a fixation cross) of a duration jittered between 6.5 and 8.5 s that was used as
baseline.

Neuroimaging data acquisition. All measurements were performed on a 3-T whole-body
MRI system (Philips Achieva, Best, the Netherlands) equipped with a 32-element receive head
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coil and MultiTransmit parallel RF transmission. Each imaging session consisted of a survey
scan, a B1 calibration scan (for MultiTransmit), a SENSE reference scan and a high-resolution
T1-weighted anatomical scan followed by the fMRI acquisition.

fMRI data were acquired with a whole brain gradient-echo echo planar imaging (EPI)
sequence (365 dynamic scans) consisting of 37 slices in axial direction with the following
parameters: field of view = 240 x 240 mm2, matrix = 96 x 96 pixels, slice thickness = 2.8 mm,
voxel size 2.5mm x 2.5mm no slice gap, repetition time (TR) = 2100 ms, echo time (TE) = 30
ms, SENSE factor = 2.5, flip angle 80°, interleaved slice acquisition. The number of transversal
oriented slices was maximized with respect to the selected repetition time and gradient
performance. The resulting field of view in slice direction did not allow an inclusion of the
entire cerebellum. Anatomical data were obtained with a 3D T1-weighted turbo field echo
scan consisting of 145 slices in sagittal orientation with the following parameters: field of
view = 230 x 226 mm2, slice thickness = 1.2 mm, acquisition matrix = 208 x 203 pixels,
TR = 6.8 ms, TE = 3.1 ms, flip angle = 9°, number of signal averages = 1.

Fig 1. The six presented video clips. A) Activities of daily living (“Activities”) and B) Walking activities (“Walking”).

doi:10.1371/journal.pone.0142391.g001
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Statistical neuroimaging analysis
Image preprocessing. SPM8 (release v4010, http://www.fil.ion.ucl.ac.uk/spm) software

package running on MATLAB R2010b (Mathworks, Natick, MA) was used for fMRI data pre-
processing and statistical voxel-by-voxel analysis. EPI volumes of each subject were corrected
for differences in head motion, spatially normalized according to the Montreal Neurological
Institute (MNI) space and finally smoothed with an 8 mm full-width at half-maximum Gauss-
ian kernel. To control for head movement effects, individual movement parameters (transla-
tions in x, y and z-direction, as well as rotations around x, y, and z axis) were implemented in
the 1st level model as regressors of no interest. Excessive head motion was defined as a disloca-
tion of more than once in the in-plane voxel resolution (>2.5mm). For removing the low fre-
quency noise a high-pass filter with a cut-off of 128s was used. Trials were modeled as a boxcar
response function and convolved with the standard canonical hemodynamic response function
(HRF) as implemented in SPM8.

Event-related brain activity analysis. For the 1st level analysis the general linear model
(GLM) was fitted for each subject by a design matrix composed of the onsets and duration
(4 s) of the “Activities” and “Walking” video clips. For each subject, parameter estimates (beta)
and contrast images (cons) were computed. The resulting images were analyzed using a ran-
dom-effects model to allow for population inferences [44]. First, whole-brain activations
pooled across conditions (”Activities” and “Walking”) were extracted for each group. Subse-
quently, between group analyses using two-sample T-tests were computed for the contrasts
“Activities> baseline” and “Walking> baseline”. The variance between groups was assumed
to be unequal. Error covariance components were estimated using restricted maximum likeli-
hood as implemented in SPM8. To control for false positive results a cluster-based false discov-
ery rate (FDR) correction based on the Gaussian Random Field Theory [45] with a FDR of
q<0.05 was used.

