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ABSTRACT: The “cytokine storm” often induced in COVID-19
patients contributes to the onset of “acute respiratory distress
syndrome” (ARDS) accompanied by lung infection and damage,
multiorgan failure, and even death. This large increase in pro-
inflammatory cytokines in blood may be related to severity. Rapid,
on-demand cytokine analyses can thus be critical to inform
treatment plans and improve survival rates. Here, we report a
sensitive, low-cost, semiautomated 3D-printed microfluidic immu-
noarray to detect 2 cytokines and CRP simultaneously in a single
10 μL serum sample in 25 min. Accuracy was validated by analyzing
80 COVID-19 patient serum samples, with results well correlated
to a commercial Meso Scale protein immunoassay. Capture
antibodies immobilized in detection microwells in a flat well
plate-type flow chamber facilitate the immunoassay, with a programmable syringe pump automatically delivering reagents.
Chemiluminescence signals were captured in a dark box with a CCD camera integrated for 30 s. This system was optimized to detect
inflammation biomarkers IL-6, IFN-γ, and CRP simultaneously in blood serum. Ultralow limits of detection (LODs) of 0.79 fg/mL
for IL-6, 4.2 fg/mL for CRP, and 2.7 fg/mL for IFN-γ with dynamic ranges of up to 100 pg/mL were achieved. ROC statistical
analyses showed a relatively good diagnostic value related to the samples assigned WHO COVID-19 scores for disease severity, with
the best results for IL-6 and CRP. Monitoring these biomarkers for coronavirus severity may allow prediction of disease severity as a
basis for critical treatment decisions and better survival rates.

■ INTRODUCTION
The COVID-19 pandemic caused by the acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has had an unprece-
dented impact on the world’s health, economy, and societal
issues1,2 and has claimed nearly 8 million lives worldwide since
late 2019.3 The typical route of infection is via aerosolized viral
particle uptake by the respiratory tract.4 While disease
manifestation is often mild, it can often become severe and
even fatal within hours. An intricate interplay between the virus
and the human immune system underlies this complexity. RT-
PCR is the gold standard for detecting the virus, but the result
is reported qualitatively as either positive or negative.5−7

Available qRT-PCR tests have the ability to quantify results
with great accuracy; however, the tests are time-consuming and
expensive, requiring expertise that makes them unsuitable for
point-of-care testing. Other tests available to detect COVID-19
include serological and molecular tests that detect antibodies
and antigens in COVID-198 and lack sensitivity for early
detection where the concentrations are low.8 While nasophar-
yngeal viral load has been shown to correlate with cytokine
levels,9 neither RT-PCR nor other existing coronavirus tests

have proven to be useful measures of existing or predictors of
ultimate infection severity.
There is a clear need for tests for COVID-19 and future

coronavirus pandemics that can predict disease severity among
infected individuals, as well as monitor the cellular basis of
virus-induced immune response.10−12 Efforts have been made
to identify biomarkers, prognostic tools, and therapeutic
options by studying the cellular basis of immune responses
to SARS-CoV-2,13 and specific panels of cytokines have
emerged as critical biomarkers of COVID-19 progression and
severity.14−16 However, the turnaround time of current
methodologies of single patient cytokine measurements is
too long for the timely workup necessary to guide rapid clinical
treatment.
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Cytokines are small proteins secreted primarily by immune
cells that play a critical role in regulating the immune response
to infections and are biomarkers for inflammation caused by
diseases including cancers.17 They are molecular messengers
that are widely present in body fluids, like blood, saliva, sweat,
urine, tears, interstitial fluids (ISFs), and cerebrospinal fluids
(CSFs),39 acting locally and help regulate cell growth,
differentiation, and activation,18−20 which determine cytokine
response to disease. In certain cases, an excessive and
uncontrolled release of pro-inflammatory cytokines occurs,
leading to the hyperactive immune “cytokine storm” or
hypercytokinemia.21,22 This overreaction of the immune
system can result in severe tissue damage, serious infections
in lungs and kidneys, and possibly death.23−25COVID-19
cytokine storm is related to disease severity and clinical
outcome.13,26,27 The resulting acute respiratory distress
syndrome (ARDS) causes aggravation and widespread tissue
damage that can lead to multiorgan failure and death.28,29

