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Abstract: Exfoliated graphitic carbon nitride (g-C3N4) and two commercially available nanomaterials
from titanium dioxide (P25 and CG300) were tested for the photocatalytic degradation of paracetamol
(PAR), ibuprofen (IBU), and diclofenac (DIC). Prior to photocatalytic experiments, the nanomaterials
were characterized by common methods, such as X-ray diffraction (XRD), UV–VIS diffuse reflectance
spectroscopy (DRS), Fourier transformed infrared spectroscopy in attenuated total reflection mode
(FTIR–ATR), transmission electron microscopy (TEM), physisorption of nitrogen, and dynamic vapor
adsorption (DVS) of water. The sizes and specific surface area (SSA) of the TiO2 nanoparticles were 6
nm and 300 m2

·g−1 for CG300 and 21 nm and 50 m2
·g−1 for P25. The SSA of g-C3N4 was 140 m2

·g−1.
All photocatalytic experiments were performed under UV (368 nm), as well as VIS (446 nm) irradiation.
TiO2 P25 was the most active photocatalyst under UV irradiation and g-C3N4 was the most active one
under VIS irradiation. Photodegradation yields were evaluated by means of high performance liquid
chromatography (HPLC) and reaction intermediates were identified using gas chromatography with
mass detection (GC–MS). Paracetamol and ibuprofen were totally removed but the intermediates of
diclofenac were observed even after 6 h of irradiation. Some intermediates, such as carbazole-1-acetic
acid, 2,6-dichloraniline, and hydroxylated derivates of diclofenac were identified. This study showed
that g-C3N4 is a promising photocatalyst for the degradation of pharmaceuticals in an aqueous
environment, under visible light.

Keywords: g-C3N4; TiO2; photocatalytic degradation; pharmaceuticals; paracetamol; ibuprofen;
diclofenac

1. Introduction

The utilization of pharmaceutical products has been continually increasing all over the world.
The presence of pharmaceuticals and their metabolites in water is beginning to be a serious problem
for humans and animals [1–7]. These compounds get to waterbodies from various sources, such as
disposals from hospitals and households, excretions by humans and animals, and it is important to
develop new and effective technologies for their removal from wastewaters and the whole aquatic
ecosystem. Numerous papers have been published on this topic in the last decade [8–14].

The effort to utilize photodegradation for the removal of pharmaceuticals is reflected in a
number of scientific papers that often deal with TiO2 photocatalysts [15–19]. Among the groups of
pharmaceuticals, non-steroidal, anti-inflammatory drugs are widely used and, thus, are now widely
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present in waterbodies. Their typical representatives are diclofenac, paracetamol, and ibuprofen; these
compositions were photocatalytically degraded in TiO2 suspensions in some studies [20–25].

Recently, metal-free graphitic carbon nitride has attracted attention as a photocatalyst due to
its narrow band gap of 2.7 eV (in comparison to 3.2 eV of TiO2). The properties and applications of
g-C3N4 have been described in many comprehensive review papers e.g., [26–32]. One of the strategies
for the enhancement of photocatalytic efficiency of g-C3N4 is exfoliation of its bulk structure. The
exfoliation results in a higher specific surface area and, therefore, the photocatalytic activity of these
g-C3N4 structures is improved significantly [33].

The utilization of g-C3N4 for the photocatalytic degradation of the above-mentioned
anti-inflammatory pharmaceutical (DIC, PAR, IBU) has still not been widely investigated. There are
only a few papers that refer to the degradation of diclofenac [34] and ibuprofen [35] by pure g-C3N4.
The aim of this work was to study the photocatalytic degradation of DIC, PAR, and IBU by using
exfoliated g-C3N4 in comparison with TiO2. For this purpose, the commercial photocatalysts TiO2 P25
and CG300 were employed.