Event-related functional connectivity analysis. The main advantage of psycho-physio-
logical-interactions (PPI) analysis is that it assesses covariance between regions across time and
therefore provides a test of task effects on connectivity. Furthermore, as stated by Gerchen
et al., PPI analysis “allows extracting additional information about the brain, which might not
be apparent in regional brain activation alone” [46]. The generalized form of the context-
dependent PPI approach (gPPI) increases the flexibility of the statistical modelling and
improves single-subject model-fit, thereby increasing the sensitivity to true positive findings
and a reduction in false positives [47]. For each subject, the deconvolved time course was aver-
aged across 6mm-spheres of MI associated brain regions. Peaks of the MI seed regions were
taken from a meta-analysis of MI network activations reported by Hétu and colleagues [23]:
left supplementary motor area (SMA), bilateral precentral gyrus (M1), left inferior parietal lob-
ule (IPL), bilateral superior parietal lobule (SPL), bilateral supramarginal gyrus (SMG), bilat-
eral putamen, bilateral middle frontal gyrus (MFG), bilateral inferior frontal gyrus (IFG),
bilateral insula and left thalamus (Fig 2). In addition, the superior temporal region (superior
temporal gyrus and sulcus [STG/STS]) was also included as a seed region because this brain
region is consistently activated in action observation and imitation [48]. Further, to control for
possible enhanced overall brain connectivity of the chronic LBP patients, the primary auditory
cortex was used as an additional MI-unrelated seed region. Whole-brain functional connectiv-
ity analysis was performed using each of the eleven seed regions as well as the additional seed
of the primary auditory cortex which was taken from the WFU-pickatlas, Brodmann Area 17,
bilaterally. Subsequently, separate psychological terms (”Activities” and “Walking” video
clips), physiological regressors (time courses of seed regions) and their PPI interaction terms,
as well as the movement parameters, were included in the PPI model. The resulting PPI
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connectivity estimates were then taken into a two-sample T-test to investigate group differ-
ences. Identified clusters were considered to be significant when falling below a cluster-cor-
rected FDR of q< 0.05.

Behavioral analyses. SPSS Statistics version 19 software (http://www-01.ibm.com/
software/analytics/spss/) was used for the statistical analyzes of the behavioral data. Question-
naires and rating data were verified for normal distribution using the Kolmogorov-Smirnov
test. Based on normal distribution, two-sample T-tests were performed for comparisons of the
STAI questionnaire between groups. To test for differences in the rating data a repeated mea-
surement ANOVA with within-subject factor “type of movement” and between-subject factor
“group” was conducted. Additionally, to exclude interrelationships Spearman correlations

Fig 2. An overview of the motor imagery network based on the meta-analyzes of Hétu and colleagues (2013).MNI-peak coordinates are surrounded
by a 6mm-sphere. Views: sagital and axial. 1 Inferior Frontal Gyrus (IFG), bilateral; 2 Inferior Parietal Lobule (IPL), left; 3 Insula, bilateral; 4 Middle Frontal
Gyrus (MFG), bilateral; 5 Precentral Gyrus (M1), bilateral; 6 Putamen, bilateral; 7 Supplementary Motor Area (SMA), left; 8 Superior Parietal Lobule (SPL),
bilateral; 9 Supramarginal Gyrus (SMG), bilateral; 10 Superior Temporal Sulcus (STS/STG), bilateral; 11 Thalamus, left.

doi:10.1371/journal.pone.0142391.g002
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were computed between the different questionnaires as well as between ratings. The signifi-
cance level was set at p<0.05.

Results

Behavioral results
Questionnaires. Behavioral data was normally distributed. The State and Trait scales did

not reveal significant differences between the two groups (State: HC mean=42.4, SD=3.2;
chronic LBP mean=44.5, SD=5.3; p>0.202 and T=-1.314; Trait: HC mean=42.8, SD=3.0;
chronic LBP mean=43.3, SD=6.9; p>0.807 and T=-0.247). In the chronic LBP group, the Pain
Detect Questionnaire showed an overall mean score of 11.2 (SD 6.6) and indicated a mean
pain intensity of 4.8 (SD 1.9, range 1.0-7.0). Furthermore, the TSK questionnaire yielded a
mean of 37.9 (SD 5.9) and the Bournemouth Questionnaire a mean of 22.1 (SD 11.6).

Ratings. Mean ratings of vividness in the HC group were 6.1 (SD 2.5) for the “Activities”
and 8.0 (SD 1.6) for the “Walking” videos. The chronic LBP group showed a mean rating of 5.7
(SD 2.4) for the “Activities” and 7.7 (SD 2.1) for the “Walking” videos. The repeated measure
ANOVA for the ratings of the MI performance revealed a main effect of condition (“Activities”
vs. “Walking”, F=10.153, p<0.005), whereas no interaction effect (type of movement�group)
was found (F=0.019, p>0.8). The pain ratings of the chronic LBP group revealed a significantly
greater mean of 5.9 (SD 2.5) for the “Activities” compared to a mean of 1.6 (SD 1.7) for the
“Walking” videos revealed by a paired T-test (T=7.079, p<0.001).

