
sensors

Article

A Parallel Architecture for the Partitioning around
Medoids (PAM) Algorithm for Scalable Multi-Core
Processor Implementation with Applications
in Healthcare

Hassan Mushtaq 1, Sajid Gul Khawaja 2, Muhammad Usman Akram 2,*, Amanullah Yasin 1,
Muhammad Muzammal 3,* , Shehzad Khalid 4 and Shoab Ahmad Khan 2

1 Department of Electrical & Computer Engineering, Sir Syed CASE Institute of Technology, Islamabad 44000,
Pakistan; hassan.mushtaq@ymail.com (H.M.); amanyasin@case.edu.pk (A.Y.)

2 Department of Computer & Software Engineering, CE&ME, National University of Sciences & Technology,
Islamabad 44000, Pakistan; sajid.gul@ceme.nust.edu.pk (S.G.K.); shoabak@ceme.nust.edu.pk (S.A.K.)

3 Department of Computer Science, Bahria University, Islamabad 44000, Pakistan
4 Department of Computer Engineering, Bahria University, Islamabad 44000, Pakistan;

shehzad@bahria.edu.pk
* Correspondence: usmakram@gmail.com (M.U.A.); muzammal@bui.edu.pk (M.M.)

Received: 15 August 2018; Accepted: 1 November 2018; Published: 25 November 2018
����������
�������

Abstract: Clustering is the most common method for organizing unlabeled data into its natural groups
(called clusters), based on similarity (in some sense or another) among data objects. The Partitioning
Around Medoids (PAM) algorithm belongs to the partitioning-based methods of clustering widely
used for objects categorization, image analysis, bioinformatics and data compression, but due to its
high time complexity, the PAM algorithm cannot be used with large datasets or in any embedded or
real-time application. In this work, we propose a simple and scalable parallel architecture for the
PAM algorithm to reduce its running time. This architecture can easily be implemented either on a
multi-core processor system to deal with big data or on a reconfigurable hardware platform, such as
FPGA and MPSoCs, which makes it suitable for real-time clustering applications. Our proposed
model partitions data equally among multiple processing cores. Each core executes the same sequence
of tasks simultaneously on its respective data subset and shares intermediate results with other cores
to produce results. Experiments show that the computational complexity of the PAM algorithm is
reduced exponentially as we increase the number of cores working in parallel. It is also observed
that the speedup graph of our proposed model becomes more linear with the increase in number
of data points and as the clusters become more uniform. The results also demonstrate that the
proposed architecture produces the same results as the actual PAM algorithm, but with reduced
computational complexity.

Keywords: clustering; partitioning around medoids; scalable; parallel; reconfigurable; FPGA;
MPSoCs; multi-core processor; time complexity; speedup

1. Introduction

In recent years, the Internet of Things (IoT) has rapidly grown into one of the most beneficial and
dominant communication models for wireless communication applications [1–4]. Our everyday life is
becoming associated with IoT-based entities where the Internet provides a computational platform for
data gathered from various sensors. The IoT has hence enhanced the horizon of the Internet making
it suitable for different applications. Health care applications in particular have risen in popularity

Sensors 2018, 18, 4129; doi:10.3390/s18124129 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8817-1629
http://dx.doi.org/10.3390/s18124129
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/12/4129?type=check_update&version=2


Sensors 2018, 18, 4129 2 of 17

because of rapid development of IoT-based wireless sensor networks, medical devices and wireless
technologies [5–7].

Healthcare applications mainly deal with large sets of data that need to be classified into various
classes. It frequently happens that the output classes are not known a priori, thus unsupervised
learning models such as clustering are preferred. Clustering is one of the basic techniques in the data
mining domain aimed at organizing a set of data objects into their natural subsets (called clusters),
when labels for the data are unavailable. An ideal cluster is an isolated set of data points which are
similar to one another, but dissimilar to the points in other clusters [8,9]. Similarity is commonly
defined in terms of how close the objects are and is based on a specified distance metric [8].

The most fundamental way of clustering is partitioning, which organizes the data into several
exclusive groups. More formally, given a set of N objects, a partitioning algorithm makes K partitions
of the data, where each partition represents a cluster. A data point is assigned to a cluster based on the
minimum distance measure between the point and the cluster center. The cluster centers are initially
chosen either randomly or by using some initialization technique. The algorithm then iteratively
improves the formulation of clusters by finding new cluster centers using the objects assigned to the
clusters in the previous iteration. All the objects are then reassigned to clusters using updated cluster
centers. This process continues until there is no change in the calculated cluster centers in the current
iteration compared to the previous one [8]. Clustering has been used in many applications around the
globe encompassing many of our real-life applications, including but not limited to healthcare, IoT,
academics, search engines, wireless sensor networks, etc. [10–18].

Partitioning-based clustering algorithms differ in the way of computing cluster centers,
e.g., K-Means [19,20] and K-Modes [21] clustering algorithms use mean and mode values of the
clustered data points, respectively, while in K-Medoids [8], clustering method clusters are characterized
by their most centrally located objects (called medoids). The first practical realization of the
K-Medoids method was introduced as the Partitioning Around Medoids (PAM) algorithm. PAM
is more robust than K-Means against noise and outliers, but this robustness comes at the expense of
more computations.

Considering a PAM algorithm which is clustering a dataset with n points into k clusters, the time
complexity required for it to complete its task is roughly O(k(n− k)2). This makes the algorithm
resource and time intensive, especially in the present age where huge amounts of data are at our
disposal for processing, thus it becomes a major bottleneck for real time implementation. The utility of
the PAM algorithm demands an implementation of the PAM algorithm which is computationally less
intensive. This timing complexity of PAM algorithm can be reduced by the introduction of parallel
processing and multi-core solutions to the problem. Furthermore, such as design is also suited to
today’s state-of-the art multicore and reconfigurable computing hardware platforms such as Graphics
Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs), essentially leading to a
computationally inexpensive implementation of the PAM algorithm targeted for real-time processing.
The use of FPGAs and reconfigurable computing in faster implementations of various algorithms has
gained popularity in recent years. They have been used in various domains ranging from biomedical
image/signal processing to data analytics and more [22–24]. FPGAs along with SoC designs have
also been used extensively in optimizing various algorithms, such as deep learning and HoG-based
segmentation, for application development [25–30].

