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Abstract

While the role of drug resistance mutations in HIV protease has been studied comprehen-
sively, mutations in its substrate, Gag, have not been extensively cataloged. Using deep se-
quencing, we analyzed a unique collection of longitudinal viral samples from 93 patients
who have been treated with therapies containing protease inhibitors (Pls). Due to the high
sequence coverage within each sample, the frequencies of mutations at individual positions
were calculated with high precision. We used this information to characterize the variability
in the Gag polyprotein and its effects on Pl-therapy outcomes. To examine covariation of
mutations between two different sites using deep sequencing data, we developed an ap-
proach to estimate the tight bounds on the two-site bivariate probabilities in each viral sam-
ple, and the mutual information between pairs of positions based on all the bounds. Utilizing
the new methodology we found that mutations in the matrix and p6 proteins contribute to
continued therapy failure and have a major role in the network of strongly correlated muta-
tions in the Gag polyprotein, as well as between Gag and protease. Although covariation is
not direct evidence of structural propensities, we found the strongest correlations between
residues on capsid and matrix of the same Gag protein were often due to structural proximi-
ty. This suggests that some of the strongest inter-protein Gag correlations are the result of
structural proximity. Moreover, the strong covariation between residues in matrix and capsid
at the N-terminus with p1 and p6 at the C-terminus is consistent with residue-residue con-
tacts between these proteins at some point in the viral life cycle.
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Author Summary

Understanding the structure of HIV proteins and the function of drug-resistant mutations
of these proteins is critical for the development of effective HIV treatments. Selected gag
mutations have been shown to provide compensatory functions for protease resistance
mutations and may directly contribute to the development of drug resistance. To deter-
mine associations between protease inhibitor mutations and gag, we utilized deep sequenc-
ing of HIV gag and protease from a collection of viral isolates from patients treated with
highly active retroviral protease inhibitors. Deep sequencing allows for accurate measure-
ment of mutation frequencies at each position, allowing estimation, using a novel method
we developed, of the covariation between any two residues on gag. Using this information,
we characterize the variation within gag and protease and identify the most strongly corre-
lated pairs of inter- and intra-protein residues. Our results suggest that matrix and p1/p6
mutations form the core of a network of strongly correlated gag mutations and contribute
to recurrent treatment failure. Extracting gag residue covariation information from the
deep sequencing of patient viral samples may provide insight into structural aspects of the
Gag polyprotein as well new areas for small molecule targeting to disrupt Gag function.

Introduction

Despite great advances in the treatment of HIV/AIDS, the rapid evolution of resistance against
protease inhibitors (PIs) contributes significantly to the persistence of highly active retroviral
(ART) failure. Resistance mutations in the viral protease (PR) have been extensively studied
[1-5], but mutations in its substrate, Gag, have been less well-studied and drug resistant muta-
tions not as well cataloged. Protease inhibitor-mediated mutations in gag function as compen-
satory mutations for protease function and can directly promote resistance to PIs [6-14].
Investigation of resistance mutations in protease has led to advancements in protease inhibitor
development. A better understanding of the association among inhibitor resistance mutations
in Gag and their contribution to PI failure could be useful for the design of maturation inhibi-
tors and clinical treatment strategies, and for building structural models.

During the past decade, advancements in DNA sequencing technologies have allowed for
the study of the viral populations within an individual, and importantly these advancements
allow for the quantification of low and infrequent HIV drug resistant mutations, which are dif-
ficult to detect using traditional Sanger sequencing [15-17]. Moreover, it has been reported
that viral mutations that occur with frequencies less than 10% are systematically under-mea-
sured with conventional sequencing techniques [18,19]. Importantly, deep-sequencing tech-
nologies can reliably detect sequence variants with frequencies of 1% or less when template
tagging such as PrimerID is utilized [20,21].

The sequencing depth afforded by deep-sequencing comes with a cost, as the templates
being sequenced, typically 75-200bp in size, are often smaller than the region of interest, thus
disrupting linkage analysis. Even when paired-end read methodology is used, it is nearly im-
possible to determine if two mutations far apart in a sequence occur simultaneously. These
limitations have forced most studies to focus on analyzing the frequencies of single residue
substitutions. Little progress has been made in identifying pairs or higher order patterns of
residue substitutions in HIV samples from patients using deep-sequencing technologies. Ad-
ditionally, due to the cost of deep-sequencing large regions of a target genome, comprehen-
sive, simultaneous deep sequencing of viral samples from patients is not attempted on a
regular basis.
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An open question in better understanding protease inhibitor resistance is the role of gag
mutations, both cleavage and non-cleavage site mutations, in contributing to resistance. To
this end, we have relied on next generation sequencing of a 2 kb region encompassing the en-
tire gag gene and the protease portion of the pol gene from 93 HIV positive patients undergoing
ART which included a protease inhibitor. This patient population is unique in that all patients
were followed after the first failure through the second treatment, of which approximately one-
half of the patients failed treatment and the remaining patients controlled their virus [22].
Given our sequential patient sample collection, viral sample amplification methodology, and
the precise sequence coverage from deep-sequencing, we calculated single-site residue frequen-
cy variation in gag and protease from the viral population from each patient sample. These
studies allowed examination of the patterns of single amino acid substitutions in Gag and their
correlations with repeated PI-therapy failure. Importantly, the comprehensive viral sample col-
lection and sequencing methodology allowed us to investigate two central aspects of protease
inhibitor resistance in protease and gag: single-site variation and two-site covariation.

Conventional analysis methods of two-site covariation, often conducted on multiple se-
quence alignments of full DNA sequences, are difficult to apply to our type of data set due to
the limited read lengths provided by current deep-sequencing methodology and the presence
of multiple viral species in each sample. To overcome this challenge, we have developed a sta-
tistical framework to estimate the probabilities of observing double mutants from the observed
single-site marginal probabilities in each sample. This advantage over other methods allows for
the aggregation of the probabilities from all samples into a single probability to which conven-
tional covariation analyses can be applied. This then allowed us to utilize mutual information
(MI) to calculate the pair correlations between pairs of positions in gag. The strongest of such
correlations were identified and their implications for gag structural propensities are discussed.
The same statistical framework can be applied to other systems that have been sequenced with
next-generation sequencing technologies.

Results

High concordance in SNP frequency between sequenced viral replicates
from patients

A sequential collection of peripheral blood viral samples from patients undergoing ART, con-
taining a protease inhibitor (PI) and combinations of nucleoside and non-nucleoside reverse
transcriptase inhibitors (NRTIs and NNRTTIs), provides a unique opportunity to evaluate mu-
tational changes in the Gag polyprotein and protease over time as a function of protease in-
hibitor treatment. For patients from which samples were obtained, all ARTSs contained a
single PI, but included combinations of nucleoside and non-nucleoside reverse transcriptase
inhibitors (NRTIs and NNRTIs). There are only two relevant PI therapies for each patient:
the first of which all patients failed prior to sequencing (treatment with various regimens had
failed to maintain long-term suppression of viral replication below the limit of detection (50-
400 copies/mL, depending on the time of testing)), and a second therapy, in which a different
prescribed PI was provided and patients were successfully treated and suppressed virus or
continued to fail treatment. Of 93 patients entering treatment, 80 patients had definitive sec-
ond therapy outcomes, defined as success (28 patients, viral levels below 100 copies/mL) or
failure (52 patients treatment with various regimens had failed to maintain long-term sup-
pression of viral replication below the limit of detection (100-400 copies/mL, depending on
the time of testing)). For the purpose of sequencing, samples were considered for inclusion
into the studies with >1000 copies/mL. If possible, additional samples were obtained from pa-
tients who failed the second therapy. The remaining 13 patients had varying levels of viral
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load slightly below 1000 copies/mL and samples were excluded given inadequate viral
amounts for sequencing studies.

Current next generation sequencing technologies require a large amount of starting material
that greatly exceeds the amount of viral RNA present in a typical clinical sample. Reverse tran-
scription and amplification of the viral material by PCR could introduce bias based on stochas-
tic resampling, leading to a final product pool that is not representative of the initial sample.
To reduce the effect of resampling, we attempted to maximize cDNA production and usage by
adopting a 1-step RT-PCR approach. This single round of PCR used 40 cycles and was suffi-
cient to generate hundreds of nanograms of product for >95% of RNA samples. In contrast,
some other studies [21,23] have relied on a nested PCR approach, which may contribute to re-
sampling bias and increases the total number of PCR cycles.

To evaluate possible biases resulting from our RT-PCR procedure, we compared SNP fre-
quencies in technical replicates, finding a high level of concordance. Specifically, for three clini-
cal samples, we obtained multiple aliquots that were processed independently throughout the
entire process of preparation and sequencing. These samples spanned a range of clinically rele-
vant viral loads, from 2,000 copies/mL to 30,000 copies/mL. In each case, the paired replicates
showed SNP frequencies that were well correlated even when ignoring SNPs that occur with
<10% or >90% frequency in paired samples, R>>0.95 for each pair (Fig 1). The difference be-
tween replicates appeared smallest for the sample with greatest viral load, indicating that a
higher number of template molecules can reduce stochastic effects, as might be expected. Aside
from the RT-PCR process, the high level of sequencing coverage afforded by the use of the Illu-
mina HiSeq 1000 could also be a factor in the strong correlation between replicates.