2. Materials and Methods

2.1. Materials and Reagents

Water was prepared by reverse osmosis (Aqua Osmotic; Czech Republic) and used for the
preparation of all solutions. TiO2 P25 from Evonic Industries (Essen, Germany) and TiO2 CG300 from
Precheza (Přerov, Czech Republic) were used without further treatment. TiO2 CG300 was specially
prepared by a sulphate route with a high specific surface-area of 250–350 m2

·g−1 (manufacturer’s
data). Melamine for the preparation of g-C3N4, paracetamol (acetaminophen), diclofenac sodium
salt, ibuprofen, and chloroacetic acid were purchased from Sigma-Aldrich (Darmstadt, Germany).
Ortho-phosphoric acid (85%), ammonium hydroxide solution (25%), hydrochloric acid (35%), and
ethanol were purchased from Lachner (Neratovice, Czech Republic); acetonitrile Chromapur GG
and methanol Chromapur GG were purchased from BC-CHEMSERVIS (Rožnov pod Radhoštěm,
Czech Republic). HPLC grade water was obtained using a water purification system MicroPure UV
(ThermoScientific, Waltham, MA, USA). Diethyl ether was purchased from VWR Chemicals (Radnor,
PA, USA), N,O-bis(trimethyl)trifluoroacetamide (BSTFA) with trimethylchlorosilane (TMCS) were
purchased from Sigma-Aldrich (Darmstadt, Germany).

Stock standard solutions were prepared by dissolving accurately weighed quantity of analytes
in 1 mL of methanol (1.0 mg·cm−3). Working standard solutions were prepared by diluting the stock
standard solutions with water. The stock and working standard solutions were stored at 4 ◦C and
protected from daylight.

2.2. Preparation of Exfoliated g-C3N4

Bulk g-C3N4 was prepared by heating melamine (10 g) at 550 ◦C for 4 h with a heating rate of
3 ◦C·min−1 in a ceramic crucible (30 mL, diameter 5 cm) covered with a lid in a muffle furnace. The
crucible was cooled down out of the furnace to room temperature and then ground in an agate mortar
to fine powder. Exfoliated graphitic carbon nitride (0.5 g) was prepared by heating of bulk g-C3N4 in a
ceramic crucible (50 mL, diameter 8 cm) in a thin layer on a ceramic plate. g-C3N4 was heated for 3 h
in air at 500 ◦C, with a heating rate of 10 ◦C·min−1 and then cooled down outside the furnace.

2.3. Materials Characterization

UV–VIS diffusion reflectance spectra in the range of 220–1400 nm were recorded by a
spectrophotometer Shimadzu UV-2600 (Shimadzu Corp., Japan) with an integrated sphere attachment
ISR-2600Plus at room temperature. Measured reflectance was transformed into the Kubelka–Munk
function, as follows.
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F(R∞) =
(1−R∞ )2

2R∞
, (1)

where R∞ is the diffuse reflectance from a semi-infinite layer. The DRS spectra were transformed
to the dependencies of (F(R∞)·hν)2 on hν in order for us to obtain band-gap energies of the tested
nanomaterials.

The specific surface area of each nanomaterial was measured by a device SORPTOMATIC 1990
series (ThermoScientific, Waltham, MA, USA). SSA was determined by the analysis of N2 adsorption
isotherm at −196 ◦C by means of the Brunauer–Emmett–Teller (BET) method.

X-ray diffraction was performed using a Rigaku Ultima IV (Tokyo, Japan) diffractometer equipped
with a Cu tube. The powder diffraction patterns of the studied nanomaterials were collected in a
reflection mode in the range of 10–80 ◦2θ. The phase composition of the samples was evaluated using
the Rigaku PDXL software with the PDF 2 database.

Fourier transform infrared spectroscopy was measured using the Nicolet iS50 device
(ThermoScientific, Waltham, MA, USA). The spectra were collected in the ATR mode using a diamond
ATR crystal. The spectra were collected in the wavenumber range of 400–4000 cm−1, 32 scans were
averaged. The ATR correction followed by baseline subtracting was applied on each spectrum using
the OMNIC software (Waltham, MA USA) and the final spectra were drawn in the Origin 8 Pro
software (Northampton, MA, USA).