Correlations. Spearman correlations were conducted for the patient-specific question-
naires (Bournemouth, TSK, pain intensity) and the ratings. No significant relationships were
found in any of those correlations.

fMRI results
Event-related activity. The pooled (”Activities” and “Walking”) whole-brain activity in

both groups revealed activations in frontal, temporal and parietal cortices as well as in the
occipital lobe (FDR-corrected with q<0.05). In the HC group, frontal lobe activations were
detected in the middle frontal gyrus, which correspond to the SMA, temporal lobe activations
were located in the STG and middle temporal gyrus (MTG), and parietal lobe activations
were observed in the IPL and SPL (precuneus). Activations in the occipital lobe were located
in the cuneus and lingual gyrus. Subcortically, activity in the thalamus was observed (Table 1,
Fig 3A). The chronic LBP group exhibited frontal lobe activation in the dorsolateral prefrontal
cortex (dlPFC), the temporal lobe activations were only observed in the MTG and parietal lobe
activity was detected in SPL and IPL. Occipital activations were located in the lingual gyrus.
Thalamus activity could also be observed (Table 2, Fig 3B).

Direct comparison between groups (two-sample T-tests) on the whole-brain level yielded
significantly stronger activity in the right STG of the HC group for both contrasts „Activities>
baseline“ (q<0.001 FDR-corrected; Z=5.54; MNI peak coordinates 60 -44 16; cluster size 267)
and „Walking> baseline“ (q<0.05, FDR-corrected; Z=4.21; MNI peak coordinates 68 -44 12;
cluster size 66;). Furthermore, the contrast “Walking> baseline” revealed also enhanced activ-
ity in the left SMA (q<0.05, FDR-corrected; Z=3.93 MNI peak coordinates -18 6 70; cluster
size 64) in the HC group.

Functional connectivity. The majority of seed-regions demonstrated significantly higher
FC within the MI network in chronic LBP patients compared to the HC group for the contrasts
“Activities> baseline” and “Walking> baseline”, with few exceptions (see Tables 3–6 for
details, FDR-corrected with q<0.05). In the HC group compared to the chronic LBP patients
only the thalamus revealed enhanced FC with the MTG in the contrast “Activities> baseline”.
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The control analysis with the auditory cortex as a seed region revealed no significantly
enhanced FC of the chronic LBP patients in the “Activities>baseline” condition. The contrast

Table 1. Brain Activity of the healthy controls (HC) group, peak activations. Cluster maxima of brain activity of the video clips of activities of daily living
(“Activities”) and walking activities (“Walking”) together. All results are false discovery rate corrected (FDR, q<0.05). MNI = Montreal Neurological Institute,
STG = superior temporal gyrus, MTG = middle temporal gyrus, MFG =middle frontal gyrus, OL = occipital lobe, SPL = superior parietal lobule, IPL = inferior
parietal lobule, PreCG = precentral gyrus, DLPFC = dorsolateral prefrontal cortex.

1 HC Group, “Activities” and “Walking” > baseline, N = 14

Cluster size q(FDR) Z MNI Peak coordinates Brain region

5248 <0.001 6.52 60 -44 16 Right STG

6.07 50 -68 14 Right MTG

3.63 20 -32 2 Right Thalamus (Pulvinar)

11359 <0.001 6.27 -46 -68 14 Left MTG

5.51 -10 -80 -2 Left OL (lingual gyrus)

4.95 -8 -96 26 Left OL (cuneus)

4.90 -10 -64 62 Left SPL (precuneus)

4.54 12 -46 58 Right SPL (precuneus)

4.21 -60 -42 24 Left IPL

3.51 12 -22 68 Right PreCG

157 <0.01 5.02 42 -42 -18 Right fusiform gyrus

4.45 36 -22 -14 Right hippocampus

133 <0.02 4.08 -10 12 52 Left MFG (SMA)

doi:10.1371/journal.pone.0142391.t001

Fig 3. Pooled (“Activities” and “Walking” together) task-related activity per group. A) Healthy controls (HC) and B) chronic Low Back Pain (LBP)
patients (q<0.05, false discovery rate corrected, FDR).

doi:10.1371/journal.pone.0142391.g003
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“Walking>baseline” yielded small clusters located in the MFG and STG/STS (n=3; extent
threshold in voxel: 105, 85 and 49; FDR-corrected with q<0.05).