The consensus among many studies using next generation sequencing is that discrimination
of true variants from background variation becomes difficult at frequencies below 1% [16]. Ad-
ditionally, recent work comparing sequencing with different primer tagging procedures shows
that standard sequencing analysis, like has been conducted in this study, cannot distinguish
true mutations from artificial mutations present at frequencies less than 1% [15]. However, at
frequencies above 1%, standard sequencing analysis has a similar accuracy to that of primer
tagged sequences. To ensure that mutations were likely to be biologically relevant we required
that mutations occur with frequencies >1% (i.e., related to exposure to protease inhibitors)
and occur in >5 different patient samples.

Viral load
high

* moderate

Replicate 2

* low

Replicate 1

Fig 1. Single nucleotide polymorphism (SNP) frequencies between independent replicates are
strongly correlated. Three patient samples with viral loads of 2,000, 8,500, and 67,000 copies/mL (low,
moderate, and high, respectively), were extracted, reverse transcribed, amplified, and sequenced in
duplicate. A comparison of SNP frequencies between these replicates shows R>0.99 in all cases. Even when
ignoring SNPs that occur with <10% or >90% frequency in paired samples, R>0.95 for each pair.

doi:10.1371/journal.pcbi.1004249.9001
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Mutations in protease and gag

Mutations in protease that occur under protease inhibitor (PI) treatment have been docu-
mented extensively [1,3-7,24-26]. The mutational patterns in prior reports serve as a compari-
son standard to which we can compare the mutational patterns identified in protease using
deep sequencing. Across all treatment samples, regardless of treatment, 50 drug-associated
protease mutations at 33 different positions were identified. In each patient sample, these mu-
tations tend to be either dominant or almost absent. Due to this bimodal nature of the muta-
tions at each position within a sample, a mutation was labeled as present if the proportion of
the mutation is greater than 1%, and as absent if the proportion of the mutation is less than
1%. By this categorization, we are able to compare the protease mutation pattern in each sam-
ple with patterns seen in bulk sequencing and reported in the Stanford HIV Drug Resistance
Database [24,27] (shown in S1 Fig). Overall, the protease mutational patterns in our samples
resemble patterns from the Stanford HIV Drug Resistance Database exposed to a single PI.
This is consistent with the notion that our samples were obtained from patients treated with a
minimum of 1 PI and a maximum of two PIs. In contrast, the Stanford Database also included
sequences from more protease inhibitor experienced patients. The protease site-specific fre-
quencies identified are shown in S2 Fig.

The majority of Gag mutations that have been associated with protease inhibitor resistance
are confined to mutations within or near the 5 cleavage sites (CSs) separating the Gag proteins
[6]. Currently, there are less than 65 mutations at 40 Gag positions reported that are PI- or
maturation inhibitor-associated or found to covary with protease mutations [6]. Of the 65 PI-
associated mutations, only 10 have been shown to directly contribute to PI-resistance; the re-
maining mutations have been observed only under PI-treatment, but are otherwise of un-
known viral utility. Together, these mutations only represent residue variation of roughly 8%
of gag, and half are located at cleavage sites, which include the 10 resistance mutations contrib-
uting to PI-resistance. Nevertheless, it has been noted using conventional sequencing that
many polymorphisms exist in Gag [28].

Utilizing deep sequencing, we found that residue variation in gag was abundant; shown in
Table 1, we observe 329 residue changes at 192 positions throughout gag. In Fig 2, the observed
variation in the deep sequencing data (top) is shown above with the variation present in 2378
drug-naive gag sequences from the Los Alamos HIV sequence database (bottom) (http://www.
hiv.lanl.gov/). Positions in gag that have similar mutation frequencies between the two datasets
are shown in light gray and with reported mutations linked to PI-exposure in red [6]. Muta-
tions were identified within and just outside cleavage sites, but many mutations occurred

Table 1. Observed variation in each Gag protein.

Name Length Observed non-consensus amino acid mutations Sites with at least

one hon-consensus
amino acid mutation

Gag 500 329 192 38%
Matrix 132 122 64 48%
Capsid 231 54 44 19%
p2 14 22 9 64%
Nucleocapsid 55 42 27 49%
p1 16 12 7 44%
p6 52 77 41 79%
Protease 99 75 46 46%

doi:10.1371/journal.pcbi.1004249.t1001
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Fig 2. Samples with variants vs sequence position over Gag. Bar charts representing the number of samples in which amino acid variants are observed
at each position in Gag derived from deep sequencing (top) and from 2378 drug-naive Gag sequences from LANL HIV sequence database (bottom). Variants
shown from deep sequencing occur at frequencies above 1% in 5 or more patients and variants shown from LANL are present in at least 1% of sequences.
The height of each vertical bar shows the number of patient samples with variants at Gag polyprotein positions. The different Gag proteins are indicated
along the horizontal axis. Variants which have been documented in the literature as having associations with Pl-exposure/resistance are shown in red.
Positions at which the variation between the two datasets is small (|fps-fLant|<10%) are faded.

doi:10.1371/journal.pcbi.1004249.9002

outside the cleavage sites. We identified considerably more mutations from our deep sequenc-
ing data as compared with LANL data in the following regions of gag: in matrix both near the
matrix/capsid (MA/CA) cleavage site and scattered throughout the central portion of MA; in
p2 and nucleocapsid (NC) on either side of the p2/NC cleavage site; and throughout the first
half of pé6.

Our studies identified mutation positions currently associated with PI-resistance [6], as well
as mutation variants associated with PI-exposure in cleavage sites. Cleavage site mutations that
are associated with PI-resistance in the CA/p2 cleavage site, residues A360 and L363, and the
NC/p1 cleavage site residue Q430, were not seen. In four of the five cleavage sites, defined as
the region of 10 residues centered on the proteolytic site, mutations were identified that are not
currently PI-associated (S1 Table). However, many of these mutations are variants of PI-associ-
ated mutations (S2 Table), and therefore could well be PI-associated. Of the observed cleavage
site mutations that are known to be associated with PI resistance, excluding those in the highly
variable p2/NC cleavage site, most occurred at relatively low frequency within each sample.
However, NC/pl and p1/p6 cleavage site mutations which we observe at low frequency have
been shown to almost always appear in the presence of protease mutations that decrease inhibi-
tor binding, such as D30, V82, 184, and M90 mutants [6].

HIV CA, and other selected domains of Gag, are necessary for assembly and are under pres-
sure to maintain their functionality [6,29,30]. Regions of viral gag that are highly conserved,
i.e., with low residue variability after drug treatment, are of interest given that these regions
may be targets for future inhibitors. We examined the frequencies of mutated residues within
the gag genes. The CA region demonstrated a mutated residue frequency accounting for 20%
of its length, thus making it much more conserved than other Gag proteins (Table 1). A recent
report has evaluated the viral fitness effects of single amino acid substitutions in CA [29]. Rihn
et al. found that ~5% of all possible amino acid CA substitutions resulted in viruses that repli-
cate in vivo. Moreover, engineered viruses were identified that contained “fit but rare” mutants
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that were <0.3% of or never found in 1000 HIV B patient sequences selected from the Los Ala-
mos HIV database. The authors concluded that there exists some unknown selection pressure
that selects against these particular high fitness mutations in individuals. However, an alterna-
tive possibility is that these high fitness mutants are present in viral populations from patients,
but were too rare to be detected reliably in the authors’ reference sequences, which were ob-
tained by conventional sequencing. To evaluate this possibility, we have examined whether 11
high fitness mutations presented in Rihn et al. (Table 9 of [29]), I2L, I6 T, N218, S33C, I91T,
R100S, S149C, E187V, A204G, A209T, and A209V, were present in our dataset. Of these mu-
tants, 9 were completely absent in the dataset. The remaining two mutants, N21S and I91T,
occur infrequently. Thus, 9 of 11 fit but rare mutations identified by Rihn et al. were absent in
both our dataset [29] and the Los Alamos HIV database.