Transmission electron microscopy was performed with a JEOL 2100 microscope with (Jeol Ltd.,
Tokyo, Japan) a LaB6 electron gun. The accelerating voltage of 200 kV was applied. Micrographs were
taken by a camera Tengra (EMSIS GmbH, Münster, Germany). For the TEM analysis, the samples were
prepared by dispersion in ethanol and then were sonicated for 5 min. One drop of this solution was
placed on a copper grid with a holey carbon film and was dried at room temperature.

Moisture adsorption on the nanomaterials was studied by using a dynamic vapor sorption system.
The adsorption isotherms were recorded by weighing of samples under static humidity conditions,
with the relative humidity being progressively increased (decreased) by 10%; all measurements were
performed at 25 ◦C. A DVS device, model DVS-Advantage 1, purchased from Surface Measurement
Systems Ltd. (London, UK) was employed for these experiments.

2.4. Photocatalytic Experiments and Analytical Methods

Photocatalysis was carried out in beakers placed on magnetic stirrers. The solutions were
irradiated for a maximum of 6 h with 1 h in the dark to reach adsorption–desorption equilibria. A UVA
lamp (368 nm) with an intensity of 0.96 mW cm−2 and a visible light emitting lamp (446 nm) with
an intensity of 8.5 mW·cm−2 were used for the photodegradation experiments. The light intensity
was measured using an optical power and energy meter PM200 (ThorLabs, Newton, NJ, USA) with a
photodiode power sensor S120CV (ThorLabs). In a typical experiment, 0.9 g of a photocatalyst was
suspended in PAR (25 g·dm−3), IBU (15 g·dm−3), or DIC (25 g·dm−3) solutions. Five beakers containing
reaction suspensions were used for the chosen time intervals—before dark, after dark, 2 h, 4 h, and 6 h
of exposure. Each reaction suspension was filtered using a syringe filter.

The filtered reaction solutions were analyzed by HPLC using a liquid chromatograph equipped
with Nexera XR pumps (ThermoScientific, Waltham, MA, USA) and an SPD-M20A diode array detector
(Shimadzu, Kyoto, Japan). Chromatographic separations were carried out on a Kinetex XB-C18
analytical column (150 × 4.6 mm, i.d. 2.6 µm) equipped with a guard column, using an isocratic
mode. The mobile phase for the separation of ibuprofen and diclofenac sodium salts was a mixture of
chloroacetic acid with ammonium hydroxide (pH 3) and acetonitrile 30/70 (v/v). The mobile phase
for paracetamol was a mixture of 1.8 mmol·dm−3 ortho-phosphoric acid and acetonitrile 60/40 (v/v).
The flow rate was 1.0 cm3

·min−1. The chromatographic system operated at 25 ◦C. For quantitative
analyses, selective detection was performed at 223 nm, 276 nm, and 246 nm for ibuprofen, diclofenac,
and paracetamol, respectively.
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GC–MS analyses were carried out on an 8890 GC system equipped with a single quad detector
5977B (Agilent Technologies, Santa Clara, CA, USA). An HP-5MS UI fused silica column (Agilent
Tech., 30 m × 0.25 mm ID, 0.25 µm film thickness) was used. The flow rate of the He carrier gas was
set at 1.1 cm3 min−1. The temperature program was as follows−70 ◦C for 1.5 min, 20 ◦C·min−1 up to
160 ◦C and hold time 0 min, 15 ◦C·min−1 up to 280 ◦C and hold time 10 min. Injector and transferline
temperatures were 270 ◦C and 280 ◦C, respectively. The MS detector was operated in an electron
ionization mode, scanning in the range of 50–600 amu.

Aliquots (10 mL) of the filtered reaction solutions were extracted to 15 mL diethyl ether for 5 min.
Supernatants were dried under nitrogen and derivatized by a mixture of 25 µL of derivatization agents
(BSTFA + TMCS) and 25 µL of ethyl acetate (70 ◦C, 30 min). After cooling, 1 µL of the sample was
analyzed by GC–MS.

The photocatalytic degradations caused by the TiO2 nanomaterials were evaluated through
absorbances of the pharmaceuticals measured by a Shimadzu UV-2600 spectrophotometer, using
quartz cuvettes. The photodegradation using g-C3N4 was evaluated by HPLC (g-C3N4 particles in
filtrates absorbed in the UV spectrum).