Consistent with this hypothesis, high levels of proinflammatory
cytokines and chemokines including IFN-γ, TNF-α, IL-6, IL-
1β, IL-18, CXCL8, CXCL10,30 and the acute inflammatory
protein CRP24−38 have been found in patients who died from
COVID-19.14,39 Difficulties have been identified in predicting
the severity of COVID-19 from tests that measure viral load
such as RT-PCR.40−42 Serological tests can find antibodies
against SARS-CoV-2 due to recent or past COVID-19
infections or vaccinations and are not directly related to
severity.43 Current methods for quantifying cytokines in the
clinic include immunoassays such as traditional enzyme-linked
immunosorbent assay (ELISA) and enzyme-linked immuno-
sorbent spot (ELISpot) and bioassays such as Luminex bead-
based assays, flow cytometry assays, and the Meso Scale MSD-
ECL assays used as referee assays in this paper. Although these
approaches show tremendous promise, they are expensive,
have relatively high LODs in the 1−10 pg/mL range for most
proteins, and are designed for multiple sample runs.44−47,50

This makes them unsuitable for single patient POC use. More

recent technology includes single protein counting immuno-
assays48,49 for protein detection like the Quanterix Simoa HD-
1/X Analyzer.47,50 These are characterized by excellent LODs
in the 2−50 fg/mL range and low reagent and sample volumes.
However, single protein counting approaches have high
instrument and per-assay costs and are unsuitable for
individual patient POC diagnostics. In the early days of the
COVID-19 infection, there was no way of predicting the
course of the infection in terms of severity by doctors treating
patients presented with symptoms of COVID-19 and tested
positive for the infection. Early detection of biomarker
cytokines with high sensitivity and specificity is a possible
approach to predicting disease severity in confirmed COVID-
19 patients and could lead to better treatment plans and
improve survival rates.51−53 In this context, a point-of-care
(POC) cytokine test readily accessible to physicians in acute
settings such as emergency rooms and intensive care units or in
resource-limited locations would be of great value.
The World Health Organization (WHO) defined a severity

index for COVID-19 based on physician’s assessments of
symptoms and routine tests.54,55 Asymptomatic individuals and
those with limited symptoms are categorized by WHO scores
of 1−2. Moderately symptomatic individuals who require no or
need little supplemental oxygen are categorized with WHO
scores of 3−4. Patients who show extreme symptoms and have
a requirement for supplemental high-flow oxygen, mechanical
ventilation, and multiorgan support are classed as “severe” and
assigned WHO scores 5−8.56−58

Herein, we describe a fast, low-cost, highly sensitive point-
of-care immunoassay to detect 3 proinflammatory biomarkers
that play a significant role in the cytokine storm in a single
assay and provide test results in approximately 25 min. The
assay was developed and optimized using our recently designed
general 3D-printed immunoarray platform59 for single sample
analyses to enable fast POC measurements for individual
COVID-19 patients. The new ultrasensitive assay determines
blood serum levels of cytokines IL-6, IFN-γ, and CRP with

Figure 1. Representations of 3D-printed immunoarray design with unique tray of microwells (3 mm × 3 mm × 1.25 mm each) in the detection
chamber.59 The immunoarray features reagent chambers (larger colored rectangles) to hold a mixture of sample-biotinylated Ab2-ST-PolyHRP,
wash buffer, and CL reagent for chemiluminescence detection serially.
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limits of detection (LODs) in the low fg/mL range. Our array
designed for single, low-cost sample POC assays has much
lower LODs than most commercial protein immunoassays that
are expensive and designed to analyze relatively large numbers
of samples simultaneously in a central lab. Except for recently
introduced but expensive single protein detection devices,60