Discussion
The present fMRI-study aimed at investigating the functioning of the MI network in chronic
LBP patients. Visually-guided MI of daily activities was used in order to disentangle expected
differential neural sensorimotor processing among HC and chronic LBP patients. As a novel
finding the MI-driven activity yielded reduced brain activation within the SMA and STG/STS,
while the connectivity analysis indicated significantly enhanced FC within the MI-network in
chronic LBP compared to the HC group.

Event-related activity
The simulation theory of Jeannerod [20] postulates that MI involves similar brain areas as ME
and even sole action observation. Based on this assumption MI was used as a proxy for ME of
daily activities in order to investigate the functioning of sensorimotor networks in chronic LBP
patients. The results of the event related activity analysis of both groups are in keeping with
known MI associated brain activity involving a fronto-parietal network and subcortical struc-
tures such as the thalamus [23,24,48]. However, M1 activity could not be demonstrated, sup-
porting the rather ambiguous role of M1 in MI [23]. Due to the visual-guidance of the MI task,
extensive activations were also observed in visual and visuo-motor areas in both groups.

Regarding the behavioral measures, both groups rated the vividness of MI performance
equally indicating that chronic LBP patients retained their ability to perform mental move-
ments. In contrast, on the neural level the hypothesis of maladaptive alterations in the sensori-
motor processing was confirmed by demonstrating significant differences in the functioning of
the MI-network in chronic LBP patients regarding brain activity as well as connectivity pat-
terns. Importantly, pain ratings of the chronic LBP group indicated that patients experienced
only the MI-performance of the “Activities” as painful [49] while the MI of the “Walking” con-
dition was not painful.

With respect to the brain activations the between group (two-sample T-tests) comparisons
on the whole-brain level revealed reduced activity within two brain regions in chronic LBP
patients, namely the left SMA and right STG/STS.

Table 2. Brain activity of the chronic Low Back Pain (LBP) group, peak activations. Cluster maxima of brain activity of the video clips of activities of
daily living (“Activities”) and walking activities (“Walking”) together. All results are false discovery rate corrected (FDR, q<0.05). MNI = Montreal Neurological
Institute, STG = superior temporal gyrus, MTG =middle temporal gyrus, MFG =middle frontal gyrus, OL = occipital lobe, SPL = superior parietal lobule,
IPL = inferior parietal lobule, PreCG = precentral gyrus, DLPFC = dorsolateral prefrontal cortex.

2 Chronic LBP Group, “Activities” and “Walking” > baseline, N = 15

Cluster size q(FDR) Z MNI Peak coordinates Brain region

33236 <0.001 6.96 -14 -82 -4 Left OL (lingual gyrus)

6.41 -20 -46 -14 Left fusiform gyrus

6.27 46 -72 14 Right MTG

6.03 18 -32 0 Right Thalamus

5.39 22 -44 -16 Right fusiform gyrus

5.12 34 -12 -22 Right Hippocampus

5.01 0 -68 58 Left SPL (precuneus)

4.97 16 -70 30 Right IPL (precuneus)

247 <0.01 4.97 -52 34 20 Left DLPFC

doi:10.1371/journal.pone.0142391.t002

Motor Imagery Driven Neural Processing in Chronic LBP Patients

PLOS ONE | DOI:10.1371/journal.pone.0142391 November 16, 2015 9 / 18



While robust MI-driven SMA activity was observed in HC subjects, it was completely absent
in chronic LBP patients even at an uncorrected threshold of p<0.001. The SMA represents an
inherent part of the MI-network [23,24,48] and is linked to adequate motor planning and vol-
untary motor control [50,51,52], for review see [53]. With respect to the stimuli i.e. whole-
body activities as presented in the current study, there is also considerable evidence for the
involvement of SMA in postural control especially in anticipatory postural adjustments
(APAs) and related body balance control [54,55]. In particular, SMA was activated when pres-
sure stimuli were applied to the lumbar spine indicating fine scaled motor preparation/trunk
stabilization mechanisms in the absence of an intended or actual performance, verifying the
crucial role of this region in anticipatory postural control [56]. In chronic LBP patients, Jacobs
and colleagues revealed delayed APAs suggesting a decrease in postural control and stability
[19]. Furthermore, significantly improved APAs resulted from the application of repetitive

Table 3. Functional connectivity cluster maxima of the chronic Low Back Pain (LBP) group vs. healthy controls (HC), contrast activities of daily liv-
ing (“Activities”). All results are false discovery rate corrected (FDR, q<0.05). MNI = Montreal Neurological Institute, STG = superior temporal gyrus,
ITG = inferior temporal gyrus, MTG =middle temporal gyrus, MFG =middle frontal gyrus, SFG = superior frontal gyrus, SMG = supramarginal gyrus,
OL = occipital lobe, SPL = superior parietal lobule, IPL = inferior parietal lobule, PreCG = precentral gyrus, PCL = paracentral lobule, SMG = supramarginal
gyrus.