Mutations associated with therapy failure

Next, we evaluated the differences in mutation variation in gag-protease between the viral sam-
ples obtained from patients that failed or were successful on ART. At the 599 gag-protease posi-
tions, 140 individual mutations are observed above 1% frequency in 5 or more patients who
failed subsequent ART (which constitutes 10% or more of patients who failed therapy). From
these 140 mutations, we identified 11 mutations that are significantly associated with repeated
therapy failure when adjusted for multiple hypothesis testing: MA N124S, NC/p1 cleavage site
K436R, p6 E460A and F465S, and PR L10I, R41K, M46I, 154V, 162V, 172V, V82A. The number
of patients from each group in which these mutations were observed is shown in Fig 3. All of
the protease mutations, except R41K, are associated with PI-resistance, including the NC/p1
cleavage site mutation K436R. The protease mutations M46I, 154V, and V82A have been
shown to have a major impact on PI susceptibility, while L10I, R41K, 162V, I72V are accessory
or polymorphic mutations [1,4,5,27]. The MA N124S mutation and two p6 E460A, F465S mu-
tations have not been characterized as to their role in fitness or drug resistance, although N124
is proximal to the MA/CA cleavage site and could possibly function to enhance cleavage. Of
the 22 mutations identified in Fig 3, which represents those with largest frequency differences
between the viral sequences identified in failed and successfully treated patients, almost 90% of

Ma ca p2 NC pl pé

Success
Failure

PR

- B
n =)

Number of patients
=

O o n o T A g T Sl @ s s owh
) v o o N SEes G S 0 e
~ Rl ~
ok 4 & § SP¥F BF TEVSASRLPR
Mutation

Fig 3. Mutations that are contribute to therapy failure. Bar charts showing the number of patients in which
specific mutations occur during Pl-based regimens including indinavir (IDV), saquinavir (SQV), and nelfinavir
(NFV). Shown are the mutations with the largest differences between the successfully and unsuccessfully
treated patient populations. Patients who failed therapy are shown in red and patients who had successful
therapy are shown in green. The percentage above each bar denotes the percentage of all patients treated
with that regimen which experience that mutation. Mutations with a */** are found to be statistically
significant after Holm-Bonferroni correction with family-wise error rates 0.1 and 0.01 respectively among

140 mutations.

doi:10.1371/journal.pchi.1004249.g003
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the total occur in MA, p1/p6, and protease. This finding closely parallels the observation
shown in Fig 2, in which the majority of inhibitor-mediated mutational variation occurs in MA
and pé.

Covariation of mutations in Gag-protease proteins

Identifying pairs of correlated mutations from deep sequencing data is not as straightforward
as when given conventional multiple sequence alignments. This problem arises given the short
reads from deep sequencing templates, which results in loss of direct sequence linkage between
distal genes, such as between gag and protease, and the presence of many viruses (distinct gag
and protease combinations) in a population. Thus, determining the joint probabilities for ob-
serving changes in pairs of distal mutations cannot be readily determined. Furthermore, it is
not clear how to aggregate these joint probabilities from the many sequencing reads obtained
from a viral population. To provide an estimate of distal mutation variant frequency, we have
designed a procedure with two main steps: In the first step, for any pair of residue positions,
say one in gag and one in protease, we calculate bounds on the joint probability of observing a
double mutant at that pair of residue positions from the marginal mutation probabilities ob-
tained from each sample. We then estimate the joint probability from those bounds and then
aggregate these joint probability estimates from each viral sample into a single estimate for the
probability to observe that pair of mutations across all samples. In the second step, using these
joint probabilities, we assess the correlation implicit in the joint probabilities involving two po-
sitions in the viral genome using mutual information (MI). We briefly explain the procedure
below, for a more detailed description, see Materials and Methods.

For any pair of positions, we know with high-precision how likely each mutation is to occur
independently of other mutations due to the extremely deep sequence coverage in each sample.
These single-site probabilities constrain the possible values of the joint probability of the muta-
tions occurring simultaneously. Within each viral sample, we find that the bounds on the dou-
ble mutant probability are often very narrow because of the bimodal nature of the mutations,
which are either dominant or almost absent at a typical position within a sample. Using esti-
mates for the double mutant probability from each sample based on the bounding procedure
described in Materials and Methods, we average the probabilities over all patient viral samples
to get an estimate for the double mutant probability in the patient population. Although the
number of samples is limited, because we are averaging probabilities and not a single binary
count from each sample, this procedure produces a probability table for the joint probabilities
for the status of two mutants that differs from how a table of counts is directly constructed
from a multiple sequence alignment. As a result, given tight bounds, the joint probability esti-
mates are much more precise than those calculated from table counts. In our study, for each
pair of positions, we construct a 2x2 probability table representing the probabilities of observ-
ing both wildtype residues, a single amino acid substitution at the first position, a single amino
acid substitution at the second position, and amino acid substitutions at both positions.

Utilizing this methodology we can identify co-evolving pairs of mutations by searching for
pairs of mutants with average double mutant probabilities that differ greatly from indepen-
dence. We quantify this deviation by the mutual information (MI); pairs with the largest mutu-
al information have the strongest covariation. The details of this procedure are explained in
Materials and Methods.

Validation of bivariate marginal estimation

It is crucial for our method to be validated on a dataset where correlations between two posi-
tions are known. A simple test dataset can be constructed from the deep sequencing pileup

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004249  April 20, 2015 8/27
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Fig 4. Mi of estimated bivariate marginals versus Ml of known bivariate marginals. Shown is the Ml for
24 PR-PR pairs computed using the estimated bounds on the bivariate marginals (lower bound—red, upper
bound—blue) versus using the known bivariate marginals.

doi:10.1371/journal.pcbi.1004249.9004

from each sample in which pairs of PR residues are close enough in sequence to be on the same
set of 100bp paired end reads. Doing so provides us with a test dataset which mirrors the struc-
ture of our true dataset, but the bivariate marginal distributions are known. From the known
bivariate marginals, we can compute the univariate marginal distributions from which we then
estimate bounds on the bivariate marginals via our bounding procedure.

We have calculated bivariate counts from the deep sequencing pileup for 24 pairs of PR resi-
dues which have previously been shown to be correlated using conventional sequencing [3,4]
where we had sufficient pileup (>10,000 overlapping reads). The estimated bounds (shown in
S5 Fig) are typically very narrow, and the lower bound is often a very conservative estimate of
the double mutant probability in each sample for all pairs examined. The mutual information
(MI) computed for each pair using the bounding procedure is in good agreement with the MI
computed using the known bivariate marginal probabilities, as shown in Fig 4. In practice, ex-
tracting the pileup can be computationally expensive for large regions of interest where the
coverage is very high, and for systems with short reads, this method only allows for covariation
analysis for residues that are relatively close together. Using our bounding procedure provides
a computationally fast method to estimate bivariate marginals from single-site frequency
counts for all pairs of interest, not just those within 200-300bp.

Correlation analysis in using bound estimates protease captures known
pair correlations

Protease mutation covariation in PI resistant viruses has been extensively studied and reported
by Shafer and others [3-5]. Findings in these publications potentially serve as a benchmark
that can be used to estimate how well we are able to recover information about correlated mu-
tations from protease and gag deep sequencing data using the bounding procedure. Using a
multiple sequence alignment (MSA) of 4919 treated protease sequences from the Stanford HIV
Database (HIVDB, [24]); we computed the MI for all 4851 (99 choose 2) pairs of positions.
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Among the 1594 pairs with positive, nonzero MI extracted from the MSA, 1275 pairs are com-
mon to our deep sequencing dataset; we chose these 1275 PR-PR positively correlated pairs to
assess our bounding procedure. From these 1275 pairs, the 127 (top 10%) pairs with the highest
MI when calculated using the MSA were selected as the putative true positives to which we
compared our procedure. These 127 pairs closely resemble the pairs of positions [4,5] and cor-
responding pairs of mutations [3] identified as highly correlated in previous work [3-5].

Fig 5 shows the recovery of the 127 pairs with highest MI from the Stanford Database in our
dataset. In the most strongly correlated pairs, we recover several well-studied strongly correlat-
ed pairs of protease mutations, such as D30-N88, 154-V82, and E35-M36. The 20 most strongly
correlated pairs are shown in Table 2. We observe an 8-fold enrichment within the top 1% of
deep sequencing pairs with highest MI (Fig 5, insert), and 5-fold enrichment within the top 5%
of deep sequencing pairs with highest MI (S3 Table). The recovery is uniformly higher if the
least conservative bound on the double mutant probability is used, and a comparison is shown
in S3 Fig. But it is evident that below the pairs with the largest MI values, which are consistent
between the two databases, there are many pairs identified in the deep sequencing dataset as
correlated that are not identified in the Stanford HIVDB. These differences are not likely due
to sample size effects in the relatively small number of patient samples in this study because the
univariate marginals and the bivariate marginal estimates are calculated with high precision in
each sample due to the extremely high coverage afforded by deep sequencing and the very nar-
row bounds imposed on the bivariate probabilities by the univariate probabilities. We believe
this discrepancy is due to real differences between the two sets of data, specifically that joint
probabilities are systematically under-estimated using conventional sequencing technologies.
It has been shown that variants with frequencies less than 35% are difficult to detect with con-
ventional Sanger sequencing, and protease and gag mutations with frequencies less than 10%
often go undetected using standard genotyping analysis [18,19]. Yet with deep sequencing,
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Fig 5. Recovery of correlated protease-protease pairs. Shown is a plot of the precision (also known as
positive predictive value (PPV)) for the top 40% of correlated PR-PR pairs ranked by mutual information. In
total, 1275 pairs are plotted (127 putative true positives) that are common to both our deep sequencing
dataset and the Stanford HIVDB downloadable protease dataset (see Materials and Methods). True positives
were determined through a mutual information calculation similar to the calculations in [3]. The precision plot
shows, given a value of MI°, the number of true positives with MI>MI° identified with deep sequencing divided
by the number of true and false positives with MI>MI° versus the percentage of all pairs with MI>MI°. The
dashed horizontal line indicates the PPV of randomly drawn pairs. The insert shows the PPV for the top 5% of
PR-PR correlated pairs ranked by MI.

doi:10.1371/journal.pcbi.1004249.9005
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Table 2. Top 20 most strongly correlated pairs of PR-PR positions.