3. Results and Discussion

The tested nanomaterials were characterized by the common methods described in Section 2.3,
such as UV–VIS DRS, XRD, FTIR–ATR spectrometry, and TEM. The specific surface area was measured
by the physisorption of nitrogen and was evaluated by the BET method. The sorption of moisture was
measured by DVS. After the characterization, the nanomaterials were employed for the photocatalytic
degradation of the selected pharmaceuticals, using the procedure described in Section 2.4. It was
possible to note that TiO2 CG300 was produced as a catalyst of the Claus reaction but its utilization as
a photocatalyst could be expected.

3.1. Diffusion Reflectance Spectrometry

First, the ability of the nanomaterials to absorb UV and VIS light was examined by DRS. The DRS
spectra were recorded (Figure 1) and further used for the determination of optical band gap energy
(hereinafter, only band gap energy).
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Figure 1. Diffusion reflectance spectra of the tested nanomaterials.

Unlike the reflectance of TiO2 samples, the reflectance of g-C3N4 was redshifted to the visible
spectrum, as expected. The Kubelka–Munk functions F(R∞) were calculated from the reflectance values
according to Equation (1) and the band gap energies were determined using the common method of
Tauc´s plots, as follows:
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F(R)hν = C
(
hν− Eg

)p
, (2)

where hν is the energy of incident photons, Eg is the band gap energy, C is a constant, and p is the power
depending on the type of electron transition. The power p = 2 and p = 0.5 are for direct and indirect
semiconductors, respectively. Usually, the determination of Eg involves plotting (εhν)1/p against hν.
The determined band gap energies decreased in sequence 3.25 eV of CG300, 3.02 eV of P25, and 2.70 eV
of g-C3N4. The different band gap energies of TiO2 were caused by their different crystallographic
compositions, that is, the content of anatase and rutile. The band gap energies of pure anatase and
rutile are reported in the literature as 3.2 eV and 3.0 eV, respectively [36]. The Eg value of CG300
(3.25 eV) implies the presence of only anatase in CG300. The Eg of 3.05 eV indicates the presence of
rutile in P25. It was verified by the XRD analysis, as shown below.

3.2. X-ray Diffraction

The XRD patterns of the tested nanomaterials are displayed in Figure 2. A typical diffraction
pattern of P25 shows the presence of both the anatase and rutile phases while the diffraction pattern of
CG300 confirms the presence of only anatase. It was evident that in the case of CG300, the anatase
diffraction peaks were broader than that in P25, which indicated a lower crystallite size of anatase in
CG300. Its crystallite size was evaluated using the Halder–Wagner approach [37] implemented in the
Rigaku PDXL software as L = 17 nm and L = 6 nm for P25 and CG300, respectively. The diffraction
pattern registered for g-C3N4 showed the dominant diffraction peak centered at 27.75 ◦2θ, which was
ascribed to the interlayer stacking of the aromatic (002) planes, and the less pronounced diffraction peak
centered at 12.99 ◦2θ was ascribed to the in-plane structural packing of the triazine (100) plane [38].
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CN—g-C3N4.

3.3. FTIR-ATR Spectrometry

The FTIR-ATR spectra of the studied nanomaterials are shown in Figure 3. The presence of Ti-O
bonds was evidenced in the area below 1000 cm−1 where absorption was ascribed to Ti-O stretching
modes of anatase and rutile [39,40]. The bands at 3000–3800 cm−1 and 1630 cm−1 were ascribed to O-H
stretching and bending vibrations, respectively, of the adsorbed water [41,42]. Detail views on the O-H
vibrations are shown in Figures S1 and S2.