In this paper we present a scalable parallel architecture of the PAM algorithm which can be
implemented either on a multi-core processor system or on a reconfigurable device. The proposed
algorithm makes use of divide and conquer approach using multiple processing units. The multiple
cores perform homogeneous operations on independent set of data and share results with each other
to finalize a single iteration.

The remainder of the paper is organized as follows: Section 2 provides an overview of the
background related to acceleration of the PAM algorithm, Section 3 provides an overview of the PAM



Sensors 2018, 18, 4129 3 of 17

algorithm and our proposed architecture of parallel PAM. The results are presented and thoroughly
discussed in Section 4, followed by the conclusions of the paper in the last section.

2. Background

The complexity of the PAM algorithm has forced researchers to come up with various
modifications in order to speed up the algorithm. In this respect a basic multi-core implementation
of K-Medoids was proposed which divides the algorithm into sub-tasks, where each sub-task is
implemented on a separate core. The proposed design provides improved speedup (4× while
utilizing 16 cores) but is limited by the number of hardware cores available at a user’s disposal.
A similar multi-core solution has been provided by Rechkalov in [31] for the Intel Xeon Phi Many-Core
Coprocessor. The proposed system makes use of OpenMP parallelizing technology and loop
vectorization within the algorithm along with the tiling approach. Experimentation showed that
the performance of the optimized version of the algorithm is improved but the overall performance
depends on the nature of the data to be clustered [31]. Velmurugan et al. discussed the performance
improvements that can be made in K-Medoids by simply changing how the data is distributed.
In order to prove this concept, normal and uniform distributions of data were used showing that
execution time varies as the selected distribution changes [32]. Park et al. proposed an alternate way of
computing the K-Medoids algorithm which is similar to the K-Means algorithm [33]. In the proposed
solution Euclidean distance is calculated once and then used to calculate new medoids at each iteration.
Experiments showed that the execution time of the algorithm was reduced significantly in comparison
to the original algorithm.

The increase in popularity of reconfigurable devices, multi-core systems and Graphic Processing
Units (GPUs) has seen researchers focusing their efforts on finding parallel models of various machine
learning algorithms to improve their performance. A scalable multi-core hardware architecture for
implementation of K-Means is proposed in [14] which makes use of tiling to perform multiple tasks in
parallel (cores) to speed up the system. The cores are further interconnected using a Network-on-Chip
(NoC) interconnect network to offload traffic and provide scalability to the design by minimizing the
message passing bottlenecks. The experimentation yielded a near linear speedup with increase in
number of cores while the hardware resources and clock speed were not affected. Similarly, a parallel
processing model for implementation of the mean shift clustering algorithm for FPGA implementation
was proposed by Tehreem et al. in [34]. The proposed model consists of homogenous processing
cores running in parallel on independent data subsets. These cores were connected through a bus
for data sharing. The proposed model worked in a collaborative working environment where each
core works independently and shares its data with others for finalization of results. This model
provided a significant speedup while utilizing only 10.31% of the total device slice registers and 33%
of total slice LUTs of a Spartan 6 FPGA. A multi-processor architecture having heterogeneous tiles
for real time image processing was proposed in [28]. Each tile of the proposed architecture provided
computational and memory capabilities. These tiles were connected via a novel NoC structure named
Spidergon. The design provided support for different algorithmic classes and ran at 400 MHz ensuring
real time processing of up to 30 VGA frames/s [35]. Similar efforts have been made to an optimized
hardware design of the Particle Swarm Optimization (PSO) algorithm by Mehmood et al. in [36].
A modified PSO-based technique based on multi-core sequential architecture is presented in the
paper. The processing cores implementing the sequential architecture were connected via NoC for
implementing a parallel architecture. The architecture was benchmarked against a pure software-based
implementation indicating an average speed-up of 22.53 and 29.37 for non-NoC-based HMPSO and a
NoC-based MPSO, respectively, over 25 experiments [32]. Li et al. proposed in [37] an efficient error
rate, in a proposed VLSI architecture of FCM with Spatial constraints (FCM-S) for image segmentation.
To lower the segmentation architecture, the spatial information is used during the FCM training process.
In addition, the architecture employs a high throughput pipeline to enhance the computation speed.
Experimental results revealed that the proposed architecture implemented on a SoPC architecture



Sensors 2018, 18, 4129 4 of 17

attains a speedup of up to 342.51 over its software counterpart. The proposed architecture therefore is
an effective alternative for applications requiring real-time image segmentation and analysis.

Existing PAM algorithms and their respective architectures are not that scalable and have an
upper bound on the reduction in computational complexity they can achieve. In the proposed system,
we present a scalable parallel architecture of PAM algorithm which can exponentially reduce the
computational complexity. It introduces the concept of working in a collaborative environment
approach by dividing data into multiple processing units which perform homogeneous operations
independently and finally give a combined result.

