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ABSTRACT

This document presents a new and improved, more intuitive version of a novel method
for visually representing the location of objects relative to each other in 3D. The
motivation and inspiration for developing this new method came from the necessity for
objective chromosome territory (CT') adjacency analysis. The earlier version, Distance
Profile Chart (DPC), used octants for 3D orientation. This approach did not provide
the best 3D space coverage since space was divided into just eight cones and was not
intuitive with regard to orientation in 3D. However, the version presented in this article,
called DPC12, allows users to achieve better space coverage during conification since
space is now divided into twelve cones. DPCI2 is faster than DPC and allows for a
more precise determination of the location of objects in 3D. In this article a short
introduction about the conification idea is presented. Then we explain how DPCI2 is
designed and created. After that, we show DPCI2 on an instructional dataset to make it
easier to understand and demonstrate how they appear and how to read them. Finally,
using DPC12 we present an example of an adjacency analysis (AA) using the model of
Chromosome Territories (CT's) distribution in the rice nucleus.

Subjects Computational Biology, Molecular Biology, Computational Science, Data Science

Keywords Chromosme territory, Chromosome adjacency, Visualisation, 3D analysis,
Computational science, Visual analytics, Nucleus, Nucleus structure, Rice

INTRODUCTION—MOTIVATION AND BACKGROUND

The discovery that the chromosomes occupy distinct areas in the 3D space of the nucleus,
so-called chromosome territories (CT's), raised the questions about the factors that
determine their mutual positions Cremer et al. (1982). One of the possible approaches
to address these questions is to compare experimental data to theoretical models of the
nuclei. Our earlier work was dedicated to developing software that would help to model
and visualize individual CT's (Tkacz et al., 2016). The resulting Chromosome Territory
Modeler (ChroTeMo) and Chromosome Territory Viewer (ChroTeVi) allowed for creating
fully probabilistic 3D models of CT distribution in a nucleus and their subsequent
comparison to the experimental data obtained by fluorescence in situ hybridization
(FISH) with chromosome painting probes Robaszkiewicz et al. (2016). When the CTs
are visualized by chromosome painting, they usually display cloud-like shapes with very
little overlapping, although it has been proved that at a higher level of resolution CTs
intermingle significantly at their borders (Branco & Pombo, 2006). ChroTeMo aims to
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accurately reflect the images of the nuclei obtained experimentally by FISH and to model
the chromosomes with the same level of detail as observed by fluorescence microscopy.
Despite the fact that ChroTeMo does not model the inter-chromosomal interactions at the
molecular level, nevertheless it allows for assessment of the theoretical frequency of homo-
and heterologous chromosome associations, assuming that the chromosome positioning is
random (Tkacz et al., 2016). Although the software was originally designed for analysis of
the CT's in a model grass Brachypodium distachyon, it can be applied to any plant or animal
species, as well as human. Despite the feasibility of modeling algorithm and its application
for model visualization, the process of comparing the theoretical and experimental data
led to further methodological and algorithmic problems. Although the neighborhood of
particular chromosomes or chromosome domains, as well as the distances between them
in a modeled nucleus, can be manually assessed and compared by a user to the FISH data,
it is a time-consuming process flawed by the analytical subjectivity. In order to address
these problems we decided to undertake the task of providing a ChroTeMo and ChroTeVi
user with the tools for objective and automated CT's adjacency analysis. The first attempt
of using visual analytics for analyzing data that depict real world objects was presented in
(Tkacz, 2017). The Distance-Profile Chart (DPC) described in the aforementioned paper
is a visualization showing the profile of distances between objects in 3D space. It allows
for automatic, reproducible, and objective ways to answer: which CT's (modeled as groups
of spheres (see Fig. 1) are associated with each other; what are the distances to the objects
surrounding a given CT (e.g., nucleolus, nuclear envelope, other CT s); and how are they
positioned in relation to each other.

Our first attempt used the Hausdorff Distance (HD) for two sets to calculate the distance
among CT's. The HD was computed according Eq. (1) (Kuratowski (1980), p.150) (for the
two sets, A and B, where x € A,y € B):

Hgist (A, B) = max(limsup(dist (x, B), limsupdist (y,A))) (1)

However, this approach (using only the HD) gives acceptable results for objects with
less complicated shapes than CT's. Since the results obtained using just the HD were not
satisfactory for us, we decided to try a different approach.

Inspiration from a shaft of light led us to coin the idea of Cone of Sight (CoS) and the
notion of dividing the space into a set of cones that are described below in more detail in the
section “Cone Of Sight Idea". The division of space into a set of cones then allows people
to segment 3D space into precisely defined sectors representing directions. The process of
dividing 3D space into cones will be referred to as conification. Nevertheless, conification
alone does not cover the space entirely as “gaps” between conical surfaces remain.