Protease Protease Observed in Position 1 PI- Position 2 PI- Mi Py Py’ Px P,
Position 1 Position 2 HIVDB?® association® association®

30 88 Yes Yes Yes 0.128 0.056 0.006 0.072 0.082
54 82 Yes Yes Yes 0.088 0.072 0.018 0.088 0.200
73 90 Yes Yes Yes 0.072 0.055 0.013 0.064 0.201
46 82 Yes Yes Yes 0.070 0.096 0.034 0.170 0.200
24 74 No Yes Yes 0.061 0.022 0.001 0.027 0.045
35 36 Yes Yes Yes 0.053 0.096 0.040 0.204 0.195
69 84 No No Yes 0.049 0.023 0.002 0.040 0.050
24 46 Yes Yes Yes 0.046 0.026 0.005 0.027 0.170
24 82 Yes Yes Yes 0.042 0.027 0.005 0.027 0.200
13 33 Yes Yes Yes 0.042 0.034 0.008 0.174 0.043
10 93 Yes Yes Yes 0.042 0.156 0.094 0.282 0.334
12 19 Yes No No 0.041 0.031 0.005 0.088 0.061
33 66 No Yes Yes 0.040 0.017 0.001 0.043 0.026
10 46 Yes Yes Yes 0.040 0.098 0.048 0.282 0.170
32 82 Yes Yes Yes 0.040 0.027 0.006 0.028 0.200
24 64 No Yes No 0.039 0.024 0.004 0.027 0.140
37 63 No No Yes 0.038 0.284 0.233 0.309 0.752
33 60 No Yes Yes 0.038 0.027 0.004 0.043 0.101
41 93 No No Yes 0.038 0.143 0.085 0.256 0.334
30 35 No Yes Yes 0.036 0.046 0.015 0.072 0.204

#Residue pair is among the top 10% most strongly correlated pairs in the Stanford HIVDB as ranked by mutual information.
bPl-association of protease positions determined in literature [1,4,6].

doi:10.1371/journal.pcbi.1004249.t002

even without template tagging, we are able to reliably detect variants with frequencies as low as
1% in each patient sample. For example, we observe positions 1.24-T74 to be strongly correlat-
ed in the deep-sequencing dataset (5th highest PR-PR pair by MI), but this pair is not found to
be correlated using the HIVDB MSA. We have confidence this correlation exists because indi-
vidual mutations 1241 and T74S/P/A have strong associations with PIs [4,26]. The double mu-
tant probability for this pair is estimated between 2.18-2.19% in the deep sequencing dataset
but is 0.91% in the HIVDB. With reliable detection of low frequency mutants, deep sequencing
allows us to more accurately identify correlations between pairs of residues that are difficult to
detect with conventional sequencing.

As additional evidence that we observe meaningful correlations derived from the deep se-
quencing using our bounding procedure to constrain the bivariate probabilities, we note that
many of the apparent false positive pairs of mutations in protease identified in our analysis
may be biologically important because these pairs contain at least one variant associated with
PI-exposure. For example, mutations at pairs of positions such as D30-E35, E35-V84, and
M36-N88 have been shown individually to directly reduce drug susceptibility. D30 and V84
are located in the protease active site and thus these pairs of positions suggest we observe com-
pensatory-active site pairs previously under sampled due to the limitations of conventional se-
quencing techniques. Moreover, in the top 5% of pairs with highest MI from deep sequencing,
34 of the 58 pairs identified as putative false positives involve at least one known resistance mu-
tation. The fact that many of the putative false positives detected via our procedure are
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combinations of PI-associated residues suggests that the true recovery of strongly covarying
pairs of protease positions using our bounding procedure is likely significantly higher than the
apparent recovery rate shown in Fig 5.

Strongest correlations in Gag indicate functional and structural patterns

We turn now to a consideration of correlations within the Gag polyprotein and between Gag
and protease. Tables 3 and 4 show the strongest 20 positively correlated pairs for Gag-PR and
Gag-Gag; the top 1% positively correlated pairs with highest MI values for each region are dis-
played in S4 and S5 Tables respectively.

For the Gag-PR pairs shown in Table 3, the NC/p1 cleavage site residue A431 is well repre-
sented and strongly correlated with protease residues associated with major PI-resistance V82,
M46, L10, and L93. Association between A431V and protease mutations V82A and M46L has
been demonstrated using in vitro mutagenesis experiments [31] and regression analysis [14],
but the correlations between A431 and both L10 and L93 have not been previously reported.
Additionally, mutations at the p1/p6 CS, P453 and L449, are strongly correlated with PI-associ-
ated protease positions M36 and 184 respectively. L449-184 has been previously observed [14],
but P453-M36 is not mentioned in the literature. It has been recently reported that mutations
in the p1/p6 cleavage site are correlated with PR resistance mutations D30N and N88D [32],
and while we observe no pairs in the top 1% that involve these PR mutations, within the top
5%, R452/P453-D30 and R452/P453-N88 are present. There is no previous evidence of muta-
tions at the CA/p2 CS that are associated with PR mutations in the literature, and while we find
positions in 4 of the 5 Gag CSs that are strongly correlated with positions in PR, we also find
no evidence that positions at the CA/p2 CS are strongly correlated with positions in PR.

Table 3. Top 20 most strongly correlated pairs of Gag-PR positions.

Gag Position PR Position Gag Protein Protease Pl-association® Mi Pyy Py’ Py Py
431 82 NC/p1 CS Yes 0.085 0.098 0.032 0.158 0.200
431 46 NC/p1 CS Yes 0.071 0.085 0.027 0.158 0.170
431 10 NC/p1 CS Yes 0.063 0.106 0.045 0.158 0.282
8 57 MA No 0.058 0.023 0.002 0.024 0.086
264 76 CA Yes 0.056 0.012 0.000 0.013 0.014
486 37 p6 No 0.055 0.076 0.029 0.094 0.309
159 37 CA No 0.053 0.163 0.093 0.300 0.309
443 35 p1 Yes 0.048 0.030 0.006 0.030 0.204
465 76 p6 Yes 0.046 0.012 0.000 0.020 0.014
375 37 p2/NC CS No 0.046 0.163 0.097 0.313 0.309
119 37 MA No 0.045 0.070 0.029 0.092 0.309
326 57 CA No 0.044 0.038 0.008 0.088 0.086
65 43 MA Yes 0.044 0.021 0.002 0.058 0.030
163 72 CA Yes 0.044 0.037 0.008 0.052 0.157
453 36 p1/p6 CS Yes 0.044 0.075 0.029 0.149 0.195
182 16 CA No 0.044 0.018 0.001 0.050 0.023
486 24 p6 Yes 0.043 0.022 0.003 0.094 0.027
456 24 p6 Yes 0.043 0.027 0.005 0.194 0.027
410 20 NC Yes 0.042 0.018 0.002 0.018 0.087
431 93 NC/p1 CS Yes 0.042 0.104 0.053 0.158 0.334
@pPl-association of protease positions determined in literature [1,4,6].

doi:10.1371/journal.pcbi.1004249.t003
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Table 4. Top 20 most strongly correlated pairs of Gag-Gag positions.

Gag Position 1

228
159
46

123
163
12

348
163
63

182
173
75

119
403
242
397
387
123
340
79

Gag Position 2

248
280
75

443
443
46

443
418
66

186
342
443
443
418
248
404
398
348
495
81

doi:10.1371/journal.pcbi.1004249.1004

Gag Protein 1 Gag Protein 2 Mi Pyy Py’ Py P,

CA CA 0.214 0.160 0.048 0.168 0.288
CA CA 0.144 0.219 0.102 0.300 0.341
MA MA 0.108 0.069 0.012 0.130 0.094
MA p1 0.098 0.030 0.002 0.050 0.030
CA pl 0.097 0.030 0.002 0.052 0.030
MA MA 0.095 0.121 0.052 0.398 0.130
CA p1 0.093 0.030 0.002 0.058 0.030
CA NC 0.086 0.049 0.009 0.052 0.168
MA MA 0.086 0.024 0.001 0.025 0.037
CA CA 0.077 0.036 0.004 0.050 0.071
CA CA 0.076 0.050 0.009 0.142 0.064
MA p1 0.074 0.030 0.003 0.094 0.030
MA pi 0.074 0.030 0.003 0.092 0.030
NC NC 0.073 0.151 0.083 0.498 0.168
CA CA 0.072 0.091 0.033 0.116 0.288
NC NC 0.072 0.023 0.001 0.043 0.025
NC NC 0.072 0.042 0.006 0.094 0.061
MA CA 0.071 0.032 0.003 0.050 0.058
CA p6 0.067 0.111 0.048 0.317 0.151
MA MA 0.066 0.075 0.025 0.255 0.097

Outside of the CSs we find that the overwhelming majority of Gag positions strongly corre-
lated with mutations in protease are located within the first 200 residues (MA/CA) or the last
60 residues (p1/p6) of Gag. Although some positions in PR only appear correlated with posi-
tions in specific Gag proteins, such as A118/V128-166 and T456/L486-L24, the majority of po-
sitions in PR shown in Tables 3, S4 (E35, N37, R41, and L93) are correlated with residues on
opposite sides of the Gag polyprotein.

