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Defective Tumor Necrosis Factor Release from Crohn’s
Disease Macrophages in Response to Toll-like Receptor
Activation: Relationship to Phenotype and Genome-wide
Association Susceptibility Loci
Gavin W. Sewell, PhD,* Farooq Z. Rahman, PhD,*,† Adam P. Levine, BSc,* Luke Jostins, MPhil,‡

Philip J. Smith, MRCP,* Ann P. Walker, PhD,* Stuart L. Bloom, FRCP,† Anthony W. Segal, PhD, FRS,*
and Andrew M. Smith, PhD*

Background: Recent work provides evidence of a failure of acute inflammation in Crohn’s disease (CD), and suggests that the primary defect

operates at the level of the macrophage and cytokine release. Here we extend the characterization of the innate immune defect in CD by investi-

gating the macrophage response to Toll-like receptor (TLR) agonists and assess potential links between genome-wide association study (GWAS)

susceptibility loci, disease phenotype, and therapeutic regimens on tumor necrosis factor a (TNF) release.

Methods: Peripheral blood-derived macrophages were cultured from control subjects and patients with CD, stimulated with TLR ligands, and

the release of TNF measured. Genomic DNA was purified from blood and genotyped for 34 single nucleotide polymorphisms (SNPs) identified

as being associated with CD by GWAS.

Results: All stimuli resulted in a reduction (32%–48%) in TNF release from macrophages derived from CD patients (n ¼ 28–101) compared to

those from healthy control (HC) subjects. All phenotypes demonstrated impaired TNF release, with the greatest defect in patients with colonic

disease. There was no detectable relationship between the level of TNF released and the presence of GWAS susceptibility loci in CD patients.

Reduced TNF levels were not influenced by age, gender, or use of aminosalicylate (5-ASA) medication.

Conclusions: This study supports the hypothesis of defective proinflammatory cytokine secretion and an innate immunodeficiency in CD.

Abnormal TNF secretion is evident downstream of multiple TLRs, affects all disease phenotypes, and is unrelated to 34 polymorphisms associ-

ated with CD by GWAS.

(Inflamm Bowel Dis 2012;18:2120–2127)
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C rohn’s disease (CD) is a chronic relapsing inflamma-

tory disease of the gastrointestinal tract associated

with considerable lifelong morbidity.1 It is characterized by

granulomatous inflammation that most frequently affects

the terminal ileum and colon. The incidence of CD has

risen dramatically since the latter part of the 20th century

for reasons that remain poorly understood.2

A number of genetic and environmental factors have

been associated with CD. Recently, genome-wide association

studies (GWAS) have identified a number of single nucleo-

tide polymorphisms (SNPs) with significantly different allele

frequencies between CD and healthy control (HC) cohorts. It

has been estimated that these susceptibility variants account

for �23% of the total heritability of the disease. Some of the

strongest associations include NOD2, the interleukin (IL)-23

receptor IL-23R, and two genes with roles in autophagy

(ATG16L1 and IRGM).3,4 Many of the CD-associated genes

identified to date appear to have important roles in sensing,

clearance, and propagation of the inflammatory response to

commensal microbiota. However, although many of the loci

are suspected to influence immune system function, the func-

tional variants within each locus and the underlying patho-

genic mechanism remain to be elucidated.

Additional Supporting Information may be found in the online version of this

article.
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Mounting evidence suggests that CD may result from

an innate immunodeficiency.5–7 Although the precise mech-

anisms responsible for this abnormality remain to be deter-

mined, a primary pathogenic defect in the macrophage

response to bacteria has recently been shown. Macro-

phages, the sentinels of the immune system, orchestrate

cellular responses against a complex and diverse range of

intestinal microbial insults via pattern recognition receptors

such as Toll-like receptors (TLRs) and NOD-like receptors

(NLRs).8,9 Macrophage activation through these and other

interconnected but subtly distinct signaling pathways indu-

ces secretion of inflammatory mediators that recruit and

activate other leukocytes from the surrounding microcircu-

lation. It is postulated that the dysregulated macrophage

response to bacteria is central to the pathogenesis of CD. A

number of recent studies have demonstrated impaired lev-

els of macrophage proinflammatory cytokine release,

including tumor necrosis factor-a (TNF), in response to E.
coli stimulation.7,10 Attenuated macrophage proinflamma-