Unfortunately, we noticed that a relatively large number of points representing a 3D
object were not assigned to a cone during conification, which was relatively computationally
demanding. Moreover, sometimes this approach did not depict the mutual location of
objects well enough. We tried to maximize the 3D space coverage, which led us to the notion
of sphere packing. We found that there are two types of sphere packing that maximize 3D
space coverage and decided to try to derive cone equations based on an arrangement of
spheres.
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Figure 1 Visualization of CT's in ricenucleus with the use of ChroTeMo and ChroTeVi (Tkacz et al.,
2016). The gray circular shape represents the nucleus, the yellow sphere represents the nucleolus, beads of
spheres represent chromosomes, where one sphere corresponds to a 1 Mb domain. (A) All chromosomes
are visible; the ones of interest are in different colors. (B) Only selected chromosomes are visible: chromo-
some 12’ (labeled blue), chromosome 5’ (labeled orange), chromosome 10 (labeled cyan), chromosome 9
(labeled pink).

Full-size Gal DOL: 10.7717/peerj.12661/fig-1

As a result we obtained 12 cones, which is why we decided to use the abbreviation
DPCI2 to create the naming convention that describes the number of cones, or more
precisely cones of sight (CoS) that were used in the distance profile creation. This paper
describes DPC12, which is a modified and expanded version of the DPC method presented
in (Tkacz, 2017). The previous paper focused on computational details and was rather a
”proof-of-concept’” while this one is the first full journal article concerning DPC s. DPC
uses Cartesian Coordinate as the basis for cone creation and space conification. DPC12 uses
very intuitive ways of depicting location: front, back, top, bottom, left, and right (Fig. 2).
An additional procedure that allows for assigning yet unassigned points to certain CoS is
described in this paper later. This paper also contains an additional sample analysis of a
CT neighborhood.

SHAFT OF LIGHT AS AN INSPIRATION FOR THE CONE OF
SIGHT IDEA

The idea for the cone of sight was inspired by the shaft of light from a lighthouse (see Fig. 3)
or a flashlight beam. When we are in the dark and turn on a flashlight, we point the light
in a certain direction, for example, to the left. We can then see objects that are in the shaft
of light. When something becomes visible, we can estimate how far it is. In fact, in daylight
we use a similar strategy when we look around to recognize and memorize the direction,

location, and distance of different objects in the environment.
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Figure 2 Direction naming convention.
Full-size & DOI: 10.7717/peer;j.12661/fig-2

Figure 3 Shafts of light of the lighthouse spotting different directions. Photo credit: Evgeni Tcherkasski
on Pixabay: https:/pixabay.com/pl/photoslatarnia- morska-lekki-morze-2611199/.
Full-size Gal DOL: 10.7717/peerj.12661/fig-3

Looking around in different directions (left, right, up, down, front, rear) allows us to
explore our neighborhood. As a result we are able to make a kind of a “mental image” of
our surroundings, a “map” of the objects around. This familiar intuitive approach can be
applied to determine the relative location of 3D objects in any space. To use this idea, we
will first need to develop a model of a shaft of light. The shaft of light has a shape that is
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similar to a cone, so it is natural to use it as a model (see Fig. 3). In order to do so, we need
to define the description of Cones of Sight in a way that is precise and easy to implement
in a computer program, preferably in a form of mathematical equations.

Mathematical model of the cone of sight
The best and easiest mathematical model to describe a shaft of light is a conical surface
Encyclopedia of Math (2020), a quadratic surface that can be described with a mathematical
equation, thus making it the most suitable solution for computational purposes. The
conical surface is defined as a family of straight lines that cross through a certain point,
called the cone vertex, and through any of the points on a flat base, which is on a plane that
does not contain the vertex. For the purpose of this paper, the base is circular, i.e., it is a
circle made by a cross-section of the sphere by the plane, which passes through a diameter
(see Fig. 4). An interior limited by and located inside a conical surface could be considered
an appropriate model of the interior of a shaft of light. The sectors of 3D space that are
limited by the conical surface will be further referred to as Cones of Sight (CoSes).
Having a set of appropriately arranged spheres we can derive equations for CoS. We
wanted to maximize the coverage of space and this led us to the issue of covering space
with spheres, which is known as “sphere packing” (WolframAlpha, 2020). This is a known
and well-discussed (Conway ¢ Sloane, 1993) problem and will not be covered here in more
details. The two types of densest possible space coverage by spheres are hexagonal close
packing (HCC) (Weisstein, 2020) and cubic close packing (CCP) (Weisstein, 2021).

To see different sphere arrangements in an interactive way see (WolframAlpha, 2021b)
or to observe the difference between HCC and CCP see (WolframAlpha, 2021a). In CCP we
have 12 (excluding central) spheres and 12 CoSes. Utilizing the CCP concept in DPC12 we
achieved denser space coverage than in DPC, and consequently a more detailed description
of the location of surrounding objects. CCP can be easily adjusted to intuitive direction
names (Fig. 5).

Packing density, which is defined as a fraction of a volume filled by a given collection of
spheres (see Eq. (2), Weisstein (2021))

Volsph

VOlunit—cell

is independent of a sphere’s radius and in the case of CCP equals

I1
Nccp = —= =2 0.74048...

32

which gives us almost 75% of space coverage. The sphere is uniquely defined when we
know the coordinates of the center of the sphere and its radius R. To derive the equation
of a conical surface, the coordinates of the additional point, which will become the vertex,
should also be known.