The FTIR–ATR spectrum of g-C3N4 shows the presence of peaks in the region of 1200–1700 cm−1,
which correspond to the stretching modes of aromatic CN heterocycles. The sharp peak at 802 cm−1

belonged to the characteristic breathing mode of s-triazine units and peaks in the region above
3000 cm−1 evidencing the stretching vibrations of N–H bonds [43,44].
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3.4. TEM Analysis and Specific Surface Area

The morphology and sizes of nanoparticles were investigated by means of transmission electron
microscopy. The TEM micrographs are displayed in Figure 4. It is well visible that the CG300 shown in
Figure 4a was formed from smaller nanoparticles than P25 in Figure 4b. Unlike the particle morphology
of TiO2, the particle morphology of g-C3N4 was not so unambiguous, see Figure 4c,d. The complex
structures were composed of flake-like sheets and snake-like shells. A shell-like structure, like that
after thermal exfoliation, was observed for the g-C3N4 treated at high temperatures. Through thermal
exfoliation, the flat nanosheets partially wrapped themselves into the shell-like structures. This was
also observed in the decrease of the average g-C3N4 particle sizes, which were already measured by
the dynamic light scattering (DLS) method [33].

The sizes of the TiO2 nanoparticles were estimated from the TEM micrographs. For both sorts of
TiO2 nanoparticles, 91 subjects were evaluated by means of freely available ImageJ software. The sizes
were found to be normally distributed and the average ones were computed at 4.0 nm for CG300 and
20.5 nm for P25. Summary statistics of the evaluated sizes are given in Table 1 and their histograms are
shown in Figure S3.

The exfoliation of g-C3N4 was documented by the increase of its specific surface area. Through
exfoliation, the SSA increased from 10 m2

·g−1 (only bulk g-C3N4) to 140 m2
·g−1. In the case of the TiO2

nanomaterials, the SSAs of 300 m2
·g−1 and 50 m2

·g−1 were determined for CG300 and P25, respectively.
The basic characteristics of CG300 are high SSA and a low content of the remaining salts [45].

Table 1. Basic statistics of TiO2 nanoparticles.

Statistic TiO2 CG300 TiO2 P25

Minimum (nm) 2.3 10.6
Maximum (nm) 6.0 32.6
Average (nm) 4.0 20.5

Standard deviation (nm) 0.83 5.1
Average confidence interval (nm) 3.8–4.2 19.5–21.6

Skewness 0.121 0.341
Kurtosis 2.53 2.65
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Figure 4. TEM micrographs of TiO2 and exfoliated g-C3N4. (a) TiO2 CG300, (b) TiO2 P25, and
(c,d) g-C3N4.

3.5. Moisture Adsorption

Surface properties of the tested nanomaterials were also examined by the adsorption of moisture.
Figure 5 shows the adsorption and desorption plots of water vapor for both TiO2 samples, exfoliated
g-C3N4, and bulk g-C3N4, which were used for comparison.

The isotherms concerning the TiO2 nanomaterials demonstrated that CG300 absorbed more water
than P25. Unlike the P25 plots, the CG300 plots exhibited a small hysteresis loop as well. These findings
could be explained by a different phase composition of the TiO2 nanomaterials. The P25 was thought to
have contained more than 70% of anatase, a minor amount of rutile, and a small amount of amorphous
phase [46]. The manufacturer of CG300 it was composed of anatase. Our XRD analysis proved both
pieces of information to be correct. First-principles molecular dynamics calculations predicted the
dissociative adsorption of water molecules on the rutile (110) surface. Non-dissociated water molecules
were adsorbed to anatase through H bonds to the Ti-OH species of the (101) surface [47] or were
coordinated to the Ti4+ cations [48]. The DVS experiments confirmed these theoretical hypotheses, as
displayed in Figure 5.

The isotherms of exfoliated g-C3N4 indicated a larger amount of adsorbed water than what was
adsorbed on bulk g-C3N4. The hysteresis loop of exfoliated g-C3N4 was also larger, likely due to the
adsorption of water through H bonds to the terminating =NH and –NH2 groups, which were better
assessable in the exfoliated structures.
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3.6. Photocatalytic Degradation of Selected Pharmaceuticals

Both sorts of TiO2 nanomaterials as well as exfoliated g-C3N4 were tested for the photocatalytic
degradation of paracetamol, ibuprofen, and diclofenac. First, their aqueous suspensions were irradiated
by UV and VIS light for 2 h, see Figure 6a–c and Table 2. The photocatalytic experiments started after
the adsorption–desorption equilibrium between the pharmaceuticals when the nanomaterials were
established (after dark). No photolysis of the pharmaceuticals was observed.
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Figure 6. Graphs of photocatalytic degradation of pharmaceuticals after 2 h of irradiation. (a) Diclofenac
(DIC) under UV light; (b) paracetamol (PAR) under VIS light; (c) ibuprofen (IBU) under UV light;
(d) reaction curves of PAR, DIC, and IBU in the presence of g-C3N4 under VIS irradiation.