tory cytokine secretion may result in the impaired neutro-

phil recruitment and bacterial clearance observed in

patients with CD. The retention of the undigested bacteria

at sites of ingress was proposed to be the driving force for

the ensuing chronic inflammatory reaction and granuloma-

tous pathology that characterizes CD.6,7

TLRs are transmembrane pathogen pattern recogni-

tion receptors expressed by myelomonocytic and epithelial

cells.11 Each TLR recognizes specific bacterial or viral

components; key TLRs in the response to bacteria include

TLR4, which recognizes lipopolysaccharide (LPS), TLR2,

which recognizes lipoteichoic acid, peptidoglycan and the

synthetic tripalmitoylated lipopeptide PAM3CSK4, and

TLR5, which binds to flagellin.12 Ligand-receptor engage-

ment results in intracellular signaling cascades and the

induction of effector responses important for the innate

immune defense against microbes. The potential relevance

of TLRs in the response to intestinal microbiota is demon-

strated by TLR4 knockout mice, which have earlier and

more pronounced gastrointestinal bleeding than wildtype

mice after administration of dextran sodium sulfate (DSS),

which coincided with increased bacterial translocation and

impaired neutrophil recruitment.13 Differential expression

of TLRs have been documented in biopsy samples from

inflammatory bowel disease (IBD) patients.14,15 A number

of studies have reported associations between TLR4 poly-

morphisms and CD,16 although these were not replicated in

a recent large GWAS meta-analysis.4

TNF, a potent mediator of inflammation and major

target of biological therapy in CD, was chosen as the focus

of this study to assess the acute inflammatory response of

macrophages following microbial stimulation. In the pres-

ent study we compared TNF release from CD and HC mac-

rophages after TLR2, TLR4, and TLR5 activation. In addi-

tion, we used these results in combination with patient

information and SNP genotypes to test for any association

between defective proinflammatory responses, inheritable

risk factors, and disease phenotype.

MATERIALS AND METHODS

Patients
Adult patients with definitive diagnoses of CD con-

firmed using standard diagnostic criteria were recruited from

the Gastroenterology Outpatient Clinic at University College

London Hospitals NHS Foundation Trust (UCLH). None of

the patients studied showed any clinical or biochemical evi-

dence of impaired nutritional state. In some experiments,

patients with ulcerative colitis (UC), a clinically and histopa-

thologically distinct form of IBD, were used as a control

group in addition to healthy subjects. All patients recruited

had Harvey–Bradshaw scores of <3 or partial Mayo score <3

for CD and UC, respectively, both of which have been vali-

dated for assessment of disease activity.17,18 All individuals

were on no medication or on maintenance 5-aminosalicylic

acid (5-ASA) at the time of sample collection (Table 1).

These studies were approved by the Joint UCL/UCLH

Committees on the Ethics of Human Research (02/0324).

Written informed consent was obtained from all volunteers.

No patient was studied more than once in each of the different

sets of experiments.

Macrophage Isolation, Culture, and Stimulation
Peripheral venous blood samples were collected from

subjects into heparinized syringes (5 U/mL). Mononuclear

cells were isolated by differential centrifugation (900g, 30

minutes, 20�C) over Lymphoprep (Axis-Shield, Oslo, Norway)

and washed twice with sterile phosphate-buffered saline (PBS)

(Gibco, Paisley, UK) at 300g (5 minutes, 20�C). Cells were

resuspended in 10 mL RPMI-1640 medium (Invitrogen, Pais-

ley, UK) supplemented with 100 U/mL of penicillin (Gibco)

and 100 lg/mL streptomycin (Gibco) and 20 mM Hepes

buffer (Sigma-Aldridge, Poole, UK) (RPMI), and plated at a

density of �5 � 106 cells/mL in 8 cm2 Nunclon Surface tis-

sue culture dishes (Nunc, Roskilde, Denmark). After an initial

culture period of 2 hours at 37�C, 5% CO2, the nonadherent

cells were discarded and 10 mL of fresh RPMI supplemented

with 10% fetal bovine serum (Sigma) (10% FBS/RPMI) added

to each tissue culture dish. Cells were then cultured for 5 days

at 37�C, 5% CO2, with the addition of a further 10 mL fresh

10% FBS/RPMI after 24 hours.