This point is also assumed to be the geometrical center of the given object (the POV
mentioned earlier), in relation to which we want to determine the relative position of other
objects. To simplify calculation, it is also assumed that the center of the object is the vertex
of the conical surface and is the center of the coordinate system O(0,0,0). However, a shift
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Figure 4 Conical surface construction: conical surface created by a set of lines n;,n,,..,nx3k € N,
crossing through a fixed point O(0, 0, 0) and tangent to a sphere with given coordinates S((a, b, ¢), R).
Full-size Gal DOI: 10.7717/peerj.12661/fig-4

of the center of coordinate system together with all points of the conical surface can be
made, if necessary.

The equation of any sphere, with the center in (a,b,¢) and the radius R is shown by
Eq. (3):

(x—a)’+(y—b)’+(z—c)*=R* (3)

For a given sphere (with a center in a point (a,b,c) and a radius R (denoted as
S((a,b,c),R)), it is possible to derive the equation of a desirable conical surface (with
a vertex in a given point, here in O(0,0,0)) in the following way.
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Figure 5 CoS naming convention. (A) Sphere arrangement in CCP (WolframAlpha, 2021a). (B) Naming
convention for CoSes in different direction based on CCP.
Full-size & DOI: 10.7717/peerj.12661/fig-5

The parametric equation of a line in 3D space that crosses a point Py(xg, yo,20) has the
following form:

X =Xot
¥ =yot (4)
z=2zpt

where ¢ is a parameter.
If point Py belongs to the line that is also tangent to the sphere, then both equations (of
the sphere and the line) have to be fulfilled. So:

(x0—a)*+(yo—b)* + (20 —c)* =R (5)

Substituting the Eq. (4) for the Eq. (5), after making some transformations (according
to Stark, 1974, p. 227), we obtain the conical surface equation (Eq. (6)):

(—2ax —2by —2¢cz)* —4(x* +y* +2%) (@ +b* + > —R*) =0 (6)

«_»

Changing sign “=" to “>"in (Eq. (6)) we have an equation that is fulfilled by points
that are on the conical surface or inside it.

As mentioned earlier, using spheres with CCP arrangement we have more than the basic
six directions shown in Fig. 2. Now we have 12 spheres as shown in Fig. 5A delineating 12
directions with appropriate CoSes. For better readability, we can project the spheres onto
a plane as shown in Fig. 5B.
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Table 1 Coordinates of spheres that are the base for deriving conical surfaces for CoS-es (interactive version with sphere equation available at
vailable at Tkacz, 2021).

CoSid TL TF TR LF L LB RF R RB BL BB BR

a -1 0 1 -1 -2 -1 1 2 1 -1 0 1
—0.68 1 —0.68 1.68 0 —1.68 —1.68 0 1.68 0.68 -1 0.68

c 1.68 1.68 1.68 0 0 0 0 0 0 —1.68 —1.68 —1.68

Then, we named directions (and, accordingly CoSes) in the following way (see also
Fig. 5B):

e TOP (relative direction: up):

— top left TL —the corresponding direction of CoS is top, but slightly to the left and
slightly back;
— top front TF —the corresponding direction of CoS is top, in front;

— top right TR —the corresponding direction of CoS is top, but slightly to the right and
slightly back.

o LEFT (relative direction: left):

— left front LF —the corresponding direction of CoS is left, but slightly to the front;
— left L —the corresponding direction of CoS is left;

— left back LB —the corresponding direction of CoS is left, but “over the shoulder” to
the back.

e RIGHT (relative direction: right):

— right front RF —the corresponding direction of CoS is right, but slightly to the front;
— right R —the corresponding direction of CoS is right;

— right back RB —the corresponding direction of CoS is right, but “over the shoulder”
to the back.

o BOTTOM (relative direction: down):

— bottom left BL —the corresponding direction of CoS is bottom, but slightly to the left
and slightly to the front;

— bottom behind BB —the corresponding direction of CoS is bottom, behind;
— bottom right BR —the corresponding direction of CoS is bottom, but slightly to the
right and slightly to the front.

To derive the equations of CoSes that correspond to directions it was necessary to
determine the centers of spheres in the CCP arrangement. They are presented in Table 1.

EFFICIENCY OF 3D SPACE CONIFICATION

Spherical, one-group dataset with uniform distribution

As you can see in Fig. 6, CoSes do not fill the space entirely as there remains a little space
in between them. This means that after conification, some points still reside outside the
12 CoSes. Each of these points needs to be assigned to the CoSes. To solve this problem,
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Figure 6 CoSes based on conical surfaces derived from the sphere arrangement shown in Fig. 5. (A)
Points assigned to CoS after initial conification. (B) Points assigned to CoS after full conification.
Full-size &l DOI: 10.7717/peerj.12661/fig-6

Table2 Conification time of dataset consisting of one group.