For Gag-Gag pairs, many intra- and inter-protein pairs are represented. The majority of the
pairs in Table 3 that involve cleavage site residues appear in the NC/p2 cleavage site, which has
been shown to be PI-sensitive and highly variable in bulk sequencing. Additionally, 20% of the
70 pairs shown in Table 3 involve the p1 residue G443, which is located near the gag-pol frame-
shift-regulating region and is flanked by several positions associated with PI-exposure muta-
tions, K436, 1437, and 1449 [33].

Although there is little analysis of covariation of non-CS Gag mutations currently in the lit-
erature, residues R76, Y79, and T81 have been described as co-evolving under drug pressure
[34]. These residues are all located on an alpha helix in the folded MA protein and it is theo-
rized that mutations in this alpha helix allow greater flexibility in the secondary structure,
which may enhance MA/CA cleavage site accessibility to the protease. We also observe strong
correlations between residues in this region of MA as pairs Y79-T81 and V82-T84 are highly
correlated (Tables 4, S5). Additionally, MA residue L75 is highly correlated with several resi-
dues in other Gag proteins.

While Gag is not the primary target of protease inhibitors, we observe the correlations as
measured by mutual information within Gag proteins are of similar magnitudes as in protease
(Tables 2, 3, 4). The most strongly correlated pair of positions identified is between two CA res-
idues, which as can be observed from their crystal structures are in close proximity (PDB
3MGE, 2M8L, 3P05, 3MGE). This is also observed for several other strongly correlated pairs of
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Table 5. All-(heavy)-atom distances between top 20 most strongly correlated intra-protein as identified by mutual information.

Protein Pos 1 Pos 2 Res 1 Res 2 Mi Smallest R; (A) Structure® PDB Model® Chains Atoms
CA 228 248 MET GLY 0.21 3.1 CA2 22 BB CE-O
CA 159 280 VAL THR 0.14 6.4 CA2 39 AA 0O-0G1
PR 30 88 ASP ASN 0.13 3.7 PR2 0 AA CA-OD1
MA 46 75 VAL LEU 0.11 6.7 MA3 0 AC CA-CD2
MA 12 46 GLU VAL 0.10 16.6 MA 11 AA OE1-CG1
PR 54 82 ILE VAL 0.09 8.2 PR2 0 BB CD1-0
MA 63 66 GLN PRO 0.09 3.0 MA 14 AA 0-CG
CA 182 186 GLN THR 0.08 2.4 CA2 10 AA OE1-0OG1
CA 173 342 SER THR 0.08 14.3 CA2 69 AB 0G-O
NC 403 418 GLY ASN 0.07 5.5 NC 9 AA CA-ND2
CA 242 248 THR GLY 0.07 7.6 CA5 0 EE O-CA
NC 397 404 LYS LYS 0.07 6.6 NC 5 AA 0-0

NC 387 398 THR GLY 0.07 13.8 NC 9 AA 0-0

PR 73 90 GLY LEU 0.07 10.6 PR2 0 BB CA-CA
PR 46 82 MET VAL 0.07 14.6 PR2 0 BA 0-CG2
MA 79 81 TYR THR 0.07 4.0 MA 19 AA O-CA
NC 390 401 ASN LYS 0.07 16.1 NC 5 AA ND2-NZ
CA 173 248 SER GLY 0.07 20.4 CA5 0 BB 0-0

MA 46 119 VAL ALA 0.06 17.7 MA 14 AA CG2-CB
CA 146 148 ALA SER 0.06 3.9 CA5 0 DD O-CA

Listed are the smallest atom-atom distances (only heavy atoms, excluding side chains) for the most strongly correlated pairs of residues from the three
regions PR-PR, Gag-PR, Gag-Gag ranked by Ml in representative structures. For structures with multiple chains, inter-chain distances were computed
and the chain and atom combinations of the smallest calculated distance for each pair are listed.

aMA: matrix monomer, PDB 2H3F; MA3: matrix trimer, PDB 1HIW; CA: capsid monomer, PDB 3MGE; CA2: capsid dimer, PDB 2M8L; CA5: capsid
pentamer, PDB 3P05; CA6: capsid hexamer, PDB 3MGE; NC: nucleocapsid monomer, PDB 2EXF; PR2: protease dimer, PDB 10DW.

PFor PDB files with multiple structural models, the model number with the smallest atom-atom distance is listed.

doi:10.1371/journal.pcbi.1004249.1005

residues on the same Gag protein (see Materials and Methods for a full list of PDB IDs).
Table 5 shows the heavy atom-atom distances between wild type residues for the strongest 20
intra-Gag protein and-protease correlations for which structures exist in the PDB file (atom-
atom distances for all intra-protein pairs from Tables 2, 3, 4 are listed in S6 Table). We observe
11 of these 20 positions to be within 8A within the mature protease and Gag proteins. It is ap-
parent that ranking pairs of residues by MI provides major enrichment for detecting structural
proximity over random sampling; for example, measuring the distance between 20 randomly
chosen pairs from the CA pentamer dimer will yield 11 pairs in close proximity with probabili-
ty less than 107", All available multimerizations of these proteins were examined for structural
contacts: MA (monomer, trimer), CA (monomer, dimer, pentamer, hexamer), NC (monomer),
PR (dimer); see Materials and Methods for more details. We find that the pair of positions with
the largest mutual information identified in this study, Gag M228-G248, is within 6A in all CA
structures. The second most-strongly correlated pair, Gag V159-T280, is close in some CA
dimer structures (<7A) in the NMR structure. These residues may be functionally important
in the multimerization of CA as they are on a-helices that play integral roles in dimerization
and the formation of the hexameric CA lattice [35].

We also examined the distribution of inter-protein correlations among Gag proteins and
protease and we observe that more than 300 residues separate some of the strongest Gag inter-
protein correlations in sequence, shown in Fig 6. There are no complete crystallographic or
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NMR structures containing two or more of the large Gag proteins. However, models have been
constructed to simulate the structural propensities of a mutated Gag intermediate comprised
of MA, CA, p2, and NG, all of which involve the MA domain folding over the CA domain, and
it is theorized these structures occur due to entropic effects disfavoring straight conformations
of the polyprotein [36]. We observed strong MA-CA correlations that are consistent with these
models, and moreover, we find many strong correlations between the MA/CA proteins and
residues in p1/p6. One explanation for these very long-range Gag correlations could be tran-
sient structural contacts between the p1/p6 proteins and the MA/CA fold in the immature Gag
polyprotein at some point in the viral life cycle. A possible model for the full polyprotein is a
distorted circular structure; with a fold near either side of p2, the C-terminus proteins could in-
teract directly with the MA/CA hairpin structure previously theorized [36]. However, further
analysis is needed to distinguish correlations arising from direct spatial proximity from those
that are due to networks of indirect effects [37].

Discussion

To the best of our knowledge, no previous study has attempted to use multiple deep sequencing
samples from PI resistant patients as a population from which to infer correlated mutation
pairs. Typically, this type of analysis has been done by examining the one- and two-site amino
acid frequency counts at each position in multiple sequence alignments. Previous to this study,
there was no direct method to extract two-site frequency counts from viral deep sequencing
data of gag and pol given the absence of sequence linkage due to the short sequencing reads. In
order to identify strongly correlated residues through the entire 2 kb region of gag and pol we
sequenced, we developed a procedure that estimates the bivariate joint probabilities from the
observed single-site frequencies. This is made possible by the high precision with which the sin-
gle-site frequencies are calculated in each sample due to high coverage, and by the bimodal na-
ture of the single-site frequencies in each sample, which yield tight bounds on the bivariate
probabilities. Although we considered the simplest such procedure, which involves estimating
bounds on the four pair probabilities (M, M), (M, W), (W, M), and (W, W), where W denotes
the consensus amino acid and M denotes any amino acid substitution, similar to [4,38], this
procedure can be expanded to consider pairs of all individual amino acid substitutions instead
of grouping all substitutions together. Recent advances in sequencing and library construction
may allow the two-site frequencies to be observed directly from longer sequencing reads
[21,39], but until this methodology becomes more widely available, our procedure provides a
way to extract meaningful two-site frequencies from short, non-physically linked reads.