Adherent cells were scraped on day 5 and replated in

96-well culture plates at equal densities (105/well) in X-Vivo-

15 medium (Cambrex, Walkersville, MD). These primary

monocyte-derived macrophages were incubated overnight at

37�C, 5% CO2 to adhere, and then stimulated for up to 24

hours 200 ng/mL LPS (Alexis, San Diego, CA), 2 lg/mL

Pam3-Cys-Lys4 (Alexis) and 20 ng/mL flagellin (Alexis).
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TNF Release After TLR Stimulation
TNF release was measured using a cytotoxicity bioassay

(obtained from Prof. B. Beutler, Scripps Institute, La Jolla,

CA) as previously described.19 Murine L929 fibroblast cells

were grown in Dulbecco’s modified Eagle’s medium (DMEM;

Gibco), supplemented with 10% FBS (Sigma), 100 U/mL of

penicillin (Gibco), and 100 lg/mL streptomycin (Gibco), at

37�C, 5% CO2. A confluent monolayer of murine L929 fibro-

blasts was trypsinized and resuspended to 4 � 105 cells/mL in

DMEM. L929 cells were seeded into 96-well flat-bottom tis-

sue culture plates (4 � 104 cells/well) and incubated overnight

at 37�C, 5% CO2. After overnight culture the medium was

discarded, replaced by 50 lL DMEM containing cyclohexi-

mide (0.04 mg/mL), and incubated for 20 minutes at 37�C,
5% CO2. Fifty lL of cell-free supernatant (diluted 1:50 in

DMEM), collected from primary macrophages as described,

was added to individual wells. Serially diluted recombinant

human TNF (R&D Systems, Minneapolis, MN) (100-0 pg/mL)

was used to determine the standard curve for the assay.

Cytokine release in culture supernatants was normalized

for the numbers of viable cells in each well, ascertained with

the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrozo-

lium bromide, tetrazolium salt) assay (Boehringer Ingelheim,

Berkshire, UK). Twenty lL of 2.5 ng/mL MTT was added to

each well and incubated for 4 hours at 37�C, 5% CO2. Super-

natants were carefully discarded and 100 lL/well of lysis

solution (90% isopropanol, 0.5% sodium dodecyl sulfate

[SDS], 0.04 N HCl, 10% H20) added to each well for 1 hour

at room temperature. The absorbance was read at 570 nm

using a microplate reader (Anthos Labtec Instruments,

Salzburg, Austria).

Purification of Total Genomic DNA
Peripheral venous blood samples were collected from

subjects into heparinized syringes (5 U/mL) and genomic

DNA prepared, using the QIAamp DNA blood Mini Kit (Qia-

gen, Hilden, Germany). Optical density readings were deter-

mined for OD260/OD280 and OD260/OD230 using a NanoDrop

ND-1000 spectrophotometer (Fisher Scientific, Loughborough,

UK) to assess protein and solvent contamination, respectively.