Dataset size [pts] Time [s] Conified [%]
100 0.34 80

1000 6.34 82.70

10000 103.8 82.99

100000 1433.56 83.11
1000000 10419.12 83.15

the topological measure(HD), which in this case means the distance from point x to set A
(Kuratowski, 1980), p.140)"), was used. See Eq. (7):

dist(x,A) =liminf|x —a|,ac A (7)
Un fact, this is a special case of HD men- . . . . .o . .
tioned earlier where set A = {x} consists of Using HD, any points that remained unassigned after the initial conification process
one point were then assigned to the nearest CoS (Eq. (7)). The conification and assigment of the

remaining points to the nearest CoS using HD from here on will be referred to as full
conification (FC). After FC, each point P; in the analyzed set is characterized by five
parameters Pi(x;,yi,zi, 0bjig, CoSiz). Looking at Fig. 6, we can see the difference between
the number of points assigned to CoSes after initial conification without applying HD and
the number of points assigned to CoSes after FC.

Table 2 presents the relationship between the conification time and the size of the dataset
(number of points subjected to conification). It also shows that the space coverage after
initial conification equals at least 80%, which means that less than 20% of the points need
to be assigned to the CoSes using computationally demanding HD.

Assigning the sets of points to particular CoSes allows us not only to identify the objects
located within a given CoS, but also to determine their nearest and farthest points, as well
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as to compute the amount of points (e.g., as a percentage) of a given object inside a given
CoS. This approach provides us with enough information about objects and their relative
location to create a “mental map” of the surrounding space. However, what remains
problematic is displaying the obtained, often large amounts of data in a user-friendly way
that would enable easy and feasible adjacency analysis. We decided that bar charts will be
the most convenient and effective form of visually presenting the resulting data. However,
in some applications (e.g., computer vision, machine learning algorithms) storing and
processing the data as a table or array can be more useful.

DPC12 IN 3D SET ADJACENCY ANALYSIS

This section describes in detail how to visualize the relative location of 3D objects using
DPC12. Because DPCI2 was intended as a tool for adjacency analysis of CT's, from here on
the analysis of the relative location of objects will be referred to as “Adjacency Analysis”
(AA). In the paragraphs below we first describe the process of chart design and composition
before explaining how to interpret DPC12 chart using simple, abstract set of objects as an
example.

Steps for creating DPC12

The process of creating DPCI12 can be described in six simple steps:

1. selecting one fixed object (referred to as central object because it becomes the center of
the coordinate system);

2. shifting the center of the coordinate system to the (geometrical) center of central object.
This point, now having the coordinates O(0,0,0), is the vertex of all cones;

3. making a full conification of the 3D space and assigning all objects to appropriate
CoSes;

4. computing what percentage of a given object belongs to a given CoS;

5. computing the distances between the central object and the nearest and farthest points
of other objects in each CoS;

6. constructing a visual representation of object locations and distances relative to the
central object in the form of a Distance-Profile Chart (DPCI12).

DPC12 design
The design of the DPC12 chart was intended to provide the information necessary to create
a mental map of all objects surrounding the central object using data computed during
steps 4 and 5. During AA, a DPCI12 chart can be created for every object in the analyzed
scene (space) or only for the objects selected by the user. For example, if there are three
objects in the space, up to three DPCI12s can be created, one for each object. Using rice
nucleus as an example, we could generate twenty-four DPCI2 charts, one for each of the
twenty-four chromosomes of rice; or we could choose any other number of chromosomes
for which we would want to create DPC12s.

The level of detail of the chart depends on the number of spheres from which the CoSes
are derived. However, one should take into account that increasing the number of CoSes
also increases the complexity of the chart and the difficulty in its reading and interpretation.
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Figure 7 DPCI2 design for central object. (A) Subchart of DPC12. (B) Arrangement of the DPCI2 sub-
charts. Each subchart corresponds to a specific CoS. (C) Intensity scale showing the percentage of an ob-
ject located inside a given CoS.

Full-size &l DOI: 10.7717/peerj.12661/fig-7

The chart consists of a given number of subcharts that correspond to the number of
CoSes, so in the case of DPCI2 the number of subcharts equals 12. The subcharts are
placed on a grid in order to present information in a clear and concise manner, and their
names parallel the names of the CoSes (see Fig. 5). The layout of the subcharts of DPC12
is shown in Fig. 7B. The subcharts are patterned after bar plots from which users can read
information about the minimum (min) and maximum (max) distances from the central
object (Fig. 7A). The color of the bars corresponds to an intensity scale that represents
the percentage(fraction) of an object inside a given CoS. The scale used in this article is
discrete, made from the sequential palette RColorBrewer Zeileis, Hornik ¢ Murrell (2009)
and is shown in Fig. 7C. In the next section we will present a simple example of DPCI2

and explain how to interpret it.
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Figure 8 Mouse 3D set-instructional, briefing set for “how-to” DPC12 reading.
Full-size Gal DOI: 10.7717/peer;j.12661/fig-8

In summary, we can divide the DPCI2 interpretation process into three steps that
involve:

¢ identifying the objects in each CoS and their position (direction) relative to central object;

e determining the distances of these objects from central object and the range of distances
they span;

e reading the fraction or percentage of object(s) inside a given CoS (using the color
intensity scale).

Instructional reading of DPC12 —artificial 3D Mouse Set

In this section we will demonstrate how to interpret DPCI12 using a relatively simple set
of objects in 3D space. It consists of three spherical objects positioned in a way that they
resemble the head of a mouse with asymmetrically positioned ears (see Fig. 8). We will

conveniently refer to this set as a “3D Mouse Set”, abbreviated M3DS.