most ELISA-based commercial protein detection methods are
limited by LODs above 1 pg/mL. Recently published POC
testing approaches61 include the use of aptamer beacons for
IFN-γ only,62 with LOD ∼ 2 ng/mL, while in our patient data
set reported here, the lowest values of IFN-γ are 1 pg/mL.
Also, single protein biomarker assays are of limited value for
reliable disease diagnostics.63 Other label-free detection
methods for cytokines (2 proteins only) offer comparable
assay times of 30−35 min64,65 but with the best LODs for the
0.4 to 0.9 pg/mL range for cytokines such as IL-1β (lowest
values in our data set are 0.01 and 0.8 pg/mL) and TNF-α
(lowest values are 0.3 pg/mL). Thus, these assays will not be
useful for detection of cytokines in normal control samples or
in patients with low impact COVID-19. On the other hand,
our assay reported in this paper achieves LODs at least 1000-
times lower than the above-referenced recently published POC
methods for cytokines, as well as existing commercial methods
Additionally, we have, for the first time in this paper,

analyzed our multiplexed cytokine assay data to relate
concentrations of 3 relevant cytokines to the severity of
COVID-19 infections by correlating results with the WHO
severity index assigned to the patients. Sensitive analysis of 80
patient serum samples, involving a cohort of low, medium, and
high severity, and further statistical analysis of the concen-
trations established correlations of cytokine levels with the
severity of COVID-19. This can be valuable in the manage-
ment of future coronavirus infections by enabling guidance for
timely medication and treatment for patients likely to present
the most serious infections.

■ MATERIALS AND METHODS
Reagents and Samples. Sources of chemicals and

proteins are detailed in the Supporting Information. Thermo
Fisher Supersignal West Femto was the chemiluminescence
(CL) substrate in solution form containing femto-luminol and
hydrogen peroxide mixed in a 1:1 ratio right before use. CL
was measured within the array in a dark box (Syngene G: box
F3) using a CCD camera, and images obtained were processed
using GeneSnap software. Human COVID-19 patient serum
samples were collected at McGill University Health Centre
Research Institute (MUHC-RI) with approval (#2021-6081)
from the center’s Ethics Board.

3D-Printed Microfluidic Device. Immunoarrays (Figure
1) were constructed via Autodesk Fusion 360 CAD software
and then transferred to a Formlabs Form 3 stereolithographic
3D printer to print compact, light-transparent arrays using
Formlabs SLA photopolymer V4 resin. Freshly printed arrays
are cleaned by sonicating and washing with isopropanol for
10−15 min to remove uncured resin, followed by air drying.
Unique 3D-printed microarrays with cover flaps to cover a
detection chamber in an open “well-plate” arrangement
(Figure 2) were thus designed and constructed simultaneously.
There are 15 microwells within the detection chamber (3 rows
and 5 columns) of each array, having a volume capacity of 8
microL each. After the wells are equipped with antibodies,
cover flaps are pasted onto the top of the microwell array using
Loctite Flexible Adhesive and sealed using Gorilla Clear Grip
glue. A Chemyx Fusion Touch programmable syringe pump
was used for fluidics. Each array is designed to have 3 reagent
chambers separated by an air chamber to avoid mixing during
flow.
Each downward column of 3 microwells is pre-equipped to

detect one of the three target analyte cytokines and CRP
simultaneously in a single assay. The very first column closest
to the inlet of the detection chamber is used for the control
and has no capture antibodies. The control sample used is
pooled human serum from Sigma (no COVID-19) with

Figure 2. Photographs of the unique microwells in the detection chamber of the 3D-printed immunoarray showing top and side (on bottom)
views. Each microwell is 3 mm × 3 mm × 1.25 mm in dimension, with a volume capacity of 8−10 μL. The procedure performs a separate sandwich
immunoassay in each of the wells.
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normal levels of cytokines and is representative of the matrix.
The control detection column is followed downstream by wells
equipped with capture antibodies that bind IL-6, CRP, and
IFN-γ. The wells in the last column are used as overflow
reservoirs to ensure proper filling of the analytical microwells
and to help facilitate proper flow of the sample and reagents
across all the wells. The total volume of the detection chamber
is 260 μL.
The 5 reagent chambers in the array have volumes of 300 μL

each. Three reagents are filled in alternating reagent chambers
while leaving chambers in between as air-filled chambers.
Optimization of the microwell design, size, and flow rate was
done to achieve proper filling of the wells and the efficient
emptying of the wells with little to no loss of solutions using
methods we reported earlier.59 Detection wells are pretreated
with chitosan, glutaraldehyde, and primary antibodies as
described in the following section and stored at 4 °C until
use. The matching 3D-printed cover flap is used to seal the
open detection chamber before running the assay by gluing it
above the wells to the main body of the device.