SNP Genotyping
Genotyping for 34 CD-associated SNPs was performed

using the iPLEX Gold Assay (Sequenom, San Diego, CA),

shown in Supporting Table 1. The SNPs were selected based

on the results of previous GWAS.3 Assays for all SNPs were

designed using the eXTEND suite and MassARRAY Assay

Design software v. 3.1 (Sequenom). Amplification was con-

ducted in a total volume of 5 lL containing �0.06–0.4 ng

genomic DNA, 100 nM of each PCR primer, 500 lM of each

dNTP, 1.25 � PCR buffer (Qiagen), 1.625 mM MgCl2, and

1U HotStar Taq (Qiagen). Reactions were heated to 94�C for

15 minutes followed by 45 cycles at 94�C for 20 seconds,

56�C for 30 seconds, and 72�C for 1 minute, then a final

extension at 72�C for 3 minutes. Unincorporated dNTPs were

shrimp alkaline phosphatase (SAP)-digested prior to iPLEX

Gold allele specific extension with mass-modified ddNTPs

using an iPLEX Gold reagent kit (Sequenom), in accordance

with the manufacturer’s instructions. Reaction extension

primer concentrations were adjusted to between 0.7–1.8 lM,

dependent on primer mass. Extension products were desalted

and dispensed onto a SpectroCHIP using a MassARRAY

Nanodispenser prior to matrix-assisted laser desorption ioniza-

tion time-of-flight (MALDI-TOF) analysis with a MassAR-

RAY Analyzer Compact mass spectrometer. Genotypes were

automatically assigned and manually confirmed using Mas-

sARRAY TyperAnalyzer software v. 4.0 (Sequenom). In a

few cases the genotypes could not be assigned and these indi-

viduals were therefore excluded from the analysis.

Statistical Analysis
All data are presented as mean 6 standard error of the

mean (SEM). Statistical significance between groups was eval-

uated using a one-way analysis of variance (ANOVA) with

Tukey posttest or an unpaired two-tailed Student’s t-test when
only two groups were compared. Mean differences were con-

sidered significant when P < 0.05. Correlation analysis was

assessed using Pearson’s correlation coefficient.

RESULTS

CD Macrophages Release Diminished TNF After
TLR Stimulation

We first determined whether macrophage TNF secre-

tion was defective after various TLR stimuli. Monocyte-

derived macrophages were activated with the TLR ligands

TABLE 1. Demographics of the Subjects

HC CD UC

n 41 101 47

Gender (M:F) 21:20 37:64 24:23

Mean age 32.8 41.6 44.5

Age standard deviation 9.93 15.3 15.9

Age range 20-59 18-75 21-75

Smokers 5 20 3

Treatment

No medication 25

5-ASA only 76

Others 0

Disease location

L1 32

L2 44

L3 24

L4 1

Genotype information 36 97

Disease location was subdivided into ileal (L1), colonic (L2), ileocolonic
(L3), and upper gastrointestinal (L4).
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PAM3CSK4 (HC n ¼ 41 and CD n ¼ 101), LPS (HC n ¼
33 and CD n ¼ 83), and flagellin (HC n ¼ 13 and CD n ¼
28). In all cases macrophages isolated from CD patients

demonstrated grossly attenuated TNF secretion compared

to control subjects (Fig. 1). TLR2 activation by

PAM3CSK4 resulted in macrophages from CD patients

releasing TNF at levels which were equivalent to a 45%

reduction compared to the control group (P ¼ 4 � 10�8).

LPS exposure results in TLR4 activation and release of

TNF from CD macrophages, and again this was signifi-

cantly lower than the control group (32%, P ¼ 2 � 10�6).

Similarly, TLR5 ligation by flagellin demonstrated attenua-

tion in TNF release (48%, P ¼ 0.003). Reduced TNF

secretion was not due to differences between CD and HC

macrophage phenotype, reduced TLR expression, or abnor-

malities in receptor signaling and gene induction (Support-

ing Fig. 1).7 These results provide evidence to support an

altered macrophage immune response to microbial chal-

lenge in CD and show that the defect is not restricted to an

individual receptor.