In Fig. 8 we see three objects: the head, abbreviated H, and two ears, left (LE) and right
(RE). Due to their fixed positions, they can be rotated as a whole relative to the external
coordinate system because such rotation has no impact on AA. In this example the ears are
situated above the head. Starting from the left, LE is the first object, H is the second object
and RE is the third object.
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Full-size &4 DOI: 10.7717/peerj.12661/fig-9

Since we have three objects, three DPC12s need to be created: one for LE, the second for
H, and the third for RE. We need to perform three full conification; each one will feature
a difference central object. Thus, the three CoSes will be: LE, H, and RE.

The effects of the three full conifications are shown in Fig. 9. The different colors
correspond to different conses oriented in various directions according to Fig. 5. When
LE is used as a co, the LE itself occupies several CoSes. In contrast, the entire RE is located
in just one CoS, together with a part of H. The rest of H is located in several CoSes (Fig. 9A).
By analogy, the same applies to RE, when RE is central object (Fig. 9C). When H is central
object, it also occupies a few CoSes, while LE is almost entirely in one CoS and all of RE is
in another CoS (Fig. 9B).

When the set is fully conified and the distances in all CoSes for all objects are calculated,
we can then construct the DPCI12 (chart). The three central objects and their respective
DPC12s are shown in Fig. 10. More specifically, DPCI2 for LE is shown in Fig. 10A, for
H is shown in Fig. 10B and for RE is shown in Fig. 10C. Although the data concerning
central object could be removed from the chart, we have decided to display them since it
allows us to gain some insight into the features of central object. In all DPC12subcharts
within each of the Figs. 10A—10C, the leftmost bar on the horizontal axis of the subchart
corresponds to LE, the second (middle) one to H, and the rightmost to RE.

Analysis for mouse 3D head

We will begin with the AA of H. Let us take a look at the DPC12 with the “head”

H as the central object (Fig. 10B). First, we notice that H is present in every CoS. The bars
corresponding to H have the lowest min values. They do not start at zero because the center
of a coordinate system is placed at the geometrical center of the object. Consequently, in
some cases it is possible that the center of a coordinate system might not coincide with any
of points comprising the object. It can be seen from DPCI2 that the points comprising
the “head” form a spherical shape since the range of corresponding bars (bar length) is
equal in all CoSes (directions). Also noteworthy, in BB CoS there are fewer head-forming
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Figure 10 DPCI2 for Mouse 3D Set. For full resolution images, see (GitHub, 2020). (A) DPCI2 for LE as central object (AA for LE). (B) DPCI2 for
H as central object (AA for H). (C) DPCI12 for RE as central object (AA for RE).
Full-size & DOI: 10.7717/peer;.12661/fig-10

points than in the other CoSes, which is indicated by the lighter bar color. Next, we can
see what the location is of the other objects around H. This process mimics how we look
around to explore our surroundings. We read from the chart (for the naming convention
of directions refer to Fig. 7B the way that the objects are situated in relation to H:
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H (Fig. 9B) exists in every cone (in every direction). This should be apparent since H is
now situated in the center of the coordinate system as the CO;

both ears lie in a range of TOP cones and are situated on opposite sides (TL and TR);
the first ear lies in a range of the LEFT CoSes, located up and left;

the second ear lies in a range of the RIGHT CoSes, located up and right;
there is nothing except H below in the BOTTOM CoSes.

Having oriented ourselves as to the location of each object, we should now analyze the
colors of the corresponding bars and the min-max values of the range of the bars in the
subcharts. The colors inform us which part of the object is situated within a given CoSes. In
the case of the TOP subcharts for H, the color corresponding to the first object (LE) is dark
brown. The color of the third object (RE) is also brown, but slightly lighter than the first
object. Comparing these colors to the scale presented in Fig. 7C, we can also read that the
first object (LE) is almost all (90-100%) present in TL CoS. The rest, up to 10%, is located
in the L CoS (very light yellow). In the case of the third object, light brown corresponds to
a range of 80-90% for the TR CoS and 10-20% for the R CoS.

Having examined the CoSes in terms of objects situated around H, we can now read
the min-max range of their bars, which informs us about how distant these objects are in
certain CoSes. We see that the first object (TL CoS) is nearer to H than the third object
(TR CoS). Both span approximately the same range, which means that they are probably
similar in size. The nearest point of the first object is nearer than the nearest point of the
third object, which means that they are not situated symmetrically. Thus, we can state that
the first object is closer than the third object.