Immobilization of Primary Antibodies in Sensing
Microwells. To load capture antibodies for the assay,
microwells in the detection chamber are first filled with 8 μL
of 0.5 mg/mL chitosan in a 0.05 M HCl, pH 4, solution
followed by incubation at room temperature (RT) for 3 h
(Scheme 1). The solution is then removed by tapping, while
the array is turned upside down. Arrays are dried overnight in a
vacuum to provide a hydrogel layer coating the inside surface
of the microwells. Wells are then filled with 3% glutaraldehyde
in PBS (pH 7.4) and incubated for 3 h so that amine groups in
the chitosan layer form Schiff’s bases with glutaraldehyde for
subsequent attachment of primary antibodies using methods
we developed previously.66,67 The solution is then drained
from the wells by turning the device on its side, tapping, and
then drying in vacuum for 1 h. A solution of each specific

primary antibody (Ab1) for IL-6, CRP, or IFN-γ is then added
to the assigned wells and allowed to incubate overnight at 4 °C
(Scheme 1) for the reaction of free glutaraldehyde with amines
on the Ab1’s, the concentrations of which were previously
optimized (Supporting Information, Tables S1 and S2, and
Figures S1 and S2). We have demonstrated previously that
chitosan layers with glutaraldehyde-attached capture antibodies
(Ab1) form a highly porous hydrogel that is 98−99% water,
presenting a porous medium for efficient convective transport
of detection antibody−protein complexes to enter and bind to
Ab1 for subsequent CL detection.

59,66,67 The number of Ab1’s
immobilized in the microwells was estimated using the
bicinchoninic acid (BCA) total protein assay,68 which gave
the numbers of antibodies of 4.0 × 1013 IL-6-Ab1/cm2, 8.6 ×
1013 CRP-Ab1/cm2, and 9.0 × 1012 IFN-γ-Ab1/cm2 (Figure
S4).
Immunoarrays decorated with capture antibodies (Ab1) and

stored at 4 °C are first tap-dried to remove the Ab1 solution
present in the microwells and then washed 2× with PBS (pH
7.4) and Tween 20 (0.01%) to remove any loosely bound
antibodies.69 Tween 20 is a non-ionic surfactant used in
immunoassays extensively as a wash buffer along with PBS or
as a blocking buffer independently.70 It has been found to
effectively reduce nonspecific protein adsorption by washing
away the unbound substances from the surface of the array. It
additionally prevents the formation of bubbles, allowing for
uniform washing steps altogether increasing the selectivity of
the assay.71,72 Blocker Casein buffer (pH 7.4, Thermo Fisher)
is then added into each of the microwells and incubated for 1 h
to ensure the blocking of any nonspecific sites. The solution is
then removed by tapping, and the microwells are once again
washed with PBS, pH 7.4. The detection chambers are then
sealed by gluing the 3D-printed flap in place to facilitate a
smooth, automated flow of fluids without leaks. Reagent
chambers are filled with reagents, starting with a mixture of