3. Theory and Design of the Parallel PAM Algorithm

3.1. Overview of the PAM Algorithm

We will use the following notation to formally describe the PAM algorithm. Let X = {x1, x2, x3, . . . ,
xN} be the set of N data points to be clustered where each data point consists of d real-valued attributes.
Let M = {m1, m2, m3, . . . , mK} is a set of K medoids such that M ⊂ X, where K is the number of clusters
such that K << N. D: X ×M→ R is a distance metric, usually it is a matrix of Euclidean distances from
each object xi to its nearest medoid mj. In each iteration of algorithm, a pair of medoid object mj and
non-medoid object xi is selected which produces the best clustering when their roles are swapped.
The objective function used is the sum of the distances from each object to its closest medoid:

Cost =
N

∑
i=1

min
1 ≤j ≤K

D
(
xi , mj

)
(1)

The algorithm PAM proceeds in the following manner:

i In the first phase (called Build Phase) an initial clustering is obtained by the successive selection
of K medoids. The first medoid is the one for which the sum of distances to all non-medoid
objects is minimum. This is actually the most centrally located data point in set X. Subsequently,
at each step another object is selected as a medoid, for which the objective function is minimum.
The process is continued until K medoids have been found.

ii In the second phase of the algorithm (called Swap Phase), it is attempted to improve the set M of
medoids and therefore the clustering obtained by this set. The algorithm goes through each pair
of objects (mj, xh), where mj is a medoid and xh is non-medoid object and xh belongs to cluster j.
The effect on the objective function is determined when a swap is carried out i.e., when object
xh is considered as a medoid in place of object mj. For each cluster j, the object xh is selected as
its new medoid for which the objective function is minimized and thus the set M is updated.
This process is iterated until no further decrease in objective function value is possible or in other
words there is no update in set M between two consecutive iterations.

3.2. Proposed Design Flow

The aim of this paper is to propose a model to make PAM algorithm computationally less
expensive by parallelizing its functionality such that it uses less resources when implemented on
reconfigurable hardware. The whole working of our research revolves around the concept that how
well we parallelize the PAM algorithm so that its overall computational complexity can be significantly
reduced. We concluded that this task can be performed well by following these steps:

1. Dividing the algorithm into a well-defined sequence of subtasks.
2. Identifying the portions of the algorithm which can be executed in parallel.
3. Running these subtasks for equal subsets of data simultaneously on multiple homogeneous cores.
4. Combining the intermediate results from different PEs to produce a final clustering.



Sensors 2018, 18, 4129 5 of 17

3.2.1. Sub-Tasking of PAM Algorithm

As we discussed in the previous section, the PAM consists of two phases called (1) Build Phase
and (2) Swap Phase. The complete flow chart of the Partitioning Around Medoids algorithm in terms
of this is shown in Figure 1.Sensors 2018, 18, 4129 5 of 17 

 

 
Figure 1. Flow chart of the sequential PAM algorithm. 

The peudo-code of PAM is given in Algorithm 1 below. 

Algorithm 1. Pseudo-code of PAM 

Procedure: Partitioning Around Medoids (PAM) 
Input: K (No. of clusters), X (Data Set) 
Output: C (Vector containing cluster tags against each data object), M (Medoids) 
1. Initialize M         /* Build Phase */ 
2. repeat         /* Swap Phase */ 
3.  Find clusters 
4.  Perform swapping and update Medoids 
5. until no update in any of K Medoids 

We start by splitting the working Build Phase into two subtasks namely: (1) Find Minimum Sum 
and (2) Select Initial Medoid. In the first subtask, one by one each object is temporarily selected as a 
medoid and the minimum value of the objective function is computed for the set of medoids selected 
up to current step. The second subtask selects the temporary medoid as the actual medoid for which 
the objective function value is minimum. Algorithm 2 depicts the pseudo-code of the Build Phase. 

Then the Swap Phase is split into three subtasks called: (1) Perform Clustering, (2) Find 
Minimum Sum (For Each Cluster) and (3) Update Medoid. The first Subtask assigns each object to its 
closest medoid to form clusters. In the second subtask, one by one the role of each object within a 
cluster is swapped with its medoid and smallest value of the cost function is computed. 

 

Figure 1. Flow chart of the sequential PAM algorithm.

The peudo-code of PAM is given in Algorithm 1 below.

Algorithm 1. Pseudo-code of PAM

Procedure: Partitioning Around Medoids (PAM)
Input: K (No. of clusters), X (Data Set)
Output: C (Vector containing cluster tags against each data object), M (Medoids)
1. Initialize M /* Build Phase */
2. repeat /* Swap Phase */
3. Find clusters
4. Perform swapping and update Medoids
5. until no update in any of K Medoids

We start by splitting the working Build Phase into two subtasks namely: (1) Find Minimum Sum
and (2) Select Initial Medoid. In the first subtask, one by one each object is temporarily selected as a
medoid and the minimum value of the objective function is computed for the set of medoids selected
up to current step. The second subtask selects the temporary medoid as the actual medoid for which
the objective function value is minimum. Algorithm 2 depicts the pseudo-code of the Build Phase.



Sensors 2018, 18, 4129 6 of 17

Then the Swap Phase is split into three subtasks called: (1) Perform Clustering, (2) Find Minimum
Sum (For Each Cluster) and (3) Update Medoid. The first Subtask assigns each object to its closest
medoid to form clusters. In the second subtask, one by one the role of each object within a cluster is
swapped with its medoid and smallest value of the cost function is computed.

Algorithm 2. Pseudo-code of the Build Phase

1. repeat
2. for a := 1→ N do /* Find Minimum Sum */
3. Select Xa as temporary Medoid
4. for i := 1→ N do
5. for each Medoid selected yet (including Xa) do
6. Find the minimum Euclidean distance b/w Xi and Medoid
7. endfor
8. Find sum of minimum distances
9. endfor
10. Find minimum sum
11. endfor
12. Select Xa as actual Medoid for which the sum is minimum /* Select Initial Medoid */
13. until ‘K’ initial Medoids are selected

The last subtask of this phase updates the medoid of the current cluster for which the cost function
value is minimum. Subtasks 2 and 3 are repeated for all clusters. The corresponding pseudo-code is
shown as Algorithm 3.