Analysis for the LE

LE as a central object is obviously present in all CoSes. As was the case with DPCI12 for H, its
bars do not start at zero. Looking at the bar ranges and colors we can deduce that the points
of the second object are not distributed in a uniform way. There are two other objects in
only the R, BB, and BR CoSes. That is correct when referring to Fig. 10A: RE is to the right
of LE, H is located below the LE and slightly to the right. Looking at R CoS subchart we
can see that the min bar value of the third object is higher than the min bar value of the
second object, indicating that the third object is farther away from LE than the second
one. The third object appears only in R CoS. Additionally, the color of the corresponding
bar is dark brown - that means that all points comprising the third object are inside this
one CoS. The second object appears in three CoSes (R, BB, and BR), so we know that it
is distributed more widely in space than the third object. Looking at bar colors (and bar
lenghts) we can infer that most of the second object is in BR CoS (50-60%), next 20-30%
is in L CoS and the smallest amount (10-20%) is in BB. As a result we know that there are
two objects near LE and they differ in size. One smaller object (RE) is situated just to the
right while the bigger object (H) is also to the right but below. The bigger one is nearer to
the central object than the small one. You can compare this “mental image” with Fig. 10A.
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Analysis for the RE

The analysis and interpretation of DPCI2 of RE is very similar to the one described
for LE because the M3DS is somewhat symmetrical. However, a careful look at Fig. 8
reveals imperfect symmetry. The “ears” are not equidistant to the “head.” It is possible to
determine this asymmetry from looking at the DPC12 alone by comparing the distances in
DPCI2 created for H. We can detect the asymmetry of the M3DS by reading in Fig. 10B
that the distance from central object (H) to LE is longer that the distance between H and
RE.

Summary of analysis for M3Ds

By reading DPC12 alone without seeing a picture we can conclude the following. The area
consists of three objects in which one is approximately twice the size as the two others. The
smaller objects are similar in size and located opposite each other. One is situated farther
from the bigger object than the other one. The smaller objects are more distant from each
other than they each are from the bigger object. Using the directions set by conification
and “pinning” the biggest object at the bottom we can say that the two smaller objects are
situated mostly above the bigger one, flanking it on the left and right sides, and one of them
is farther away than the other. As has been demonstrated, using DPCI2 is scientifically
effective and beneficial as DPCI2 contains enough information to recreate (after some
training and experience in reading the charts) relative object location, distribution, and
distances in 3D space without making a 3D visualization. In the next section we will show
how to use DPCI2 for CT neighborhood (adjacency) analysis.

ADJACENCY ANALYSIS OF RICE CHROMOSOME
TERRITORIES USING DPC12

In the previous section, we have explained in detail how to read DPC12s using the M3DS
dataset as an example. In this section, we show how to use DPCI2 in adjacency analysis
of selected CT's’ mutual spatial location using ricenucleus (presented in Fig. 1A) as a
model. Rice has 12 pairs of chromosomes, so there are twenty-four 3D objects to analyze.
Since chromosomes usually have more complicated shapes than the objects analized in
M3DS, the ability to properly read DPCI2 is very important. For such complicated shapes,
the geometrical center would likely reside outside the object. That is why in the case of
chromosomes, the center of a coordinate system is located in the centromere instead of
the geometrical center. Consequently, placing the center of a coordinate system in the
centromere means that the bars for the analyzed chromosome could not start at a zero
distance.

DPC12s for all other chromosomes from this model are similar, they are all attached
in Supplemental material and can be analyzed similarly as the ones described in sections

below.

AA for chromosome 5’ of rice
The chromosome 5’, which is visible in Fig. | in orange, is our central object for current
analysis. We would like to assess the distance of other chromosomes in relation to 5'.
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Obviously, the maximum possible distance between two chromosomes cannot exceed the
diameter of the nucleus. In the given example of the modeled rice nucleus its diameter
equals 7.3 pm.

Looking at Fig. 1 it is easy to notice that the:

e nearest CT, which is pink and represents chromosome 9, is situated on the right side of
the chromosome 5’;

o farthest visible chromosome, which is cyan and represents chromosome 10, is situated
across from chromosome 5’ on the opposite side of nucleus;

e chromosome 12/, which is blue, is seemingly located farther away from 5" than
chromosome 9 and situated closer to the center of the nucleus.

In order to determine whether we are able to obtain the same information from DPCI12
for the chromosome 5/, let us take a look at Fig. 11. We first notice that a few CoSes are
almost empty as they contain no or only a small fraction of CT's. These CoSes are:

e TL, TF, RF, R, LF. Based on this, we can deduce that the 5’ chromosome is situated rather
close to the nuclear envelope as there are areas around it where no other chromosomes
can be found;

e TR, where we can see chromosome 5 and chromosome 5'. The bar’s color intensity
indicates that only small portions of their CT's are located in that CoS.

The majority of chromosomes are situated in four CoSes: RB, L, LB, and BB. To
determine which chromosomes are the nearest and farthest in relation to 5, we should
compare the minimum values (min) on the y axis of the bars in all subcharts of DPC12
created for 5'. We should also pay attention to the color of the bar.