Under the UV irradiation, the photodegradation process of ibuprofen produced a noticeable odor,
which has not been described in the literature yet. During the diclofenac photodegradation, a slightly
pinkish solution was observed after 2–3 h, which vanished with a longer irradiation time, due to the
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degradation of intermediate products. In the case of paracetamol, no special effect was observed. The
degradation efficiency of photocatalysts for all pharmaceuticals increased in sequence g-C3N4 < CG300
< P25. This was not surprising when taking into account the wavelength of 368 nm and the band
gap energies of the TiO2 nanomaterials. The lowest photodegradation activity of g-C3N4 was likely
due to its fast photoinduced electron-hole recombination. The interesting observation was that about
six-times higher SSA rate of the CG300 as compared to the P25 did not affect its photodegradation
efficiency. This could be explained by a synergistic effect of anatase and rutile phase mixture of P25,
which led to the improved separation of photoinduced electrons and holes [49,50].

During the VIS irradiation the degradation efficiency increased in sequence P25 < CG300 < g-C3N4.
The degradation efficiency using g-C3N4 of about 77% (VIS) and 7% (UV) were in agreement with
the band gap energy of 2.70 eV (459 nm). Therefore, g-C3N4 should be active under UV (368 nm) as
well as under VIS (446 nm). The photodegradation in the presence of TiO2 could not be attributed
to sensitization by the adsorbed pharmaceuticals, which was often observed in the case of various
dyes [51,52], because none of these compounds absorbed visible light at 446 nm, see Figure S4. The
probable reason was the VIS light absorption of both TiO2 nanomaterials, as a result of their structural
defects, such as oxygen vacancies [53–55]. The oxygen vacancies are types of intrinsic defects forming
intermediate energy levels within the TiO2 band gap [56], which act as recombination centers for
photoinduced electrons and holes [57].

Figure 7 displays the absorption spectra of TiO2 suspensions of both pure TiO2 nanomaterials
and their mixtures, with the pharmaceuticals. The suspension of P25 was diluted 60 times and that
of CG300 was diluted 15 times in order for us to correctly obtain the measurable absorbances. The
spectra were recorded after 1 h in the dark, before the start of the photocatalytic reactions. In both
cases, the TiO2 absorbed visible light likely due to electron transfers between their valence bands and
the intermediate energy levels of oxygen vacancies mentioned above. Absorption bands of the pure
pharmaceuticals (see Figure S4) superposed with a large band of TiO2 in the CG300 spectrum were
quite obvious. In the P25 suspension spectra, only hints of the pharmaceuticals were visible due to
strong absorption of this TiO2. Therefore, the photodegradation of pharmaceuticals proceeded only
by photocatalysis and not by sensitization, which is often referred to in the literature. As a result,
photocatalysis was possible even if hν < Eg.
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Figure 7. Absorption spectra of suspensions of P25 (a) and CG300 (b) and pharmaceuticals before
photocatalytic reactions.

The original concentrations of the pharmaceuticals in Figure 6 are highlighted by dashed lines to
demonstrate their adsorption to the nanomaterials. As can be seen, paracetamol was not adsorbed by
the TiO2 nanomaterials regardless of their types and SSA but was adsorbed by g-C3N4 likely due to
van der Waals’s interactions between the aromatic rings of paracetamol and heptazine units of g-C3N4.
On the contrary, ibuprofen and diclofenac were adsorbed by TiO2 but ibuprofen was not adsorbed by
g-C3N4. The interactions of IBU hydroxyl and carbonyl groups with the g-C3N4 planes were supposed
to be unimportant. However, in the case of TiO2, these interactions were important due to the polar
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character of the Ti–O bonds. Diclofenac was adsorbed to g-C3N4 more than ibuprofen but less than
paracetamol. The complex van der Waals’s polar and nonpolar interactions between DIC and g-C3N4