Algorithm 3. Pseudo-code of the Swap Phase

1. repeat
2. for i := 1→ N do /* Perform Clustering */
3. for j := 1→ K do
4. Find Euclidean distance b/w Xi and Mj

5. Tag Xi with j for which this distance is minimum
6. endfor
7. endfor
8. for j := 1→ K do /* Find Minimum Sum (For Each Cluster)*/
9. for each data point Xa ε cluster j do
10. for each data point Xi ε cluster j do
11. Find sum of Euclidean distances b/w Xa and Xi

12. endfor
13. Find minimum sum
14. endfor
15. Update Xa as jth Medoid for which the sum is minimum /* Update Medoid*/
16. endfor
17. until no update in any of ‘K’ Medoids

Now in order to reduce the computational complexity and improve the execution time, the PAM
algorithm needs parallelism. We have identified from Algorithm 2 that the subtask 1 of Build Phase
can be executed in parallel on multiple PEs for equal subsets of data, while subtask 2 will compute the
final result of this phase. Similarly, it is clear from Algorithm 3 that subtasks 1 and 2 of the Swap Phase
can be parallelized well.



Sensors 2018, 18, 4129 7 of 17

3.2.2. Paralleling the PAM Algorithm and Proposed Architecture

Our proposed architecture uses P number of homogeneous cores or Processing Elements (PEs)
which are connected through an interconnect network such as a bus as shown in Figure 2. Each PE has
given access to all data points thus it can work in parallel with other PEs to achieve faster convergence
and eventually an increased throughput. A Global Control Unit is used to control the overall flow
of the algorithm. The interconnecting network used in the design can be a bus-based, point to point
or network-on-chip-based interface. The choice of interconnection is based on the complexity and
requirement of the applications, e.g., a NoC based interface will provide better concurrent message
passing at the cost of area and power overhead.

Sensors 2018, 18, 4129 7 of 17 

 

complexity and requirement of the applications, e.g., a NoC based interface will provide better 
concurrent message passing at the cost of area and power overhead. 

 
Figure 2. Top level block diagram of the proposed architecture. 

The overall working of the parallel PAM for this multi-core processor model is described in the 
following steps: 

1. A data set of size N is made completely divisible into the number of available cores P by 
appending zeros at the end of the data set so that equal subsets can be assigned to each core. 

2. The complete data set X is replicated in all available PEs and equal partitions of X are assigned 
to each PE. 

3. Each PE then executes the subtask “Find Minimum Sum” of the Build Phase for its respective 
data subset of size  in parallel. Master PE (any processing element can be assigned to perform 
as master PE because all PEs are homogenous) will collect the results of the first subtask from 
each PE and perform the subtask “Select Initial Medoid”. This step is repeated until K medoids 
are initialized, as described in Algorithm 4 below. 

4. Final results of Build Phase are sent to all PEs so that they can proceed to the next phase of 
algorithm. 

5. Each PE will tag all its assigned data objects with their closest cluster numbers. These tags are 
stored in local memory associated with each data object. All PEs one by one broadcast their  
tags over the interconnect network so that each PE can have complete result of clustering.  

6. The subtask “Find Minimum Sum (For Each Cluster)” of the  Swap Phase is executed by each 
core in parallel. A master PE will perform the subtask “Update Medoid” after receiving results 
from other PEs. Steps 5 and 6 are repeated until no update in any of K medoids is reported. 
Algorithm 5 depicts the working of the Swap Phase in case of parallel PAM. 

Algorithm 4. Pseudo-code of the Build Phase for Parallel PAM 

1. repeat 
2. for p := 1 → P do in parallel 
3.  for each data point Xa ϵ p do               /* All PEs do in parallel*/ 
4.   Select Xa as temporary Medoid 
5.   for i := 1 → N do 
6.    for each Medoid selected yet (including Xa)do 
7.     Find the minimum Euclidean distance b/w Xi and Medoid 

8.    endfor 
9.    Find sum of minimum distances 
10.   endfor 
11.   Find minimum sum 
12.  endfor 
13. endfor 
14. for p := 1 → P do                  /* Only master PE will do this */ 

Figure 2. Top level block diagram of the proposed architecture.

The overall working of the parallel PAM for this multi-core processor model is described in the
following steps:

1. A data set of size N is made completely divisible into the number of available cores P by
appending zeros at the end of the data set so that equal subsets can be assigned to each core.

2. The complete data set X is replicated in all available PEs and equal partitions of X are assigned to
each PE.

3. Each PE then executes the subtask “Find Minimum Sum” of the Build Phase for its respective
data subset of size N

P in parallel. Master PE (any processing element can be assigned to perform
as master PE because all PEs are homogenous) will collect the results of the first subtask from
each PE and perform the subtask “Select Initial Medoid”. This step is repeated until K medoids
are initialized, as described in Algorithm 4 below.

4. Final results of Build Phase are sent to all PEs so that they can proceed to the next phase
of algorithm.

5. Each PE will tag all its assigned data objects with their closest cluster numbers. These tags are
stored in local memory associated with each data object. All PEs one by one broadcast their N

P
tags over the interconnect network so that each PE can have complete result of clustering.

6. The subtask “Find Minimum Sum (For Each Cluster)” of the Swap Phase is executed by each core
in parallel. A master PE will perform the subtask “Update Medoid” after receiving results from
other PEs. Steps 5 and 6 are repeated until no update in any of K medoids is reported. Algorithm
5 depicts the working of the Swap Phase in case of parallel PAM.