Identifying the chromosome nearest to rice chromosome 5

In order to identify the chromosome nearest to 5, we need to find the chromosome
bars with the lowest min value on the y axis. We can see on the BL subchart that min
on y axis for chromosome 4’ is about 0.7 pm. However, on the RB subchart the min for
chromosome 9 is even lower and equals about 0.5 pum. The bar spans about 2 pm above
its min, reaching its maximum value (max) of 2.5 wm. Moreover, the bar for chromosome
9 is the darkest colored, which means that, based on the intensity scale in Fig. 7C, almost
all of chromosome 9 is located in the RB. We could then infer that chromosome 9 is the
nearest to 5. This calculation agrees with the model of chromosome territories presented
in Fig. 1, where chromosomes 5" and 9 seem to be tangent. Reading the DPCI2 provides
not only the same information about the nearest chromosome in an objective way, but
also numerical, comparable values of distance. Moreover, using DPC12 does not entail the
need to run special software that requires powerful hardware for manipulating 3D objects.
Furthermore, we do not have to make manual rotations of the nucleus in order to view the
chromosomes of interest, but instead we can read the distances between all of them in one
chart.
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Figure 11 DPCI2 for riceCT's model with the chromosome 5’ as central object. The ChroTeMo model
of the chromosome 5'CT is presented in Fig. | in orange.

Full-size Gl DOI: 10.7717/peerj.12661/fig-11
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Figure 12 Visualization of the CT's farthest from chromosome 5’. Chromosome 5’ (labeled orange) is

the central object. Chromosome 9’ (labeled yellow) was identified by DPCI2 as the farthest from 5. Chro-

mosome 10 (labeled cyan) was incorrectly identified as the farthest one after visual human observation.
Full-size G DOI: 10.7717/peer;j.12661/fig-12

Identifying the chromosome farthest from rice chromosome 5’

Let us determine which chromosome is the farthest from 5. The nucleus model in Fig. 1.
suggests that it is chromosome 10. In order to confirm this hypothesis, we need to search
all the subcharts presented in Fig. 11 for the chromosome bars with the highest bar min
value. First, we can notice that there are no bars in any of the subcharts with the min value
above 6 pm. On the LB subchart the bar for chromosome 3’ starts at c. 5.2 pm and the
bar color indicates that about 60% of 3’ is located in this CoS. On the same subchart, for
chromosome 9', the min bar value and the percentage of CT in LB equal approximately
5.5 pm and 40%, respectively. The bars for the same chromosomes on the BBsubchart
start at the value 5.2 pm for chromosome 3’ and 5.6 um for 9', and the percentage of
chromosome area located in this CoS equals 40% for 3" and 60% for 9'. In comparison to
3’ and 9', chromosome 10 appears entirely within BB and its bar min value is c. 4.8 pm,
which indicates that it is closer to 5" than 3’ or 9'. Based on the data provided by DPC12,
we can conclude that chromosome 9’, and not chromosome 10, is the farthest one from 5.
Let us now check our model of rice CT's, how chromosomes 5, 9’, and 10 are situated in
relation to each other. Fig. 12 presents the same model as visible in Fig. 1 after 3D rotation.
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Its analysis confirms that indeed, chromosome 9’ is slightly farther away from 5’ than
chromosome 10, almost on the opposite side of the nucleus across from 5'. This example
demonstrates that the DPCI2 approach proves to be less error-prone in comparison to
subjective, manual human-based assessments of distances between objects in 3D.

Finding the nearest and furthest CT s based on DPC12 for rice
chromosome 10

The previous section presented a DPCI12 interpretation when the CT arrangement in a
3D model was already known. Now let us see if we can determine the distance between
CT's and their spatial distribution based exclusively on DPCI2 analysis (when the CT
arrangement is not visualized in 3D). For that purpose we will analyze another DPC12
(presented in Fig. 13) in which chromosome 10 shown in Fig. | in cyan is the central object.
Like in the previous section, we will determine which CT's are the nearest to and farthest
from chromosome 10.

As we established in the previous section, our initial statement that chromosome 10
is the farthest away from 5 was wrong, therefore, we can also assume that 5 is not the
farthest from 10. Thus, we must start our analysis from scratch. Relying solely on the
values presented in DPC12, like before, we must search for bars that have the lowest and
the highest min value on the y-axis in all subcharts. Also like before, we have to take into
account the percentage of a given CT'situated in a particular CoS. In the case of DPCI12
for chromosome 10, we can see that almost all other chromosomes are situated in the top
three CoSes (TL, TF, TR). Hence, we can assume that this chromosome is situated near the
nuclear periphery.

Identifying the chromosome nearest to rice chromosome 10

In order to find the chromosomes closest to chromosome 10, we first need to identify the
subcharts with the lowest situated bars. In Fig. 13 these are TF, RF, LF, TR, and LB. To
facilitate comparison between the bar min values, we added blue baselines that serve as a
ruler-guide (see Figs. 14 and 15).

We will begin by examining the CoSes: TF, RF, and LF (zoomed-in in Fig. 14). In
TFthe lowest min value belongs to the bar corresponding to chromosome 4; it equals
approximately 0.7 pm. Based on the intensity scale in Fig. 7C, we can determine that about
70% of chromosome 4 is situated in this CoS. In both subcharts RF and LF the lowest min
value of the bar also belongs to chromosome 4 and equals approximately 0.9 pm. The weak
color intensity of the chromosome 4 bars in both CoSes means that only a small part of
chromosome 4 is near chromosome 10, c. 10% in the case of RF and 20% for LF.