Scheme 1. Schematic Illustration Showing Steps for the Immobilization of Capture Antibodies with Chitosan and
Glutaraldehyde on a Transparent 15-Microwell Immunoarray, Followed by the Sandwich Immunoassay in One Step, and
Chemiluminescence Detection (CL) Signal Generation Measured in a Dark Box with a CCD Camera
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sample, an optimized concentration 0.5 μg/mL polyHRP-
streptavidin conjugate,44 and biotinylated detection antibodies
(Biotin-Ab2) in the top reagent chamber (Figure 1, green), in
which streptavidin binds to biotin to form analyte-polyHRP-
strepadvadin-Biotin-Ab2 bioconjugates for detection. PBS
buffer is placed in the middle reagent chamber (Figure 1,
orange) and CL reagent substrate (femto-luminol + H2O2) in
the last chamber (Figure 1, blue), leaving alternate second and
fourth air chambers empty. Tubing is now connected to a
syringe in a programmable syringe pump to control the flow
rate at an optimal 150 μL/min (Figure S3). The pump is
programmed to flow in steps reflecting the times required to
flow reagents to deliver them to the detection chamber and
incubate them in the detection chamber for the desired times.
In addition, 4 samples can be run simultaneously by the four-
syringe pump using different flow lines for 4 immunoarrays.
After starting the pump, step 1 flows the analyte-polyHRP-
strepadvadin-Biotin-Ab2 bioconjugate into the detection
chamber, filling all the microwells. This mixture is incubated
in the microwells for 15 min at stopped flow to allow binding
of analyte-polyHRP-strepadvadin-Biotin-Ab2 to Ab1 (step 2).
Then, the pump restarts, and the solution is pumped out of the
wells by the inflow of PBS buffer as a wash to remove excess
unbound polyHRP-strepadvadin-Biotin-Ab2. In step 3, the 1:1
femto-luminol-H2O2 mixture flows into the microwells. Once
the chamber is filled with this reagent, the flow is stopped, the
immunoarray is detached from the pump, and CL images are

captured in the dark box with a CCD camera over a 15 s
integration period.

ROC Statistical Analyses. We used receiver-operating
characteristic (ROC) analyses of determined cytokine levels
grouped by severity derived from physician-assigned WHO
severity indices of the patients.73 ROC plots74 provide
diagnostic utility estimates of sensitivity and specificity, in
our case for answering a diagnostic question.75 We used the
assigned independent variables 0, for low disease severity, or
independent variable 1, e.g., for the high severity of COVID-19
for each patient sample, to construct x−y ROC plots of true
positive rate (sensitivity) vs the false positive rate (100% −
specificity) for sample levels as the dependent variables. The
closer the curve comes to the upper left corner of the ROC
plot, the higher is the diagnostic accuracy. The area under the
ROC curve (AUC) is also a measure of diagnostic utility with
maximum AUC = 1.0, indicating that dependent variables can
perfectly differentiate the independent variables (0 and 1). An
ROC curve that lies on the diagonal of the x−y ROC plot axes
indicates that the measured variable cannot differentiate
between the 0 and 1 states. We used MedCalc ROC software
that computes all statistics. The best decision thresholds
distinguishing 0 and 1 states are automatically estimated as the
value of the dependent variable (e.g., cytokine level), yielding
the maximum sum of sensitivity and specificity.

Figure 3. Calibration data for simultaneous detection of cytokines IL-6, CRP, and IFN-γ in buffer-diluted (pH 7.4), 1% pooled human serum with
CL captured in a dark box with a CCD camera. (A) Recolorized CL images of 10 immunoarrays showing an increasing CL signal with increasing
cytokine concentrations. CL signal response vs concentration for (B) IL-6, (C) CRP, and (D) IFN-γ. Errors bars show standard deviations for n =
5.
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■ RESULTS
Assay Development. To ensure optimal performance,

concentrations of primary capture antibodies (Ab1) and
detection antibodies (Ab2) were optimized for the best
signal-to-noise ratios and high sensitivity for each cytokine.
We optimized concentrations of the specific Ab1 and Ab2 by
methods we reported previously44 (see Tables S1 and S2 and
Figures S2 and S3).
The panel of cytokine biomarkers was chosen by considering

assays of 57 of the COVID-19 patient serum samples by the
Meso Scale Discovery platform by our collaborators at McGill
University for cytokines IFN-γ, IL-6, IL1-β, TNF-α, and CRP.
Box and whisker plots (Figure S7) and receiver operator curves
(ROCs) (Figure S8) were used to find the most promising
cytokine biomarkers to differentiate between mild and severe
COVID-19 infection based on the WHO severity index, linking
the cytokine levels in patient samples to low WHO severity
(scores 3 and 4) vs high severity (scores 7 and 8). For the area
under the ROC curve (AUC) parameter (Table S4), cytokines
giving values closest to 1 were chosen as analytes. IL-6, CRP,
and IFN-γ cytokines gave AUC values of 0.789, 0.777, and
0.719, respectively. Thus, we chose these as biomarkers for
POC array development and testing.
We established the optimal primary (Ab1) and secondary