However, our procedure is reliant on the ability to distinguish the population within indi-
viduals from the entire population consisting of all the individual samples. This particular con-
cern is often absent in the analysis of collections of sequences obtained from traditional
sequencing where typically only one sequence is sampled from one individual, and the only
analysis to be done is to examine the patterns of sequence variation across individuals. The use
of deep sequencing expands upon this by allowing the variation within individuals to be stud-
ied. When there is considerable variation within, it becomes difficult to untangle the variation
across patients from that present within individuals. As discussed previously, the frequency of
mutations within each sample is typically limited to a bimodal present-or-absent pattern,
which allows for analysis of covariation across samples.

The covariation analysis performed in this study relies on the frequency counts measured
from the viral sequence population within each patient. The viral population within each pa-
tient has descended from founder viruses and the population at the time of sampling may have
some background correlation due to phylogenetic similarity. Covariation analysis can be
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Fig 6. Strongest inter-protein correlations among PR and Gag proteins. Each semicircle denotes a
correlation between the positions located at its endpoints. The strongest 50 correlations as measured by
mutual information (M) from the following regions are shown: Gag-Gag (blue), Gag-PR (red).

doi:10.1371/journal.pcbi.1004249.9006

confounded by such phylogenetic effects [40-44], and a large literature has developed to ac-
count for such biases [44,45]. Although we have not accounted for this bias in our analyses,
there are a number of factors that would argue against the covariation uncovered in our analy-
ses being the result of simple inheritance from founder viruses. Firstly, strong selection pres-
sure can create the environment for convergent evolution in which covariation dominates over
phylogenetic effects [42,46,47]; indeed, drug resistance selection from reverse transcriptase
(RT) inhibitors has been reported to generate a higher evolution rate in RT, thus fixing muta-
tions, as compared to viral genes not under not under drug selection, such as envelope [48].
Secondly, in our covariation analysis, we have considered the potential influence of phylogeny
across samples, evaluated the effects on MI, and found the effects to be minimal (see Materials
and Methods).

In the patient samples used in this study, the protease and gag population diversity within
an individual sample is typically limited. As a result the bounds on the bivariate probabilities
are very tight and therefore we are able to aggregate the joint probabilities from the individual
samples to extract meaningful information about population covariation. The fact that we ex-
amine a portion of the HIV genome which is relatively conserved, when compared, for exam-
ple, to HIV env gene proteins [49] under immune selective pressure, influences the
effectiveness of our analysis. Proteins or protein families evolving very rapidly under genetic
drift and other forms of natural variation may not necessarily satisfy these conditions. Never-
theless, the procedure we have developed for identifying covariation from deep sequencing
data with short reads used on single site mutation frequencies and bounds on joint marginals
serves as a good starting point upon which future studies may expand datasets containing
many deep sequenced samples.

As inhibitor potency increases, mutation pathways which confer resistance become more
complex and involve more amino acid substitutions to compensate for major resistance muta-
tions. Very few PI-associated mutations and even fewer resistance mutations have been previ-
ously identified outside of the protease and Gag cleavage sites [6]. By examining the patterns of
amino acid substitutions in HIV Gag, we find evidence for new patterns of resistance.

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004249  April 20, 2015 16/27



®PLOS

COMPUTATIONAL

BIOLOGY

Correlated Mutation Patterns in Deep Sequenced HIV-1 Gag and Protease

Mutations in the MA, and p6 proteins are much more prevalent in PI-experienced individuals
who have failed therapy versus individuals who had successful therapy. All patients failed the
initial ART, which include PIs, and thus most patients were found to have major PI-resistance
mutations in protease. Gag mutations are likely accessory mutations, but the mechanisms by
which most Gag mutations compensate for major resistance mutations are not known [50,51].
Recently Breuer et al. has proposed that PI-mediated cleavage and non-cleavage site mutations
function to enhance the catalytic efficacy of PI-resistance proteases [52]. Mutations identified
in this study that contribute to repeated therapy failure may “prime” the viral populations for
major resistance mutations in subsequent therapies by enhancing catalytic efficacy of PI-resis-
tant proteases, pre-compensating for resistance mutations with high fitness costs.

The majority of the Gag-protease correlations we observe have not been previously studied
and these findings serve as a basis for future research into the resistance mechanisms in these
regions. We observe positions in MA, CA, p1, and p6 which are strongly correlated with posi-
tions in protease at which major resistance mutations occur. This suggests that residues outside
of the cleavage sites can influence protease function, and furthermore, resistance mechanisms
in HIV are mediated not just by a few major resistance mutations, but a larger network of resi-
dues spanning the Gag polyprotein. It has been shown that the cleavage of Gag proteins is high-
ly dependent on the sequence of the entire cleavage site and possibly proximal residues as well
[52,53]. Similarly, correlated networks of amino acid mutations across Gag proteins likely con-
tribute more strongly to the development of resistance than single amino acid substitutions.

Recent studies have examined covariation among Gag residues in drug naive patients as the
result of immune-pressures [54-58], but in the context of PI-exposure, very little has been pub-
lished concerning the covariation of Gag residues with other Gag residues. Despite lacking di-
rectly accessible two-site frequencies, we are able to identify several strong signals of
covariation in Gag. The magnitudes of the correlations we observe among positions in the Gag
polyprotein are as large as those observed in protease. Although covariation is not direct evi-
dence of structural propensities, this information can be useful for solving the structure of the
Gag polyprotein at low resolution. We identify strong covariation between residues in MA,
CA, p1, and p6 proteins, which suggests that p1 and p6 may be proximal to MA and CA re-
gions of the Gag polyprotein at some point in the viral life cycle. The Gag polyprotein is be-
lieved to multimerize via first dimerizing in the CA domain [35]; the model suggested by the
pattern of MI values is consistent with this thinking as it leaves CA exposed. There exist several
methods, some based on mutual information, which have been developed to extract direct
structural contacts (typically <8A) from multiple sequence alignments [37,59-63]; it is possi-
ble to adapt these methods to detect direct structural propensities using covariation extracted
from deep sequencing. In fact, due to the limited number of publicly available, full length Gag
sequences, the bivariate probabilities estimated here may be better suited to parameterize these
models than two-site frequency counts extracted from an MSA. When information about cor-
related mutations is combined with lower resolution structural information from experiments
to determine structural contacts, like small angle X-ray scattering (SAXS) or hydrogen-deuteri-
um exchange, more consistent models can be constructed for the structural ensembles that rep-
resent the Gag polyprotein which are needed for the interpretation of functional studies.

Materials and Methods
Deep sequencing data

The serum/plasma patient specimens were obtained from the U.S. Military HIV Natural Histo-
ry Study (IDCRP-000-03) as part of the Infectious Disease Clinical Research Program
(IDCRP). All samples received by The Scripps Research Institute from the U.S. Military HIV
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Natural History Study were de-identified and anonymous. The Office of the Protection of Re-
search Subjects at the Scripps Research Institute has reviewed and approved the research proj-
ect described in this manuscript. A copy of the approval letter is provided in the
supplementary material (S1 Text).

Plasma samples were obtained from 93 patients who had been treated with therapies that in-
cluded protease inhibitors. For the samples sequenced in this study, all therapies were protease
inhibitor (PI) based with a single PI (some with ritonavir (RTV) boosting), but included com-
binations of nucleoside and non-nucleoside reverse transcriptase inhibitors (NRTIs and
NNRTTIs). Therapies prior to sequencing were NRTT and NNRTI-based with no PIs. Although
some patients were sequenced only once and others several times, there are only two relevant
PI therapies for each patient: the first of which all patients failed prior to sequencing, and a sec-
ond therapy on which patients were successfully treated or continued to fail treatment. Patients
with multiple sequencing points after initial failure did not receive additional new therapies.

Samples were obtained when therapy failed to adequately suppress viral replication (>1,000
copies/mL), allowing multiple samples to be taken for some patients. Following extraction of
viral RNA from these patient samples, 40 cycles of one-step RT-PCR was used to generate two
1 kilobase amplicons that spanned HIV Gag and protease. Primer design was based on con-
served regions of the HIV-1 genome and follows the procedure in [22].