Association Between Aberrant TNF Release and
Disease Phenotype

It is now recognized that CD is a syndrome and can

be divided into subtypes depending on disease phenotype,

ileal (L1), colonic (L2), and ileocolonic (L3).20 It was

therefore of interest to subdivide our CD patients into phe-

notypic groups and compare the levels of TNF released

after PAM3CSK4 and LPS stimulation (Fig. 2). All three

phenotypes demonstrated defective TNF secretion com-

pared to HC after stimulation with either PAM3CSK4 or

LPS. Direct comparison between all three CD phenotypes

revealed that L1 patients released higher TNF levels than

L2 patients and this difference reached significance with

LPS (P ¼ 0.047). Therefore, diminished TNF secretion is

common to all three phenotypes and confirms our previous

FIGURE 1. Macrophages from CD patients release attenuated TNF in response to TLR stimulation. Monocyte-derived macrophages stimulated
for 6 hours with PAM3CSK4 (PAM3), LPS, and flagellin, and TNF levels in supernatants were quantified using the TNF bioassay. (A) TLR2 response
was measured in macrophages from HC (n ¼ 41) and CD (n ¼ 101) after PAM3 stimulation. (B) TLR4 response was measured in macrophages
from HC (n ¼ 38) and CD (n ¼ 87) after LPS stimulation. (C) TLR5 response was measured in macrophages from HC (n ¼ 13) and CD (n ¼ 28) af-
ter flagellin stimulation. TNF levels from each subject are depicted with the mean value shown as a black horizontal bar with P-value. Data are
shown on a logarithmic scale. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIGURE 2. Defective TNF release is common to all phenotypes. CD
subjects were divided into three phenotypic subgroups based on
disease location, including ileal (L1, n ¼ 32), colonic (L2, n ¼ 44),
and ileocolonic (L3, n ¼ 24) involvement. (A) There were no signifi-
cant differences in macrophage TNF release after TLR2 stimulation
between disease phenotypes. (B) Macrophages from patients with
colonic CD release significantly less TNF than ileal patients after
TLR4 stimulation with LPS. Macrophages from all groups released
significantly less TNF than the HC cohort in response to TLR2 and
TLR4 stimulation. Results expressed as mean 6 SEM with P-value.
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findings demonstrating defective TNF release after E. coli
stimulation in both ileal and colonic patients.7

Abnormal TNF Release Is Not Dependent on Prior
Bowel Inflammation, Gender, Age, or Medication

We examined whether factors such as prior bowel

inflammation, medication, smoking tobacco, age, and gen-

der could have a confounding influence on macrophage

TNF secretion in response to TLR agonists. No correlation

was observed between age and TNF release after either

PAM3CSK4 (r2 ¼ 0.005, P ¼ 0.94) or LPS (r2 ¼ 0.0164,

P ¼ 0.24) stimulation (Supporting Fig. 2). In addition,

there was no association between current medication,

smoking status, or gender (Fig. 3A–C). Interestingly, CD

patients who smoked released TNF levels that were not

significantly different from HC after LPS stimulation; how-

ever, the same individuals did demonstrate impaired TNF

secretion after PAM3CSK4 exposure (P ¼ 0.002).

In order to determine whether previous bowel inflam-

mation could influence macrophage TNF release, patients

with UC were investigated as an additional control cohort.

Macrophages from UC subjects (n ¼ 47) released TNF at

levels equivalent to HC, and significantly greater than CD

patients after PAM3CSK4 (P ¼ 2 � 10�6) and LPS stimu-

lation (P ¼ 3 � 10�4) (Fig. 4).

These results demonstrate that the attenuated TNF

release by CD macrophages is attributable to the disease

and independent of previous bowel inflammation, use of 5-

ASA medication, age, or gender. Smoking status seems to

be more complex, with an apparent normal TNF release

downstream of TLR4 in smokers coinciding with a defec-

tive TLR2 response. Further investigation will be necessary

to determine the mechanism of these observations.

FIGURE 3. TNF secretion after TLR2 and TLR4 activation in relation to medical treatment, smoking, and gender. CD patients and where
applicable HC were divided by (A) treatment (CD no-treatment n ¼ 25, 5-ASA treatment n ¼ 76; HC n ¼ 38), (B) smoking (CD smoker
n ¼ 20, nonsmoker n ¼ 81), and (C) gender, (CD male [M] n ¼ 37, female [F] n ¼ 64; HC male [M] n ¼ 21, female [F] n ¼ 20). All results
are expressed as mean 6 SEM with P-value.
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Diminished TNF Secretion Is Not Dependent on
CD Susceptibility Polymorphisms