(Ab2) antibody concentrations, flow rates (Figure S5), and
incubation times (Figure S6) to perform calibration measure-
ments for the 3 cytokine standards. The relative CL responses
from the 3D-printed immunoarray were accumulated for 15 s
with a CCD camera for different analyte concentrations and
were processed by subtracting CL intensity from zero cytokine
controls (∼104 magnitude) to get CL signal intensities (Figure
3). These calibration plots show small standard deviations and
linear responses with concentration for each cytokine and
CRP. They have linear dynamic ranges of 1 fg/mL to 500 pg/
mL for IL-6, 12.5−500 fg/mL for CRP, and 6.25−500 fg/mL
for IFN-γ, with an average relative standard deviation of ±8%
array to array (n = 5). Limits of detection (LOD) obtained
were 0.79 fg/mL for IL-6, 2.7 fg/mL for IFN-γ, and 4.2 fg/mL
for CRP. Reproducible CL signal intensity was also obtained
for the 3 microwells allotted to each cytokine within a single
immunoarray (Figure 3A), giving an average standard
deviation of ±6% well to well.

Assay Accuracy Validation. The assay was validated for
accuracy in three steps: (i) establishing cross-reactivity
between the cytokine antibodies, (ii) measuring spike
recoveries of the cytokines in 10-fold diluted pooled human
serum (PBS buffer, pH 7.4), and (iii) analyzing patient samples
and comparing to mesoscale ELISA-type assays.76 Sterile,
filtered, diluted pooled human serum from healthy subjects
was used in the analysis with different concentrations of added
cytokines IL-6, IFN-γ, and CRP. The CL signal response was
determined in triplicate, and concentrations were obtained
after subtracting the relevant signals from the cytokine
controls, i.e., diluted pooled human serum. The samples
were analyzed using the procedure in Materials and Methods.
We designed assays to check the cross-reactivity between

primary and secondary antibodies of each of the cytokines and
CRP with the antigens. The assays involved testing one antigen
against the Ab1 and Ab2 of the remaining 2 markers under
study followed by analysis of the signal obtained as a result of
the analysis. From results in Table 1, percent cross-reactivity
for the cytokines and CRP lies below 5% in all but 2 cases that

rise to 6−8%. Cross-reactivity measurements were reprodu-
cible within ±7%.

To confirm the accuracy of the multiplexed 3D-printed
immunoassay, spike recoveries of the respective cytokines were
measured from spiked pooled human serum samples. Sterile,
filtered, 10× PBS-diluted pooled human serum was spiked with
different concentrations (15, 60, and 300 fg/mL) of IL-6, CRP,
and IFN-γ. This matched dilutions for real cytokine serum
assays. Concentrations in spiked samples were found after
subtracting the signals for the diluted pooled human serum
acting as a control. Calibration curves in pooled human serum
were used to estimate recoveries. Recoveries were in the
acceptable analytical range for biomedical assays of 100 ±
20%,77,78 and the average standard deviation was ±6.8%
(Table 2). The largest recovery errors of −20% for IL-6 and
+17% for IFN-γ were found only at the lowest protein spike
concentrations, but they are still within the acceptable range.
These results verify the accuracy of the assays and show that
the effects of cross-reactivity are negligible.