A liquid handling robot (Biomek NX, Beckman Coulter, Brea, CA, USA) was used to pool
the two regions of amplified cDNA. Then, the pooled and amplified cDNA was prepared for
sequencing using the NEBNext DNA Library Prep Master Mix Set (NEB, Ipswich, MA, USA).
Specifically, the two amplicons were pooled in equimolar amounts, then 1ug of this mixture
was fragmented to an average size of 275bp via mechanical shearing (S2 instrument, Covaris,
Woburn, MA,USA). The samples were ligated to 1 of 48 sequencing adapters, each containing
a unique 6bp index for downstream demultiplexing. (These adapters were custom made by or-
dering oligos from IDT. The sequences of the oligos are the same or similar to Illumina’s True-
seq indexes.) The fragments were size selected using Ampure beads (Beckman Coulter), and
subsequently amplified using six cycles of PCR. After validating the libraries using the Bioana-
lyzer (Agilent, Santa Clara, CA, USA) and Qubit system (Life Technologies), the libraries were
loaded onto the cBot (Illumina, San Diego, CA, USA), clonally amplified, and sequenced using
4 lanes on the Hiseq 2000 (Illumina) to yield an average of 4.3 million of 100bp paired end
reads per sample.

After sequencing, reads were mapped to the Gag-Pol region of the HIV-1 HXB2 consensus
sequence using Burrows-Wheeler Aligner (BWA, version 0.5.9-r16). The average mapping suc-
cess rate to the HXB2 reference was 89.85%, with minimum, first quartile, and third quartile
values of 54.72%, 86.99%, and 95.82%, respectively. Mapping results were corrected using indel
recalibration and base quality score recalibration with Genome Analysis Toolkit (GATK, ver-
sion 2.6-4-g3e5tf60). Reads with low recalibrated quality scores (MAPQ<30) were discarded.
Single-site variants were called using VarScan (version 2.3). Samples with low coverage over ei-
ther gag or protease were excluded from analysis. The average coverage over all positions in
each sample is 202141 overlapping reads, with first and third quartile values of 152188 reads
and 245360 reads, respectively, with the distribution of coverages skewed toward very deep
coverage. The highest average coverage observed was 671075 reads, and the lowest average cov-
erage was 26161 reads.

Conventional sequence data

Variation in the deep sequencing data was compared to protease sequence variation in the
Stanford HIV Database and Gag/Gag-Pol sequence variation in the Los Alamos National
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Laboratory HIV Sequence Database. For protease sequences, the 4/29/2013 downloadable pro-
tease dataset was downloaded from http://hivdb.stanford.edu/pages/geno-rx-datasets.html
[24]. Non-ambiguous, complete subtype B sequences were separated into two sets of 4919 se-
quences exposed to treatment involving protease inhibitors and 12764 drug-naive sequences.
Each entry in the downloadable dataset contains at least a nucleotide sequence or a list of
amino acid substitutions. Entries with available nucleotide data were translated using IUPAC
standard protein codes and, if any ambiguities existed in the translated sequence or nucleotide
data was unavailable for that sequence, corresponding protein sequence data was used to fill in
any ambiguities in the translated sequence.

Gag sequences were downloaded using the following settings through the standard search
interface from http://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html: virus: HIV-1;
subtype: B; culture method: any; Only drug naive sequences: checked; genomic region: Gag
(searching with amino acid index 790-2292 results in identical results). The resulting 2378 Gag
amino acid sequences were downloaded using squeeze gap handling and aligned to a HXB2 ref-
erence sequence. All but one sequence (which was discarded) had gaps and ambiguous amino
acids at less than 10% of their length. Uncultured drug-naive gag sequences were also used; al-
though the variation in the uncultured sequences is not identical to that in all naive sequences
(54 Fig), due to the size of the uncultured set (<350 sequences), the full naive set was used.

Two-sample proportion test

To access the differences in variation between patients who failed therapy and patients who
were successfully treated, we used the two sample proportion test. Patients were partitioned
into two groups based on therapy: success and failure of sizes N; and Nyrespectively. In each
patient, mutations present at or above 1% are considered detectable. For a given mutant at a
single position, the proportion of patients with that mutation detectable is calculated in each
group, P, and Pr. While the distribution of P; and Py are not necessarily normal, the distribution
of (Pf-P;) is normally distributed.

The pooled proportion P,

P X Ni+ P X N,
P:
P N5+Z\7f

and the standard error

11
SE = Pp<1—Pp> NN

are computed. From these quantities, a z-score and p-value can be computed assuming a nor-
mal distribution using Z = (Ps-P,)/SE. A p-value is computed for each mutation at all 599 posi-
tions for which the mutation is detectable in at least 5 patients who failed therapy. Statistically
significant mutants were identified after correcting for multiple hypothesis testing using the
Holm-Bonferroni method with family wise error rates of 0.1 and 0.01 (denoted with * and **
in Fig 3, respectively).

Pairwise covariation

To assess the covariation amongst gag and protease mutations between a set of deep sequenced
samples, we have constructed a protocol which estimates the joint probability of observing a
double mutant and we use the mutual information (MI) to quantify how this probability devi-
ates from a null model. For a particular pair of positions and given N samples, the probabilities
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of observing a mutation at position 1 and a mutation at position 2 individually in sample i are
px and py, where 1<i<N. For each sample i, we then construct a 2x2 table of the joint probabil-
ities of observing a double mutation (XY), only one mutation (X0, 0Y), and no mutations (00).

pXY pX(J
pUY PU()

These joint probabilities are constrained by the row marginal probabilities py, 1-px, and the
column marginal probabilities py, 1-py such that only one joint probability is free. Take this to
be the double mutation probability pxy, which is bounded such that:

max(0, py + py — 1) < pyy < min(py, py)

Moreover, the bounds are exact given that for any number g between the upper and lower
bounds, there exists a valid 2x2 table of probabilities with pxy equal to g. Note that if py and py
are close to either 0 or 1, then the bounds become very tight. This property is particularly useful
in our analysis of the gag and protease deep sequencing data.

The bounds on pxy are computed for each sample i, and are then averaged yielding a single
upper and lower bound for the average double mutation probability. Using the average single
site probabilities py and py, we construct a full 2x2 probability table for each of the averaged
bounds:

lower lower upper upper
pXY pXU pXY pXU

lower lower upper upper
pOY pUO pUY p()ﬂ

We also construct an estimate of the joint probabilities assuming X and Y mutate independent-
ly, such that

P?{Y P?{o PxPy Px(l_py)
Poy Pl (L=ppy (1 —p)(1—py)

The deviation of the average 2x2 probability tables from this independent table represents the
covariation of X and Y. For assessing positive covariation, the most conservative estimate of
Pxy is given by max (0, p¥), whereas the least conservative estimate of pxy is given by pyr™".
For assessing negative covariation the most conservative estimate of pxy is given by

min(0, pyv”"), whereas the least conservative estimate of pxy is given by p'#*". The mutual infor-

mation is defined as

M= > pulog(p./ph)

ac{X,0},be{Y 0}

It is easily shown that MI = 0 when p,, = p%,, and increases as pxy moves away from p, in ei-
ther direction. Given our bounding procedure, the most positively correlated pairs of muta-
tions are those with the largest MI. Using the deep sequencing data, this procedure is
conducted for all pairs of mutations for which the frequencies of the mutations are above 1% in
5 or more samples.

It is important to understand the relationship between the proposed procedure for deep se-
quenced data and those for MSA data consisting of binary counts from single sequences. Each
sequence in a MSA provides a single count for a particular single mutant for each position
(double mutant for each pair of positions). The counts from all sequences are averaged to get
one- and two-site frequency counts, which approximate the univariate and bivariate marginal

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004249  April 20, 2015 20/27



®PLOS

COMPUTATIONAL

BIOLOGY

Correlated Mutation Patterns in Deep Sequenced HIV-1 Gag and Protease

probabilities when the number of sequences is very large. In contrast, each patient sample in
the deep sequenced data essentially provides a MSA of several million sequences. When aggre-
gated, we calculate the mean univariate and bivariate probabilities from each sample, not
counts. Therefore, although our dataset contains many fewer samples than sequences in a
MSA, a sample in the deep sequenced data provides considerably more information than a sin-
gle sequence in a MSA.

The permutation procedure used to generate p-values for the Jaccard similarity coefficient
for MSA data in [3], if the number of permutations tends to infinity, is equivalent to computing
Fisher's exact test (See S8 Table). This procedure determines how likely the observed data
could arise from chance and is not a direct measure of the correlation between two mutations.
For instance, with this procedure it is possible to know a pair of mutations is weakly correlated
with high confidence.

Moreover, for MSA data, ranking the strength of correlation by mutual information for a
2x2 table of probabilities is equivalent to ranking by the log likelihood ratio statistic (LR) for
testing independence in a 2x2 table of counts, because LR = -NxMI. But, as the total sample
size tends to infinity, ranking based on LR is asymptotically equivalent to ranking based on
Fisher’s exact test of independence [64]. Therefore, the proposed procedure for deep sequencing
data differs from previous analyses of MSA data [3] mainly in the necessary step of constructing
lower and upper probability tables and, to a lesser extent, in the use of mutual information for
ranking correlations in probability tables without depending on the total sample size.