were also assumed.
The adsorption of diclofenac to CG300 was not clear. As demonstrated by the DVS isotherms,

the CG300 nanoparticles adsorbed many water molecules, which would have likely pushed the
DIC hydrophobic molecules (logKOW = 4.51 [3] or 1.90 [58]) back into the aqueous suspension [59].
However, diclofenac is a sodium salt and its negative charge is supposed to interact with the Ti4+

cations of the CG300 surface, causing a huge adsorption.

Table 2. Photodegradation efficiency of pharmaceuticals after 2 h of irradiation.

Pharmaceutical Photodegradation (%)

Paracetamol

VIS UV

P25 35 93
CG300 54 69
g-C3N4 54 41

Ibuprofen

P25 17 99
CG300 13 94
g-C3N4 71 24

Diclofenac

P25 25 96
CG300 49 66
g-C3N4 77 73

Evaluation of Photodegradation Kinetics

Photocatalytic degradations are supposed to be based on the reactions of hydroxyl radicals formed
by complex reactions of photoinduced electrons and holes (h) with oxygen, water, and hydroxide
ions [60–63], as follows:

h+ + H2O→ OH• + H+, (3)

h+ + OH−→ OH•, (4)

e− + O2→ O2
•−, (5)

O2
•− + H+� HO2

• (pKa = 4.8), (6)

2 HO2
•
→ H2O2 + O2, (7)

H2O2 + e−→ OH• + OH−, (8)

Heterogeneous reactions of the pharmaceuticals and hydroxyl radicals on the surface of g-C3N4

and TiO2 can be described by the Langmuir–Hinshelwood model [62], as follows:

r = −
dcP

dt
= k

KPcP

1 + KPcP +
∑

Kici

KOH cOH
1 + KOHcOH

(9)

where k is the kinetic parameter; KP, KOH, Ki and cP, cOH, ci are the adsorption constants and the
concentrations of the remaining pharmaceuticals, hydroxyl radicals, and intermediates, respectively.
If cOH >> cP and ΣKici is neglected then Equation (9) can be simplified to its most commonly used form:

r = −
dcP

dt
= kapp

KPcP

1 + KPcP
, (10)
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where kapp is the apparent kinetic parameter depending on the irradiation intensity, mass, and nature of
a solid phase (photocatalyst) and the concentration of the OH• radicals. This model was theoretically
approved to be appropriate to the first-order kinetics [64]. On the contrary, if cOH << cP and ΣKici was
neglected then Equation (9) could be simplified to:

r = −
dcP

dt
= kapp

KOHcOH
1 + KOHcOH

= kobs, (11)

where kobs is the observed kinetic constant, supposing that the concentration of hydroxyl radicals is
constant. Then, the reaction rate is also constant and the decomposition of pharmaceuticals is of the
zero-order reaction. The constant concentration of hydroxyl radicals is possible when an irradiating
flux is constant, a photocatalyst is stable, and its surface sites are not occupied by intermediates.

In this study, g-C3N4 was found to be the most active photocatalyst under VIS irradiation,
which is very promising for its future environmental applications. The reaction kinetic curves of the
photocatalytic degradation of all pharmaceuticals are shown in Figure 6d. The degradation of ibuprofen
and diclofenac followed the first-order kinetics, which is common for most of the degradation reactions.
However, paracetamol obeyed the zero-order reaction kinetics. The kinetic constants were evaluated as
kapp = 5.5 ± 1.1 × 10−3 (min−1) for ibuprofen and a higher kapp = 7.2 ± 0.6 × 10−3 (min−1) was observed
for diclofenac. The kinetic constant kobs for paracetamol was 4.5 ± 0.3 × 10−3 (mol·dm−3

·min−1).