Patient Sample Analyses. We analyzed 80 COVID-19
patient serum-WHO severity index samples that include 47
mild, 9 moderate, and 24 high severities according to their
WHO severity indices. Cytokines IL-6, IFN-γ, and CRP were
determined by using the microfluidic array and optimized
method. Samples were diluted 10× or 100× in PBS buffer (pH
7.4) for IL-6 and IFN-γ analysis and 100× to 500× for CRP
analysis to bring the analyte concentration down into the
dynamic range of the assay.
Correlation plots from 3D-printed array assays vs determi-

nations on the same samples using the commercial Meso Scale
protein measurement platform (Figure 4) gave a slope of 1.06
and an intercept of 0.47 ± 0.33 pg/mL for IL-6, a slope of 0.89
and an intercept of 8.6 ± 1.90 pg/mL for CRP, and a slope of
0.97 and an intercept of 4.2 ± 0.21 pg/mL for IFN-γ and
correlation coefficients (r) close to 1.0. Perfect correlations
have a slope and r-value of 1.0 and an intercept of 0.0, so these
plots with slopes close to 1.0 and intercepts within 3 standard
deviations (SDs) of 0 show a strong positive correlation of the
new array results with the established commercial Meso Scale
assay for the determination of each of the cytokines and CRP
in patient serum.

Diagnostics for Severity. ROC plots were used to
estimate the diagnostic specificity and the sensitivity of each
of the cytokine levels in patient serum to distinguish different
levels of severity indicated by the WHO severity index.
Samples were grouped according to low WHO severity scores
as a ROC-independent variable zero and high severity WHO
score as an independent variable 1 for the ROC plots.
Analyzing patient samples grouped into WHO scores 3 and 4
as low severity and WHO scores 7 and 8 as high severity
(Figure 5) gave AUC (perfect differentiation = 1, 0) close to

Table 1. Cross-Reactivities of Primary and Secondary
Antibodies in the 3D-Printed Immunoassay

percent cross-reactivity with
Ab1

percent cross-reactivity with
Ab2

antigen
IL-6
Ab1

CRP
Ab1

IFN- γ
Ab1

IL-6
Ab2

CRP
Ab2

IFN-γ
Ab2

IL-6 2.49 2.64 4.65 6.43
CRP 4.36 3.39 8.04 1.84
IFN-γ 2.54 2.30 2.24 1.99
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Table 2. Spike Recovery Studies from Multiplexed Immunoassays in Pooled Human Serum (n = 3)

IL-6 CRP IFN-γ

spiked concentration (fg/mL) found concentration percent recovery found concentration percent recovery found concentration percent recovery

15.0 12.0 80.0 15.0 99.8 17.5 117.0
60.0 57.5 95.8 58.8 97.9 65.4 109.0
300.0 314.0 105.0 314.0 105.0 288.0 96.0

Figure 4. Linear correlation plots for 3D-printed cytokine array vs commercial ELISA-type Meso Scale ECL assay for (A) IL-6, (B) CRP, and (C)
IFN-γ, quantified in pg/mL (n = 3) in 69 COVID-19 patient samples.

Figure 5. Receiver operating characteristic (ROC) curves for (A) IL-6, (B) CRP, and (C) IFN-γ levels in patient samples comparing low severity
(WHO scores 3 and 4) vs high severity (scores 7 and 8). The AUC values obtained are 0.7825, 0.6725, and 0.5676, respectively, under the 95%
confidence interval.

Figure 6. Receiver operating characteristic (ROC) curves for (A) IL-6, (B) CRP, and (C) IFN-γ levels in patient samples comparing low severity
(WHO scores 3 and 4) vs moderate severity (scores 5 and 8). The AUC values obtained are 0.7085, 0.6691, and 0.5685, respectively, under the
95% confidence interval.
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0.7 or above and clinical specificity and sensitivity scores of
62−69% for IL-6 and CPR, showing differentiation of the 2
states (low and high) very well. However, INF-γ shows poorer
performance with a ROC AUC of 0.57 and clinical specificity
and sensitivity scores <58%. A similar situation pertained for
WHO scores 3 and 4 as low severity vs WHO scores 5 and 6 as
moderate severity (Figure 6) and WHO scores 3 and 6
combining low and moderate severity vs WHO scores 7 and 8
as high severity (Figure 7), that is, IL-6 and CRP are the good
and acceptable biomarkers to differentiate the different classes
of severity, while INF-γ is marginal.