Alternative analyses to determine correlations were attempted without estimating joint
probabilities, such as using Kendall's tau. In this analysis method, for each mutant in a pair of
residues, a vector of single-site frequencies is constructed from the frequencies in each sample.
Kendall's tau-b for each such pair is calculated with an accompanying z-score from which a p-
value can be calculated. However, Kendall's tau is not appropriate for this type of data because
Kendall's tau typically requires the underlying population to be bivariate normal; the frequen-
cies we observe are not normally distributed. Furthermore, Kendall's tau is extremely sensitive
to data located at the maximum or minimum of the possible spectrum of values, and the fact
that many mutations are either mostly absent or dominant in a single sample produce unreli-
able results with Kendall's tau.

Phylogenetic correction to Ml

We recognize that the Mutual Information (MI) does not account for correlations which arise
from phylogenetic relationships among the population of interest. In this specific study, where
there is the population within each patient and the combined population of all patients, any
phylogenetic correction to MI will only reduce phylogenetic influence in the combined popula-
tion. Alongside of the uncorrected MI, we have computed MIp [65]. Prior analysis of many
methods developed to account for phylogeny, not limited to MI based statistics, has found MIp
to be the leading choice for large datasets [66]. We find that the two statistics, MI and MIp,
give similar rankings of the most correlated pairs of PR-PR residues as shown in S6 Fig. Shown
in S7 Fig is the recovery of positively correlated PR-PR pairs identified in [3] using MIp and
the recovery is similar to that using MI shown in Fig 5. Although we lack the sequence linkage
to apply other simple corrections for phylogenetic effects, such as sequence reweighting
[55,57,59], MI of weighted and unweighted HIV sequences has been shown to be similar [55].
Because results between MI and MIp were found to be similar, we used the uncorrected MI
throughout the study.
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All-atom distance calculation

For pairs of residues in MA, CA, NC, and PR, the smallest all-atom distances were calculated
by scanning through PDB files for all possible multimerizations of each protein: MA (mono-
mer PDB 2H3F*, trimer PDB 1HIW), CA (monomer PDB 3MGE, dimer PDB 2M8L*, penta-
mer PDB 3P05, hexamer PDB 3MGE), NC (monomer PDB 2EXF*), PR (dimer PDB 10DW).
For a single pair, the distance between all combinations of heavy atoms (backbone and side-
chain) was computed for each combination of chains (for multimers) for each conformation.
The minimum distance (R,-j) is listed in Table 5, S6 Table, as well as the pair of chains, atoms,
and the PDB structure from which the distance is derived. Pairs with smallest R;; when on dif-
ferent chains are denoted with the chain combination; otherwise, the chain combination is
listed as '-'. For structures derived from NMR data (denoted with * above), the smallest atom-
atom distance was calculated for each model, and the smallest distance from all models is re-
ported in Table 5. The distribution of model distances for each PDB derived from NMR is
listed in S7 Table.

Supporting Information

S1 Fig. Protease mutation patterns in PI-experienced samples. Shown is the distribution of
mutation counts in drug naive sequences (blue), sequences from patients treated with 1 prote-
ase inhibitor (red), and sequences from patients treated with 2 or more protease inhibitors
(green) [27]. Shown in black is the distribution of fixed mutations (mutations with frequencies
greater than 98% in a single sample) found in our deep sequenced samples.

(TIFF)

$2 Fig. Samples with variants vs sequence position over PR. Bar charts representing the
number of samples in which amino acid variants are observed at each position in protease de-
rived from deep sequencing (gray), 12,759 PI-naive subtype B protease sequences from Stan-
ford HIVDB (blue), and 4,919 PI-experienced subtype B protease sequences from Stanford
HIVDB (red); for sequence details, see http://hivdb.stanford.edu/modules/lookUpFiles/geno-
rx-datasets/PR.txt. Variants shown from deep sequencing occur at frequencies above 1% in 5
or more patients and variants shown from HIVDB are present in at least 1% of sequences. Posi-
tions at which the variation between the two datasets is small (|fps-frrvps|<10%) are faded.
(TIFF)

S3 Fig. Recovery of correlated protease-protease pairs. Shown is a plot of the precision for
the top 5% of correlated PR-PR pairs ranked by mutual information using both the lower (left)
and upper (right) bound on the double mutant probability. As in Fig 5, shown are the top 5%
of 1275 pairs with 127 putative true positives from Stanford HIVDB.

(TIFF)

S4 Fig. Conservation of LANL drug-naive sequences. Shown are several plots of conservation
index (CI) [28] versus Gag sequence position for two different sets of drug-naive sequences
from the Los Alamos HIV sequence database: a set of 342 uncultured, drug-naive sequences,
and a set of 2384 drug-naive sequences. (Top) The two datasets have similar CI over nucleo-
capsid. (Middle, Bottom) However, at many Gag positions, the conservation index varies great-
ly (up to 140%) between the two datasets.

(TIFF)

S5 Fig. Estimated bounds on double mutant probability per sample. Shown in each panel
are the known double mutant bivariate marginal probability (red square) and the estimated
lower and upper bounds on the probability shown as error bars in all samples for a given pair.
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Samples on the x-axis are sorted by the magnitude of the known double mutant probability in
that sample, and the order of the samples is not necessarily the same for each panel.
(TIFF)

S6 Fig. APC correction to MI versus MI. Shown is the ranking of 25 PR-PR pairs ranked by
MIp [64] vs the uncorrected MI.
(TIFF)

S7 Fig. Recovery of correlated protease-protease pairs using MIp. Shown is a plot of the pre-
cision for the top 5% of correlated PR-PR pairs ranked by MIp [64]. As in Fig 5 and S3 Fig,
shown are the top 5% of 1275 pairs with 127 putative true positives from Stanford HIVDB.
(TIFF)

S1 Text. Letter of approval for proper handling of patient information and serum. This let-
ter from The Scripps Research Institute Office for the Protection of Research Subjects shows
approval of the research project described in this article.

(PDF)

S1 Table. Observed Gag cleavage site mutations. “Blank entries indicate mutant was not pres-
ent with 98% frequency or greater in any sample. "Blank entries indicate mutant was has not
been associated with PI-exposure or-resistance (reported in [6]).

(DOC)

S2 Table. Observed Gag cleavage site mutants which are variants of PI-associated muta-
tions. Observed cleavage site mutants which occur at PI-associated residues are indicated in
bold. aBlank entries indicate mutant was not present with 98% frequency or greater in any
sample bBlank entries indicate mutant was has not been associated with PI-exposure or-resis-
tance (reported in [6]).

(DOC)

S3 Table. Top 5% of most strongly correlated pairs of PR-PR positions.
(DOC)

S4 Table. Top 1% of most strongly correlated pairs of Gag-PR positions. tDue to Gag-Pol
frameshifting, Gag codons 499-500 code protease residue 12. Simultaneous synonymous nu-
cleotide substitutions at Gag 499 and nonsynonymous nucleotide substitutions at Gag 500 re-
sult in mutation in protease residue 12. We therefore observe a strong correlation between Gag
500 and PR 12, though this correlation holds little co-evolution information because both
amino acid mutations are the manifestation of one set nucleotide substitutions. We do not ob-
serve strong Gag-PR correlations in the frameshift region (Gag 488-500 and PR 1-12), likely
due to the observed conservation of PR residues 1-9 and 11.

(DOC)

S5 Table. Top 1% of most strongly correlated pairs of Gag-Gag positions.
(DOC)

S6 Table. Smallest all-atom distances between strongly correlated pairs of residues in Gag
and protease as identified by mutual information. Listed are the smallest atom-atom dis-
tances (only heavy atoms, excluding side chains) for the most strongly correlated pairs of resi-
dues from the three regions PR-PR, Gag-PR, Gag-Gag ranked by MI in representative
structures. For structures with multiple chains, inter-chain distances were computed and the
chain and atom combinations of the smallest calculated distance for each pair are listed. Pairs
with atom-atom distances above 8A are listed in gray. *MA: matrix monomer, PDB 2H3F;
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MA3: matrix trimer, PDB 1HIW; CA: capsid monomer, PDB 3MGE; CA2: capsid dimer, PDB
2MB8L; CA5: capsid pentamer, PDB 3P05; CA6: capsid hexamer, PDB 3MGE; NC: nucleocapsid
monomer, PDB 2EXF; PR2: protease dimer, PDB 10DW. "For PDB files with multiple struc-
tural models, the model number with the smallest atom-atom distance is listed.

(DOC)

S7 Table. Distribution of atom-atom distances among models in PDBs derived from NMR.
Some of the distance calculations used in Tables 5 and S6 are derived from ensembles of struc-
tures. Shown here are the minimum, mean, and maximum atom-atom distances for all affected
position pairs calculated from each PDB with an ensemble of structural models. For distances
<8A, we find there to be little variability across structural models.

(DOC)

S8 Table. PR-PR pairs ranked by Fisher exact test p-value calculated from 2013 HIVDB se-
quences. We show a comparison between PR-PR pair rankings calculated using Fisher’s exact
test on a MSA provided by the Stanford HIVDB [24] dated 4/29/2013 and the permutation test
presented in [3].

(DOC)
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