3.7. Photodegradation and Analysis of Intermediates

The photodegradation of pharmaceuticals as well as the resulting products—intermediates—were
analyzed by HPLC after 2 h, 4 h, and 6 h of the UV–VIS irradiation. Using TiO2 P25 as the most active
photocatalyst under UV irradiation, no intermediates of paracetamol and ibuprofen were observed.
Only in the case of diclofenac, small amounts of some intermediates were found at the retention time
of about 1.1–2.2 min, as demonstrated in Figure 8a.

Figure 8b displays the chromatograms of diclofenac decomposed in the presence of g-C3N4 under
VIS irradiation. Intermediates resulting after 2 and 4 h were observed in two broad peaks migrating
in front of the peaks of diclofenac (at 2.8 min). The first unresolved peak with the retention time of
1.2–1.6 min contained the final degradation products, which was obvious from the chromatogram after
6 h of irradiation. The second peak between 1.8 min and 2.2 min contained intermediates, which were
further transformed. It indicated that the photodegradation process consisted of several steps, during
which diclofenac was not completely decomposed but some unknown intermediates remained in the
reaction mixture. The photocatalytic degradation did not remove the intermediates even after 12 h
(Figure S4) and, therefore, the new experimental conditions of the photocatalysis will be investigated
in the future experiments.
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The photodegradation intermediates of diclofenac were identified by means of GC–MS. Carbazole-
1-acetic acid was found as a product of losing chlorine by the absorption of photons [65] or elimination
of hydrochloric acid and photoreduction [66]. Other intermediates were formed by various reactions
with hydroxyl radicals. 2,6-dichloraniline might arose from oxidation at the nitrogen atom of
diclofenac [67]. Several hydroxylated derivates of diclofenac, such as 2-[(2,6-dichlorophenyl)amino]-
5-hydroxyphenylacetic acid were identified as well.

4. Conclusions

Exfoliated g-C3N4 and commercially available nanoparticles of titanium dioxide P25 and CG300
were investigated for the photocatalytic degradation of paracetamol, ibuprofen, and diclofenac.
Exfoliated g-C3N4 was prepared by thermal synthesis of bulk g-C3N4 from melamine at 550 ◦C and by
consequent exfoliation at 500 ◦C. The TiO2 nanoparticles were of different phase composition and SSA.
P25 consisted of rutile and anatase, and CG300 was formed only from anatase. The SSA values (the
BET method) were 300 m2

·g−1 and 50 m2
·g−1 for CG300 and P25, respectively. The CG300 and P25

nanoparticle sizes were 4 nm and 21 nm, respectively. The SSA of g-C3N4 was 140 m2
·g−1. The band

gap energies of CG300, P25, and g-C3N4 were 3.25 eV, 3.02 and 2.70 eV, respectively.
The adsorption of moisture measured by the DVS method agreed with information in the

literature, pointing out that non-dissociative adsorption of water molecules on anatase was preferred
to dissociative adsorption on rutile. Water was adsorbed to g-C3N4 likely through the hydrogen bonds
to the =NH and –NH2 groups, which was deduced from the DVS experiments with bulk and exfoliated
g-C3N4.

The photocatalytic experiments showed that P25 was the most active photocatalyst under UV
irradiation and g-C3N4 was the most active one under VIS irradiation. Paracetamol and ibuprofen
were totally removed but the intermediates of diclofenac were observed, even after 12 h of irradiation.
Some intermediates, such as carbazole-1-acetic acid, 2,6-dichloraniline, and hydroxylated derivates of
diclofenac, were identified by GC–MS as displayed in Figure S5.

Our next experiments will be focused on searching for appropriate photocatalytic conditions for
the total and fast degradation of diclofenac and other pharmaceuticals, such as various antibiotics,
hormones, and drugs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/9/1194/s1.
Figure S1. FTIR–ATR spectrum of TiO2 P25. Figure S2. FTIR–ATR spectrum of TiO2 CG300. Figure S3. Histograms
for the sizes of the TiO2 nanoparticles. (a) CG300 and (b) P25. Figure S4. Absorption spectra of DIC, IBU and PAR
in the concentration of 20 mg/L. Figure S5. HPLC chromatograms of diclofenac photodegradation with g-C3N4.
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