3 Chronic LBP > HC, “Activities” > baseline, N = 29

seed cluster size q(FDR) Z MNI Peak coordinates Brain region

IPL 74 <0.001 4.58 20 -2 64 Right MFG (SMA)

IFG 159 <0.001 4.48 -16 -78 54 Left SPL

75 <0.02 4.17 -10 2 74 Left SFG (SMA)

210 <0.001 3.92 8 -52 68 Right SPL (precuneus)

Insula No significant results

M1 83 <0.007 4.97 58 -58 -16 Right ITG

92 <0.006 4.07 8 -50 56 Right SPL (precuneus)

160 <0.001 3.84 32 -70 46 Right SPL

MFG 58 <0.04 4.71 32 -76 52 Right SPL

66 <0.04 4.14 -48 -18 48 Left PCG (S1)

Putamen 158 <0.001 4.11 2 -38 66 Right PCL

SMA 204 <0.001 4.43 18 -74 26 Right IPL (precuneus)

155 <0.001 4.34 -16 -72 24 Left IPL (precuneus)

53 <0.04 4.06 -54 22 34 Left MFG

47 <0.04 3.93 -10 -4 14 Left Thalamus

94 <0.003 3.90 -58 -54 20 Left STG

SPL 85 <0.007 4.22 -42 -72 36 Left IPL (precuneus)

73 <0.02 4.04 -26 2 62 Left MFG

231 <0.001 3.97 -58 -54 18 Left STG

94 <0.006 3.87 64 -38 -6 Right MTG

60 <0.03 3.70 22 -72 54 Right SPL

STG 210 <0.001 4.02 -10 4 74 Left SFG (SMA)

54 <0.04 3.88 14 6 74 Right SFG (SMA)

78 <0.02 3.84 16 -60 60 Right SPL

SMG 888 <0.001 4.31 -42 -34 56 Left PCG (S1)

348 <0.001 4.09 42 -26 44 Right PCG (S1)

259 <0.001 4.01 -16 -6 68 Left SFG (SMA)

Thalamus No significant results

doi:10.1371/journal.pone.0142391.t003
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transcranial magnetic stimulations (rTMS) over the SMA in a neurologic patient group with
considerable APA delays [55]. Together, these findings suggest a direct involvement of the
SMA in trunk movement coordination. Therefore, the demonstrated maladaptive functioning
of the SMA revealed by MI might be based on progressive dysfunction of motor circuits and
thus provides a mechanism to explain reported impairments in postural control in chronic
LBP patients.

However, it remains to be explored to which extent clinically relevant impairments of
postural control in chronic LBP patients [57] might be linked with maladaptive brain
mechanisms.

Extensive STG/STS activation was observed as a consequence of the visual guidance (e.g.
action observation) of the MI-task. Interestingly, when contrasted against baseline STG/STS
activity during “Activities” and “Walking” was significantly reduced in chronic LBP patients

Table 4. Functional connectivity cluster maxima of the chronic Low Back Pain (LBP) group vs. healthy controls (HC), contrast walking activities
(“Walking”). All results are false discovery rate corrected (FDR, q<0.05). MNI = Montreal Neurological Institute, STG = superior temporal gyrus,
ITG = inferior temporal gyrus, MTG =middle temporal gyrus, MFG =middle frontal gyrus, SFG = superior frontal gyrus, SMG = supramarginal gyrus,
OL = occipital lobe, SPL = superior parietal lobule, IPL = inferior parietal lobule, PreCG = precentral gyrus, PCL = paracentral lobule, SMG = supramarginal
gyrus

4 Chronic LBP > HC, “Walking” > baseline, N = 29

seed cluster size q(FDR) Z MNI Peak coordinates Brain region

IPL No significant results

IFG 159 <0.001 4.48 16 10 62 Right SFG (SMA)

Insula 95 <0.02 4.33 14 -48 54 Right SPL (precuneus)