Sensors 2018, 18, 4129 8 of 17

Algorithm 4. Pseudo-code of the Build Phase for Parallel PAM

1. repeat
2. for p := 1→ P do in parallel
3. for each data point Xa ε p do /* All PEs do in parallel*/
4. Select Xa as temporary Medoid
5. for i := 1→ N do
6. for each Medoid selected yet (including Xa)do
7. Find the minimum Euclidean distance b/w Xi and Medoid
8. endfor
9. Find sum of minimum distances
10. endfor
11. Find minimum sum
12. endfor
13. endfor
14. for p := 1→ P do /* Only master PE will do this */
15. Select Xa as actual Medoid for which the sum is minimum from all PEs
16. endfor
17. until ‘K’ initial Medoids are selected

Algorithm 5. Pseudo-code of the Swap Phase for Parallel PAM

1. repeat
2. for p := 1→ P do in parallel
3. for each data point Xi ε p do /* All PEs do in parallel*/
4. for j := 1→ K do
5. Find Euclidean distance b/w Xi and Mj

6. Tag Xi with j for which this distance is minimum
7. endfor
8. endfor
9. endfor
10. Concatenate clustering results from all PEs /* All PEs do this*/
11. for p := 1→ P do in parallel
12. for j := 1→ K do /* All PEs do in parallel*/
13. for each data point Xa ε p & cluster j do
14. for each data point Xi ε cluster j do
15. Find sum of Euclidean distances b/w Xa and Xi

16. endfor
17. Find minimum sum for each cluster
18. endfor
19. endfor
20. endfor
21. for j := 1→ K do /* Only master PE will do this */
22. for p := 1→ P do
23. Update Xa as jth Medoid for which the sum is minimum from all PEs
24. endfor
25. endfor
26. until no update in any of ‘K’ Medoids

The complete work flow of the parallel PAM algorithm is depicted in Figure 3 below.



Sensors 2018, 18, 4129 9 of 17

Sensors 2018, 18, 4129 9 of 17 

 

 
Figure 3. Flow chart of the parallel PAM algorithm. 

At this stage we can explore the internal structure of a processing element at an abstract level. 
As shown in Figure 4, each PE is composed of three sections (1) Controller, (2) Datapath and (3) 
Memory. The Controller section consists of a local control unit to manage the overall sequencing of 
subtasks within a processing element and to manage communication with other PEs. The Datapath 
section contains sub-blocks which are basically hardware sub-modules implementing the 
functionality of different sub-tasks of the algorithm. Finally, each core has a memory section which 
consists of a memory block of size N × d to hold the complete data set, a memory block of size M × d 
to store final values of medoids and an N × 1 sized block of memory to store cluster tags against each 
data object. 

 

Figure 3. Flow chart of the parallel PAM algorithm.

At this stage we can explore the internal structure of a processing element at an abstract level.
As shown in Figure 4, each PE is composed of three sections (1) Controller, (2) Datapath and (3) Memory.
The Controller section consists of a local control unit to manage the overall sequencing of subtasks
within a processing element and to manage communication with other PEs. The Datapath section
contains sub-blocks which are basically hardware sub-modules implementing the functionality of
different sub-tasks of the algorithm. Finally, each core has a memory section which consists of a



Sensors 2018, 18, 4129 10 of 17

memory block of size N × d to hold the complete data set, a memory block of size M × d to store final
values of medoids and an N × 1 sized block of memory to store cluster tags against each data object.Sensors 2018, 18, 4129 10 of 17 

 

 
Figure 4. Internal structure of a processing element (PE). 

4. Experimentation and Results  

In order to demonstrate the usefulness of our proposed parallel implementation of PAM, first 
we implemented the sequential PAM algorithm as described in the previous section and recorded 
the running time of the algorithm in terms of number of computations required by both the build 
and swap phases. Then the running time in the case of parallel implementation of PAM was 
computed along similar lines to examine the speedup attained for different numbers of PEs. In the 
latter case, the time required for communication among different PEs, to share results and data, was 
also added to get the total running time.  

First, this experimentation was performed for randomly generated artificial data points (N = 400 
to 1600) each having two attributes (d = 2). At the second stage, color-based segmentation of different 
RGB images was performed. Sizes were around 7000 pixels to 16,000 pixels for different images and 
value of d is 3 in this case (three color components). After thorough experimentation, the following 
results were concluded. 

1. The time complexity n of the algorithm reduces exponentially as we increase the number of cores 
for the same data set or image. Here by time complexity we mean the running time which is 
taken by all computations required by the build and swap phases. This computation complexity 
reduces as we increase the number of processing entities and divide the computations among 
them. For example, the running time of PAM algorithm for N = 800, d = 2, K = 4 and P = 1, is n ≈ 
1.41 × 107. For P = 2, this value is half of the previous value i.e., n ≈ 7.1 × 106 plus a small 
communication overhead = 4948. Similarly, for P = 4, n ≈ 3.5 × 106 plus overhead is 3416 and so 
on. Figure 5 shows this trend for both the artificial data set of size 800 and an image of 9720 
pixels in size. Furthermore, it is observed that when the size of the data is increased this trend 
becomes more uniform and gets close to , where n1 is the computational complexity of the 
sequential algorithm. This is evident from Figure 5a,b where the trend remains the same even if 
we increase the data points which need to be clustered.  

2. The speedup of the algorithm is defined as Sp = , where n1 is running time of the algorithm for 

a single PE and np is the running time for P processing elements. It was observed that the 
speedup of the parallel PAM algorithm increases with the increase in the number of processing 
elements, but this increasing trend varies slightly for different scenarios discussed below. 

(1) The speedup graph gets more linear as the data size increases for the same number of PEs. 
This trend is shown in Figure 6. 

Figure 4. Internal structure of a processing element (PE).

4. Experimentation and Results

In order to demonstrate the usefulness of our proposed parallel implementation of PAM, first we
implemented the sequential PAM algorithm as described in the previous section and recorded the
running time of the algorithm in terms of number of computations required by both the build and
swap phases. Then the running time in the case of parallel implementation of PAM was computed
along similar lines to examine the speedup attained for different numbers of PEs. In the latter case,
the time required for communication among different PEs, to share results and data, was also added to
get the total running time.