GWAS have identified over 70 loci that are associated

with CD.3,4 In this study we looked for association between

34 SNPs strongly associated with CD and TNF secretion

downstream of TLR2 (Fig. 5; Supporting Table 1). NOD2 is

the strongest CD-associated gene identified to date, which

encodes an intracellular sensor of muramyl dipeptide

(MDP). The three CD-associated polymorphisms in NOD2
have been shown to result in defective pro- and antiinflam-

matory cytokine induction after stimulation with MDP.21 We

investigated the effect NOD2 polymorphisms had on TNF

release downstream of TLR2 stimulation. Dividing our CD

cohort into patients either homozygous or compound hetero-

zygous (n ¼ 5), heterozygous (n ¼ 16), or wildtype (n ¼ 71)

for NOD2 polymorphisms showed no significant effect on

TNF release after PAM3CSK4 stimulation (Fig. 5A). In addi-

tion, the attenuated TNF release was independent of poly-

morphisms in the autophagy-associated genes ATG16L1 and

IRGM (Fig. 5B,C), and IL-23R (Fig. 5D). The other 28 SNPs

tested also demonstrated no effect on TNF release in HC and

CD cohorts (data not shown). The same findings were also

evident after TLR4 stimulation (data not shown). HC who

carry one NOD2 CD risk allele release levels of TNF equiva-

lent to individuals with two wildtype alleles, whereas one

individual with two risk alleles demonstrated attenuated

TNF levels (Fig. 5E). Furthermore, the release of TNF from

HC macrophages in response to PAM3CSK4 did not differ

significantly between wildtype, heterozygous, or homozy-

gous individuals for ATG16L1, IRGM, or IL-23R CD-associ-

ated polymorphisms (Fig. 5F–H).

These results indicate that there is no detectable rela-

tionship between the highly significant susceptibility loci

identified by GWAS and the defective release of TNF

downstream of TLR activation, with the possible exception

of NOD2, suggesting these could be independent events

that coincide in patients with CD.

DISCUSSION
We present evidence demonstrating that macrophages

from CD patients have attenuated TNF release downstream

of multiple TLRs. This defect was evident in all three major

CD phenotypes, and was not related to use of 5-ASA medi-

cation or previous bowel inflammation. The age and gender

of the patient also had no effect on the levels of TNF

released. The majority of susceptibility loci that have been

identified by large-scale GWAS failed to demonstrate an

influence on TNF release from macrophages after TLR acti-

vation. These results build on the growing body of work

supporting a defective innate immune response in CD, but

highlight our lack of mechanistic insight into the cause of

this abnormality. The lack of association between impaired

TNF release and GWAS risk alleles also reveals that while

both coexist in CD, they are likely independent. Individuals

who are more likely to develop CD may have inherent sus-

ceptibility plus a weak innate immune response.

CD is a complex disease comprising multiple stages

and phenotypes. We recently demonstrated that CD patients

clear bacteria less rapidly than control individuals, which

was associated with delayed recruitment of neutrophils and

defective macrophage function.7 This led us to propose a

‘‘three-stage’’ model for CD pathogenesis—where mucosal

damage and penetration of bacteria and other particulate

matter from the bowel wall is followed by an impaired mac-

rophage response and incomplete bacterial clearance. Subse-

quently, a compensatory adaptive immunological response

develops, associated with chronic, granulomatous inflamma-

tion and an elevation in proinflammatory cytokines that is

characteristic of the ‘‘active’’ phase of CD.22 Our findings

here of defective TNF release by CD macrophages in

response to TLR agonists is consistent with this model,

given the prominent role of TNF in the acute inflammatory

response, upregulation of vascular cellular adhesion mole-

cules,23 and resultant recruitment of neutrophils.

A role for deficient release of TNF in the pathogene-

sis of CD is supported by a number of in vivo studies. The

effect of TNF blockade or deficiency in the DSS murine

model of colitis is particularly instructive. Although antago-

nists of this cytokine are highly effective at ameliorating

inflammation when given to mice with established colitis,

FIGURE 4. Macrophages from UC patients release normal levels of
TNF in response to TLR stimulation. Supernatants from macrophages
stimulated for 6 hours with PAM3 and LPS were tested for the levels
of TNF released. (A) TLR2 response was measured in macrophages
from HC (n ¼ 41), CD (n ¼ 101), and UC (n ¼ 47) after PAM3 stimula-
tion. (B) TLR4 response was measured in macrophages from HC (n ¼
38), CD (n ¼ 87), and UC (n ¼ 47) after LPS stimulation. TNF levels
from each subject are depicted with the mean value shown as a
black horizontal bar with P-value. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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animals with a genetic deficiency of TNF are more suscepti-