Next, we will examine subcharts TR and LB (Fig. 15). In TR the lowest min value of 1.1
pwm can be read for chromosome 3’ and 80% of this chromosome is located within the CoS.
In LB chromosome 3’ has the lowest min value of 1.3 wm and c. 20% of this chromosome is
located in this CoS. The results of the analysis presented above are summarized in Table 3.
Comparing the parameters allows us to state that the closest neighbor of chromosome 10
is chromosome 4, while 3’ is slightly farther away, but still very close. In the next section
we will show readers how to find the farthest chromosome from chromosome 10.
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Figure 13 DPCI2 for rice CT's model with chromosome 10 as central object. The ChroTeMo model of
the chromosome 10 CT is presented in Fig. 1 in cyan.

Full-size Gal DOI: 10.7717/peerj.12661/fig-13
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Figure 14 Identifying the CT's nearest to chromosome 10. Selected subcharts zoomed-in from the Fig. 13. The ChroTeMo model of the chromo-
some 10 CT is presented in Fig. | in cyan.
Full-size &l DOI: 10.7717/peer;j.12661/fig-14
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Figure 15 Identifying the CT's nearest to chromosome 10 (cont.). Selected subcharts zoomed-in from
the Fig. 13. The ChroTeMo model of the chromosome 10 CT is presented in Fig. 1 in cyan.
Full-size G4 DOI: 10.7717/peerj.12661/fig-15
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Table 3 Summary of min bar values in DPCI2 and percentage of CT in CoS.

4 3
TF 0.7 um (70%) NA
RF 0.9 m (10%) NA
LF 0.9 jum (20%) NA
TR NA 1.1 pm (80%)
LB NA 1.3 wm (20%)
TL TF

o4 — —_—_—— —— —— —_— o - —_—_ —_ - ——.— —
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chromosome chromosome

Figure 16 Identifying the CT's farthest from chromosome 10. Selected subcharts zoomed-in from the
Fig. 13. The ChroTeMo model of the chromosome 10 CT is presented in Fig. 1 in cyan.
Full-size Gl DOI: 10.7717/peer;j.12661/fig-16

Identifying the chromosome farthest from rice chromosome 10
Now that we have identified the chromosomes nearest to chromosome 10, we can proceed
by analogy to find the ones that are most distant from 10. To do that, we must first select
the DPC12subcharts containing the bars with the highest min value. In this case these are
TLand TFsubcharts, zoomed-in and presented in Fig. 16.

We can read in Fig. 16 that in both subcharts the farthest chromosome from chromosome
10 is chromosome 9. The bars indicate that in TLthe chromosome 9 bar spans the distance
from 4.9 pm to 6.1 pwm, whereas in TFthe same chromosome spans the distance from 4.9
pm to ¢. 5.8 pm. Up to 40% of chromosome 9 CT is located in TL, and the remaining part
of its territory is in TF.

After analyzing DPCI2 charts with chromosome 10 as the central object we can
definitively state that:

e chromosome 10 is situated near the edge of the nucleus, which is indicated by the almost
empty top CoSes (TL, TF, TR)
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Figure 17 Visualization of the CT's nearest to and farthest from chromosome 10. Chromosome 10 (la-
beled cyan) is the central object. The two nearest chromosomes are 4 (labeled green) and 3’ (labeled gray).
The farthest chromosome is 9 (labeled pink).

Full-size Gl DOI: 10.7717/peer;j.12661/fig-17

e no other chromosomes separate chromosome 10 from the nucleus edge, which is
indicated by the completely empty bottom CoSes (BL, BB, BR)

e the nearest CT's to chromosome 10 are the CT's of chromosomes 3" and 4

e the farthest CT from chromosome 10 is the CT of chromosome 9.

We can now compare the data derived from DPC12 analysis to the information provided
by the ChroTeMo model of rice nucleus (Fig. 17). As we can see, the conclusions drawn
from reading DPCI2 are in full agreement with the 3D nucleus model concerning the
spatial positioning of chromosomes 10, 3/, 4, and 9. Furthermore, this full agreement
proves that DPCI2 is sufficient not only for identifying the nearest and farthest CT's in
regard to a given chromosome, but also for performing detailed adjacency analyses of CT's
without the necessity of visualizing them in 3D.

CONCLUSIONS AND FUTURE WORK

In this paper we introduce a novel, user-friendly approach for assessing the mutual location
of 3D objects by using the Cone of Sight (CoS) concept. The advantage of this approach is
that it does not require specialized tools for visualization and interaction with visualized
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3D objects, which is often computationally demanding and requires powerful hardware.
DPC]12 analysis of the mutual location of 3D objects provides sets of objective measurements
and its results are reproducible and can be easily shared as image or pdf files. Moreover,
the DPC12 approach is less time-consuming than manually manipulating objects in 3D
because it allows researchers to perform object adjacency analysis using just one chart. The
approach can be modified and applied to other research areas. Its design makes it usable
in any type of data analysis where 3D objects can be represented or approximated by sets
of 3D points or vector features.
Our further plans include:

optimizing the code

e preparing the code as a module (library) to make it more accessible and user-friendly
e developing the code to allow for the creation of an interactive version of DPC12

e developing an algorithm to convert microscope images to digital models, which will
enable using the DPC12 approach to analyze experimental data.
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