■ DISCUSSION
The immunoarray featuring a unique microwell design in a
well-plate format described above facilitates a fast, easy to
implement, low-cost, specific, and highly sensitive chemilumi-
nescence assay for the target proteins that takes ∼25 min and is
suitable for POC single patient assays. The costs are ∼$1 per
printed array and $2.70 in reagents per assay in the
semiautomated 3D-printed microarray. Cytokines can serve
as important biomarkers for diseases like COVID-19 where
patients can proceed in a matter of hours to a high severity
state, and a cytokine increase can signal the onset of a
“cytokine storm”. In this context, close patient monitoring
using a methodology with a rapid turnaround time would have
an enormous practical value. In our present study of patient
samples, ROC curves of cytokine levels grouped by WHO
severity scores comparing low severity (WHO scores 3 and 4)
vs high severity (scores 7 and 8) gave the best AUC of 0.78 for
IL-6, supporting this biomarker as the best severity indicator
among the three pro-inflammatory cytokines measured
(Figures 5−7). IL-6 also performed significantly better than
CRP, the standard pro-inflammatory cytokine measured
routinely to monitor patients affected by COVID-19 upon
admission. Further, none of the biomarkers performed very
well to distinguish high from moderate severities (Figures 6
and 7) with the highest AUC of 0.71 in these cases, again for
IL-6. Although our study was done on a relatively small cohort,
our data strongly support the need for rapid availability of IL-6
and possibly CPR measurements in the treatment protocol as
critical blood biomarkers for the COVID-19 severity.
The microfluidic immunoassay described detects cytokines

with very low LODs, i.e., ∼0.79 fg/mL for IL-6, ∼4.2 fg/mL
for CRP, and ∼2.7 fg/mL for IFN-γ.51 Linear dynamic ranges

of 1−500 fg/mL for IL-6, 12.5−500 fg/mL for CRP, and
6.35−500 fg/mL for IFN-γ were achieved (Figure 3). Samples
require dilution in buffer to bring concentration levels into the
assay’s dynamic range, thus allowing detection of cytokines
using volumes of serum samples ≥5 μL. These larger dilutions
have the added advantage of greatly decreasing concentrations
of interferants in the sample, decreasing nonspecific binding,
and greatly limiting antibody cross-reactivity. Antibody cross-
reactivity in these assays was below 5% in all but 2 cases that
were 6−8% (Table 1) in 10-fold diluted pooled human serum,
and these values will be much lower in 100- and 500-fold
diluted serum than in many of the patient serum assays
required. The programmable syringe pump provides semi-
automation with precise control in the sequential delivery of
reagents to facilitate incubation and washing of the arrays
without operator participation.
Accuracy was verified by excellent assay recovery of spiked

samples (Table 2), and excellent correlations of the
concentrations of each cytokine and CRP from the array to
their concentrations were found from commercial Meso Scale
assays as seen from the slopes and correlation coefficients close
to 1 and intercepts near zero (Figure 4). This rapid, low-cost
biomarker assay thus offers great promise for POC use, leading
to better management of infection and possible prediction of
disease severity and the onset of ARDS.
In summary, we described herein an accurate, ultrasensitive

3D-printed microfluidic immunoarray for POC detection of
three cytokines and applied it to serum samples from COVID-
19 patients. While we focused on these specific biomarkers,
other cytokines previously identified in the context of COVID-
19 infection can be easily included or substituted into the
array, with additional microwells added as required. The array
is suitable for fast, single sample, on-demand POC tests to
detect representative cytokines and CRP. IL-6 emerged in this
study as the most powerful biomarker for COVID-19 severity.
This POC approach is also suitable for serial measurements of
cytokines during disease progression as a guide for manage-
ment. Finally, the array reported here should also be useful for
patient care in future coronavirus epidemics.
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Figure 7. Receiver operating characteristic (ROC) curves for (A) IL-6, (B) CRP, and (C) IFN-γ levels in patient samples comparing low +
moderate severity (WHO scores 3 and 6) vs high severity (scores 7 and 8). The AUC values obtained are 0.7825, 0.6725, and 0.5676, respectively,
under the 95% confidence interval.
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