First, this experimentation was performed for randomly generated artificial data points (N = 400
to 1600) each having two attributes (d = 2). At the second stage, color-based segmentation of different
RGB images was performed. Sizes were around 7000 pixels to 16,000 pixels for different images and
value of d is 3 in this case (three color components). After thorough experimentation, the following
results were concluded.

1. The time complexity n of the algorithm reduces exponentially as we increase the number of cores
for the same data set or image. Here by time complexity we mean the running time which is
taken by all computations required by the build and swap phases. This computation complexity
reduces as we increase the number of processing entities and divide the computations among
them. For example, the running time of PAM algorithm for N = 800, d = 2, K = 4 and P = 1, is n
≈ 1.41 × 107. For P = 2, this value is half of the previous value i.e., n ≈ 7.1 × 106 plus a small
communication overhead = 4948. Similarly, for P = 4, n ≈ 3.5 × 106 plus overhead is 3416 and so
on. Figure 5 shows this trend for both the artificial data set of size 800 and an image of 9720 pixels
in size. Furthermore, it is observed that when the size of the data is increased this trend becomes
more uniform and gets close to n1

P , where n1 is the computational complexity of the sequential
algorithm. This is evident from Figure 5a,b where the trend remains the same even if we increase
the data points which need to be clustered.

2. The speedup of the algorithm is defined as Sp = n1
np

, where n1 is running time of the algorithm
for a single PE and np is the running time for P processing elements. It was observed that the



Sensors 2018, 18, 4129 11 of 17

speedup of the parallel PAM algorithm increases with the increase in the number of processing
elements, but this increasing trend varies slightly for different scenarios discussed below.

(1) The speedup graph gets more linear as the data size increases for the same number of PEs.
This trend is shown in Figure 6.

(2) If the clusters to be formed are uniform i.e., the number of data objects is equal in
each cluster then the speedup attained is slightly better than the case when clusters
are non-uniform for same data set size.

Sensors 2018, 18, 4129 11 of 17 

 

(2) If the clusters to be formed are uniform i.e., the number of data objects is equal in each cluster 
then the speedup attained is slightly better than the case when clusters are non-uniform for 
same data set size.  

  
(a) (b) 

Figure 5. Computational complexity of the proposed architecture: (a) For artificial random data, N = 
800, d = 2 & K = 4; (b) For image pixels, N = 9720, d = 3 & K = 4. 

 
Figure 6. Comparison of speedup for different dataset sizes. 

As we know PAM consists of two discrete phases, the first one is the Build Phase which is just 
an initialization method for medoids while the actual algorithm which iteratively runs and tries to 
minimize the objective function is the Swap Phase. The Build Phase is computationally more 
expensive than the Swap Phase but on the other hand it significantly increases the probability of 
convergence of the PAM algorithm. Other different methods of initialization can also be used, the 
simplest one of which would be random initialization of medoids, but at the cost of a decrease in the 
probability of convergence. 

(1) It was observed that due to the high computation cost of the Build Phase, the total computation 
cost of the algorithm (order of N2) is much higher than the communication cost (order of N), for 
large values of N. Therefore, communication overhead doesn’t affect the speedup and it is almost 
equal to the number of PEs. 

(2) If we don’t include the effect of build phase or medoids are randomly initialized then 
communication overhead will affect the speedup achieved by our parallel PAM algorithm, 
otherwise this trend will be near linear, as shown in Figure 7. 

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64

Ti
m

e 
Co

m
pl

ex
ity

 [n
]

x106

No. of PEs [p]

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64

Ti
m

e 
Co

m
pl

ex
ity

 [n
]

x106

No. of PEs [p]

Figure 5. Computational complexity of the proposed architecture: (a) For artificial random data,
N = 800, d = 2 & K = 4; (b) For image pixels, N = 9720, d = 3 & K = 4.

Sensors 2018, 18, 4129 11 of 17 

 

(2) If the clusters to be formed are uniform i.e., the number of data objects is equal in each cluster 
then the speedup attained is slightly better than the case when clusters are non-uniform for 
same data set size.  

  
(a) (b) 

Figure 5. Computational complexity of the proposed architecture: (a) For artificial random data, N = 
800, d = 2 & K = 4; (b) For image pixels, N = 9720, d = 3 & K = 4. 

 
Figure 6. Comparison of speedup for different dataset sizes. 

As we know PAM consists of two discrete phases, the first one is the Build Phase which is just 
an initialization method for medoids while the actual algorithm which iteratively runs and tries to 
minimize the objective function is the Swap Phase. The Build Phase is computationally more 
expensive than the Swap Phase but on the other hand it significantly increases the probability of 
convergence of the PAM algorithm. Other different methods of initialization can also be used, the 
simplest one of which would be random initialization of medoids, but at the cost of a decrease in the 
probability of convergence. 

(1) It was observed that due to the high computation cost of the Build Phase, the total computation 
cost of the algorithm (order of N2) is much higher than the communication cost (order of N), for 
large values of N. Therefore, communication overhead doesn’t affect the speedup and it is almost 
equal to the number of PEs. 

(2) If we don’t include the effect of build phase or medoids are randomly initialized then 
communication overhead will affect the speedup achieved by our parallel PAM algorithm, 
otherwise this trend will be near linear, as shown in Figure 7. 

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64

Ti
m

e 
Co

m
pl

ex
ity

 [n
]

x106

No. of PEs [p]

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64
Ti

m
e 

Co
m

pl
ex

ity
 [n

]

x106

No. of PEs [p]

Figure 6. Comparison of speedup for different dataset sizes.

As we know PAM consists of two discrete phases, the first one is the Build Phase which is just
an initialization method for medoids while the actual algorithm which iteratively runs and tries to
minimize the objective function is the Swap Phase. The Build Phase is computationally more expensive
than the Swap Phase but on the other hand it significantly increases the probability of convergence
of the PAM algorithm. Other different methods of initialization can also be used, the simplest one
of which would be random initialization of medoids, but at the cost of a decrease in the probability
of convergence.