M1 124 <0.02 3.84 -6 -2 68 Left SFG (SMA)

MFG No significant results

Putamen 124 <0.02 3.95 -62 -28 20 Left pars opercularis (S2)

56 <0.05 3.55 62 -18 12 Right pars opercularis (S2)

SMA 92 <0.006 4.41 -56 -50 20 Left STG

SPL 92 <0.006 4.34 -6 -36 72 Left PCL

58 <0.03 4.21 -66 -38 8 Left STG

56 <0.03 4.08 -48 -18 48 Left PCG (S1)

80 <0.008 4.08 68 -24 34 Right SMG (S2)

140 <0.002 3.95 10 6 70 Right SFG (SMA)

STG 103 <0.003 4.33 -62 -14 -6 Left MTG

83 <0.007 4.09 -10 8 68 Left SFG (SMA)

174 <0.001 4.03 -12 -28 68 Left PCL

114 <0.003 3.89 22 -30 70 Right PCG (S1)

SMG No significant results

Thalamus 218 <0.001 4.55 14 -34 72 Right PCG (S1)

doi:10.1371/journal.pone.0142391.t004

Table 5. Functional connectivity cluster maxima of the healthy controls (HC) vs. chronic Low Back Pain (LBP) group, contrast activities of daily liv-
ing (“Activities”). All results are false discovery rate corrected (FDR, q<0.05). MNI = Montreal Neurological Institute

5 HC > chronic LBP, “Activities” > baseline, N = 29

seed cluster size q(FDR) Z MNI Peak coordinates Brain region

Thalamus 65 <0.04 3.94 42 -66 12 Right OL (right MTG)

All other No significant results

doi:10.1371/journal.pone.0142391.t005
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compared to HC. The STG/STS responds to images of human bodies and their orientations
[58,59] and is known to play an important role in the understanding and interpreting of
human movements as well as in matching sensory inputs with internal movement representa-
tions [60,61,62,63]. Correspondingly, MI and ME require a high amount of sensory input pro-
cessing in order to provide a real-time representation of the body (e.g. body-scheme) [64,65].
In order to perform MI and ME appropriately, the matching of the internal representation of a
person’s body with an intended movement is realized by comparing the predicted sensorimo-
tor consequences of the action and the actual sensorimotor feedback [66]. In chronic LBP
patients, altered sensory input characterized e.g. by reduced two-point discrimination and
altered body-scheme has been previously reported [67,68,69,70,71]. Furthermore, it has been
revealed that chronic LBP patients showed a reduced ability to discriminate weights in possibly
hurtful trunk movements (e.g. lifting objects) in human point-light biological motion displays
[72,73]. As their general ability in visual discrimination tasks regarding biological motion in
point-light displays remained unharmed [73], their constraints seemed to be limited only to
trunk movements. The impairment of sensory discrimination and subsequently restrained
interpretation of trunk-related visual movement tasks might be linked with reduced STG/STS
activation in the present visually-guided MI task.

Event-related functional connectivity (FC)
Activity and connectivity analyses are the two main applications of fMRI. As both analyses are
based on the measure of changes in hemodynamic responses one could expect a certain overlap
of brain patterns for the same task. However, FC changes can occur even if a particular brain
area does not appear to be activated throughout a task and vice versa providing additional
information about neural functioning [74,75]. In the current investigation we used the gPPI
method to reveal FC changes [47] which yielded major differences between the chronic LBP
and HC group in the MI-network. Overall, the chronic LBP patients exhibited significantly
enhanced MI-driven FC compared to the HC group throughout the MI network. To further
control for possibly enhanced whole-brain connectivity within the chronic LBP group we per-
formed an additional control analysis using the primary auditory cortex as a MI-unrelated seed
region. The analysis revealed no enhanced FC of the chronic LBP group in the “Activi-
ties>baseline” condition. This observation confirms largely MI-related changes in FC whereas
an overall enhanced brain connectivity of chronic LBP patients is less probable. The enhanced
FC of chronic LBP patients in the MI network can be interpreted in different ways and these
explanations are not mutually exclusive. Enhanced FC in the default mode network as well as
in the executive attention network might be associated with hyper-excitability as previously
demonstrated in fibromyalgia patients, a pathology associated with ongoing diffuse chronic
pain state [76]. In addition, the FC strength among these networks correlated with spontaneous
pain ratings. With respect to chronic LBP, diffuse and non-specifically enhanced FC across the
MI network during a pain free MI-task might indicate a common neural maladaptive process.
There is evidence about lower pain thresholds and enhanced functional activity in particular
regions involved in pain processing in chronic pain states as well as during acute noxious