ble to acute colitis than wildtype animals, with a 60% 7-day

mortality compared to 0% in control animals.24 The dichot-

omous effects of this pivotal cytokine supports the concept

of the ‘‘phasic’’ nature of CD pathogenesis and suggests

that the same cytokines that have a deleterious effect during

chronic inflammation may confer protection in the preced-

ing acute inflammatory response. Polymorphisms associated

with disease through GWAS are mainly markers of shared

genetic regions that are present at increased frequency in

individuals with disease. The biological roles these markers

play remain largely unknown and to date a number of stud-

ies have been carried out on NOD2, IL23R, and ATG16L1

with contradictory results. NOD2 polymorphisms are asso-

ciated with impaired induction of proinflammatory cyto-

kines in response to MDP,21 yet peripheral blood mononu-

clear cells from individuals with the ATG16L1 Thr300Ala

CD-risk variant were recently reported to release increased

levels of IL-1b after MDP stimulation,25 and ATG16L1 de-

ficient macrophages secrete increased IL-1b and IL-18 in

response to LPS.26 In this study we looked for associations

between CD susceptibility polymorphisms and the defective

release of TNF from macrophages. Overall, the results sug-

gest that the strongest associated polymorphisms play no

major role in the reduced TNF levels associated with mac-

rophages from CD patients. A possible exception is NOD2,
as CD individuals and one HC individual tested demon-

strated a trend toward attenuated TNF release in response to

TLR2 stimulation compared to NOD2 wildtype individuals.

Although studies conducted on macrophages from NOD2
knockout mice revealed normal TNF release in response to

TLR2 activation with peptidoglycan,27 further studies will

be required to clarify the role of NOD2 in the human mac-

rophage TLR2 response.

The results further suggest that the molecular basis of

abnormal proinflammatory cytokine secretion by CD mac-

rophages has not yet been identified and additional studies

are needed to account for this phenomenon. A number of

FIGURE 5. Relationship between TNF secretion after TLR2 activation and GWAS SNPs. Patients were typed for 34 SNPs associated with
increased risk of developing CD and separated into homozygous nonrisk (black), heterozygous (gray), and homozygous risk (white) for (A)
NOD2 (compound heterozygotes where grouped with homozygous risk), (B) IRGM, (C) ATG16L1, and (D) IL23R and the corresponding TNF
levels after TLR2 activation shown. Corresponding results for the HC cohort are shown in (E–H). Results expressed as mean 6 SEM with
P-value, value shown in each bar represents the number of individuals in each genotype.
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additional loci have recently been reported as associated with

CD, several of which contain genes encoding proteins

involved in vesicle and protein trafficking (VAMP3, NDFIP1,
SCAMP3), which could have a role in proinflammatory cyto-

kine release by macrophages. It has been estimated that

�23% of the heritability of CD can be explained by the var-

iants identified to date by GWAS.4 Furthermore, it has been

postulated that rare variants, structural rearrangements, or

epigenetic modifications could account for some of the

‘‘missing heritability.’’28 It is very possible that some of these

mutations, which are likely to be highly heterogeneous

between individual CD patients, could be important determi-

nants of the macrophage response to bacterial agonists.

Impairment of TNF release is more severe in patients

with colonic CD. Whereas defective pathways associated

with NOD2 have been implicated in the causation of ileal

CD, a grossly impaired TLR response to bacteria appears

to be more relevant to colonic inflammation in CD. Our

results suggest that future studies on the pathogenesis of

this heterogeneous condition may prove more fruitful if

patients with CD are grouped according to phenotype

rather than by their primary diagnosis. This is an important

consideration when interpreting genome-wide association

projects as well as planning therapeutic regimens and clini-

cal trials. Work to define the precise underlying molecular

defects associated with defective cytokine secretion is

ongoing and may offer novel therapeutic targets in the

future.
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