(1) It was observed that due to the high computation cost of the Build Phase, the total computation
cost of the algorithm (order of N2) is much higher than the communication cost (order of N),



Sensors 2018, 18, 4129 12 of 17

for large values of N. Therefore, communication overhead doesn’t affect the speedup and it is
almost equal to the number of PEs.

(2) If we don’t include the effect of build phase or medoids are randomly initialized then
communication overhead will affect the speedup achieved by our parallel PAM algorithm,
otherwise this trend will be near linear, as shown in Figure 7.

Sensors 2018, 18, 4129 12 of 17 

 

 
Figure 7. Comparison of speedup for the case when medoids are initialized using the build phase 
with the case when medoids are randomly initialized, data size is same in both cases. 

We have also studied the effect of cluster size on speedup. If the clusters to be formed have equal 
sizes, i.e., the number of data objects is equal in each cluster then the speedup graph is slightly better 
than the case when all clusters have different sizes. This effect is shown in Figure 8a for clustering of 
an RGB image of size N = 9720 pixels when total number of computations including both Build Phase 
and Swap Phase is taken into account. When the effect of only Swap Phase is considered then there 
is a prominent difference between speedup achieved by the algorithm for equal-sized and unequal-
sized clusters as opposed to the previous case when the effect of both phases is considered. These 
results are shown in Figure 8b. 

 
Figure 8. (a) Comparison of speedup for same size of data but having equal and unequal cluster sizes 
(b) Comparison of speedup for equal and unequal sized clusters but data size is same for both cases. 
Effect of Build Phase is not included. 

Finally, the accuracy of both sequential and parallel implementations of PAM was checked 
against the results obtained through a well-known but different implementation of the K-Medoids 
clustering algorithm [17]. This implementation is being used by many researchers in the field of 
cluster analysis. It was found that the results, such as cost function value, medoids values and cluster 
tags against each data point, obtained by our implementations and the referenced algorithm for same 
data input were exactly matched. We have performed color-based segmentation of different images 
to verify the accuracy of our proposed model. Figure 9 shows a comparison of the final clustering of 
pixels of an example image in 3-dimensional space. 

Figure 7. Comparison of speedup for the case when medoids are initialized using the build phase with
the case when medoids are randomly initialized, data size is same in both cases.

We have also studied the effect of cluster size on speedup. If the clusters to be formed have equal
sizes, i.e., the number of data objects is equal in each cluster then the speedup graph is slightly better
than the case when all clusters have different sizes. This effect is shown in Figure 8a for clustering of
an RGB image of size N = 9720 pixels when total number of computations including both Build Phase
and Swap Phase is taken into account. When the effect of only Swap Phase is considered then there is
a prominent difference between speedup achieved by the algorithm for equal-sized and unequal-sized
clusters as opposed to the previous case when the effect of both phases is considered. These results are
shown in Figure 8b.

Sensors 2018, 18, 4129 12 of 17 

 

 
Figure 7. Comparison of speedup for the case when medoids are initialized using the build phase 
with the case when medoids are randomly initialized, data size is same in both cases. 

We have also studied the effect of cluster size on speedup. If the clusters to be formed have equal 
sizes, i.e., the number of data objects is equal in each cluster then the speedup graph is slightly better 
than the case when all clusters have different sizes. This effect is shown in Figure 8a for clustering of 
an RGB image of size N = 9720 pixels when total number of computations including both Build Phase 
and Swap Phase is taken into account. When the effect of only Swap Phase is considered then there 
is a prominent difference between speedup achieved by the algorithm for equal-sized and unequal-
sized clusters as opposed to the previous case when the effect of both phases is considered. These 
results are shown in Figure 8b. 

 
Figure 8. (a) Comparison of speedup for same size of data but having equal and unequal cluster sizes 
(b) Comparison of speedup for equal and unequal sized clusters but data size is same for both cases. 
Effect of Build Phase is not included. 

Finally, the accuracy of both sequential and parallel implementations of PAM was checked 
against the results obtained through a well-known but different implementation of the K-Medoids 
clustering algorithm [17]. This implementation is being used by many researchers in the field of 
cluster analysis. It was found that the results, such as cost function value, medoids values and cluster 
tags against each data point, obtained by our implementations and the referenced algorithm for same 
data input were exactly matched. We have performed color-based segmentation of different images 
to verify the accuracy of our proposed model. Figure 9 shows a comparison of the final clustering of 
pixels of an example image in 3-dimensional space. 

Figure 8. (a) Comparison of speedup for same size of data but having equal and unequal cluster sizes
(b) Comparison of speedup for equal and unequal sized clusters but data size is same for both cases.
Effect of Build Phase is not included.



Sensors 2018, 18, 4129 13 of 17

Finally, the accuracy of both sequential and parallel implementations of PAM was checked against
the results obtained through a well-known but different implementation of the K-Medoids clustering
algorithm [17]. This implementation is being used by many researchers in the field of cluster analysis.
It was found that the results, such as cost function value, medoids values and cluster tags against
each data point, obtained by our implementations and the referenced algorithm for same data input
were exactly matched. We have performed color-based segmentation of different images to verify the
accuracy of our proposed model. Figure 9 shows a comparison of the final clustering of pixels of an
example image in 3-dimensional space.

Sensors 2018, 18, 4129 13 of 17 

 

  
(a) (b) 

Figure 9. Clusters produced by (a) our proposed implementation of parallel PAM with P = 64 and (b) 
K-Medoids clustering algorithm [17]. Final medoids locations and objective function value were same 
in both cases. 