Table 6. Functional connectivity cluster maxima of the healthy controls (HC) vs. chronic Low Back Pain (LBP) group, contrast walking activities
(“Walking”). All results are false discovery rate corrected (FDR, q<0.05). MNI = Montreal Neurological Institute

6 HC > chronic LBP, “Walking” > baseline, N = 29

seed cluster size q(FDR) Z MNI Peak coordinates Brain region

All No significant results

doi:10.1371/journal.pone.0142391.t006
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stimulations [15,18,77]. Furthermore, dysfunctional central pain modulation and central sensi-
tization characterized by e.g. hyper-excitability have been also reported in chronic LBP patients
[78,79] and may also have an impact on FC between different brain regions.

Supporting this, studies using electroencephalography (EEG) have shown that the sensori-
motor cortical activation, as reflected by EEG alpha rhythms, is modulated during the expec-
tancy of somatosensory stimuli and that patients might exaggerate the anticipatory activation
of sensorimotor cortex to negligible noxious stimuli [80,81,82]. Thus, chronic pain might be
maintained through hypervigilance toward noxious stimuli due to abnormal attentional corti-
cal-thalamic systems [83].

An alternative explanation for the observed enhanced FC in chronic LBP patients might be
based on the high neural demand of a MI task. It has been shown that healthy subjects accom-
modated to a more demanding task by enhancing FC within the MI-network [28]. Taking into
account the non-significant group differences of the ratings about the vividness of the MI-per-
formance, this would imply that chronic LBP patients retained the ability to perform complex
MI and ME tasks, however they required more cortical recruitment depicted by enhanced FC
in order to perform a task.

Limitations
Regarding shortfalls of the present study there are mainly methodological issues to mention.
We considered the ISI as a baseline although there is no inherent baseline associated with the
blood-oxygen-level-dependent (BOLD) signal [84]. We assumed that the baseline represented
something akin to a zero-activity condition which was then compared with the activity during
the MI-tasks. Next, the canonical hemodynamic response function that was used in the decon-
volution step of the gPPI was assumed to be constant across voxels and subjects [85]. Until
now, the choice of model for the deconvolution has not been investigated, despite different
hemodynamic response functions being used in activation studies [47,86]. Thus, future studies
should investigate the effect of variable hemodynamic response functions on PPI, especially
focusing on differential hemodynamic responses in patient populations due to possible changes
in neurovascular coupling. Furthermore, current fMRI group level statistics are based on an
averaged anatomical template. As there is a high degree of variability in inter-subject anatomy
and functional localization, the use of spatial alignment and smoothing kernels increases the
overlap among subjects but makes it difficult for identifying distinct activity in small brain
regions. To reduce inter-subject anatomical variation e.g. in the SMA, specific registration tech-
niques such as DARTEL or HAMMER are recommended [87]. Further, visual MI requires
self-visualization of a movement from a first- (internal) or third-person (external) perspective
[39]. As the subjects were instructed to imagine themselves performing the activities both per-
spectives end up in a self-visualization of the subject. However, the observation of a “third per-
son”might have additionally influenced brain activity but this was assumed to be equal in both
groups. Finally, the current findings have to be carefully interpreted. To our knowledge this
study presents initial findings regarding neural correlates of MI in chronic LBP patients. How-
ever, a causal relationship between the current findings of alterations in MI-related brain
mechanisms and the disease pattern of chronic LBP patients cannot be demonstrated and
remains therefore further investigation.

Conclusion
The current investigation provides first evidence for obvious differences between chronic LBP
patients and HC subjects regarding MI-driven activity and FC. First, reduced activity in the
SMA suggests dysfunctional mechanisms regarding motor planning, feed-forward monitoring
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and related APAs, whereas reduced STG/STS activity indicates deficits in the integration of
sensory inputs. Second, the non-specifically enhanced FC within the MI network of chronic
LBP patients might indicate pain-driven maladaptive alterations in the sensorimotor network
in terms of hyperexcitability or an enlarged need for neural resources. These findings may
broaden the basis for the understanding of sensorimotor reorganization processes in chronic
LBP patients and might ultimately help developing novel approaches for therapeutic MI-
guided interventions.
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