In order to assess the quality of the output images, the Structural Similarity Index Metric (SSIM) has 
been calculated. The Structural Similarity Index (SSIM) is an assessment mechanisms which computes the 
image quality degradation which is caused by processing images [38]. SSIM has been calculated for the 
output images of this segmentation process and was found to be 1.00 for all images. Some example images 
and output images are shown in Figure 10. Similarly, SSIM of the proposed architecture was cross-
checked on segmentation of various health-related images such as MRI scans of brain tumor, fluorescein 
angiography of a retina to detect neovascular AMD and MRI scans of legs for detection of fluid collection 
in calf muscles due to injury which resulted in values of 0.97, 1.0 and 0.93, respectively, as shown in Figure 
11. The results indicate that the proposed optimized model can be applied on images for segmentation 
processes without fear of distortion of the results as is clear from SSIM. 

 

 

 
Figure 10. Left to right: original image, result of proposed implementation of PAM, result of K-
Medoids clustering algorithm [17] (SSIM = 1, for all cases). 

In this article, we have designed a generic scalable architecture for K-Medoids clustering which 
has been tested for randomly generated data sets and color image segmentation. The proposed model 
is scalable with respect to the number of processing cores depending on the availability of hardware 
resources. We can increase the parallelism by increasing the number of PEs. The same architecture is 
also valid for any number of clusters and also for any dimensional data points. The results presented 
in Figures 6 and 7 use the Euclidean distance metric to find similarity (or dissimilarity) among data 
objects but this architecture is also tested for other distance metrics such as squared Euclidean, city 
block etc. it was found that speedup trend is not affected by using different distance metrics. 

Figure 9. Clusters produced by (a) our proposed implementation of parallel PAM with P = 64 and
(b) K-Medoids clustering algorithm [17]. Final medoids locations and objective function value were
same in both cases.

In order to assess the quality of the output images, the Structural Similarity Index Metric (SSIM) has
been calculated. The Structural Similarity Index (SSIM) is an assessment mechanisms which computes
the image quality degradation which is caused by processing images [38]. SSIM has been calculated for
the output images of this segmentation process and was found to be 1.00 for all images. Some example
images and output images are shown in Figure 10. Similarly, SSIM of the proposed architecture was
cross-checked on segmentation of various health-related images such as MRI scans of brain tumor,
fluorescein angiography of a retina to detect neovascular AMD and MRI scans of legs for detection of
fluid collection in calf muscles due to injury which resulted in values of 0.97, 1.0 and 0.93, respectively,
as shown in Figure 11. The results indicate that the proposed optimized model can be applied on
images for segmentation processes without fear of distortion of the results as is clear from SSIM.

Sensors 2018, 18, 4129 13 of 17 

 

  
(a) (b) 

Figure 9. Clusters produced by (a) our proposed implementation of parallel PAM with P = 64 and (b) 
K-Medoids clustering algorithm [17]. Final medoids locations and objective function value were same 
in both cases. 

In order to assess the quality of the output images, the Structural Similarity Index Metric (SSIM) has 
been calculated. The Structural Similarity Index (SSIM) is an assessment mechanisms which computes the 
image quality degradation which is caused by processing images [38]. SSIM has been calculated for the 
output images of this segmentation process and was found to be 1.00 for all images. Some example images 
and output images are shown in Figure 10. Similarly, SSIM of the proposed architecture was cross-
checked on segmentation of various health-related images such as MRI scans of brain tumor, fluorescein 
angiography of a retina to detect neovascular AMD and MRI scans of legs for detection of fluid collection 
in calf muscles due to injury which resulted in values of 0.97, 1.0 and 0.93, respectively, as shown in Figure 
11. The results indicate that the proposed optimized model can be applied on images for segmentation 
processes without fear of distortion of the results as is clear from SSIM. 

 

 

 
Figure 10. Left to right: original image, result of proposed implementation of PAM, result of K-
Medoids clustering algorithm [17] (SSIM = 1, for all cases). 

In this article, we have designed a generic scalable architecture for K-Medoids clustering which 
has been tested for randomly generated data sets and color image segmentation. The proposed model 
is scalable with respect to the number of processing cores depending on the availability of hardware 
resources. We can increase the parallelism by increasing the number of PEs. The same architecture is 
also valid for any number of clusters and also for any dimensional data points. The results presented 
in Figures 6 and 7 use the Euclidean distance metric to find similarity (or dissimilarity) among data 
objects but this architecture is also tested for other distance metrics such as squared Euclidean, city 
block etc. it was found that speedup trend is not affected by using different distance metrics. 

Figure 10. Left to right: original image, result of proposed implementation of PAM, result of K-Medoids
clustering algorithm [17] (SSIM = 1, for all cases).



Sensors 2018, 18, 4129 14 of 17

In this article, we have designed a generic scalable architecture for K-Medoids clustering which
has been tested for randomly generated data sets and color image segmentation. The proposed model
is scalable with respect to the number of processing cores depending on the availability of hardware
resources. We can increase the parallelism by increasing the number of PEs. The same architecture is
also valid for any number of clusters and also for any dimensional data points. The results presented in
Figures 6 and 7 use the Euclidean distance metric to find similarity (or dissimilarity) among data objects
but this architecture is also tested for other distance metrics such as squared Euclidean, city block etc.
it was found that speedup trend is not affected by using different distance metrics.

The proposed architecture is an ideal fit for implementing it on reconfigurable devices such
as FPGAs and MPSoCs because of its overall small footprint. Each sub-task is designed in such
a way that its internal working can easily be unfolded, while keeping the hardware resources in
check, to further reduce the overall processing time of algorithm. The efficiency of the proposed at
higher number of PE shows divergence from ideal speedup, this trend can be improved by the use
of efficient communication interface such as Network-on-Chip (NoC) for linking of multiple cores.
Researchers have provided various platforms for NoC based MPSoC models [39,40]. The use of NoC
in multicore models in various application has shown promising results in terms of scalability and
efficiency [14,41–45].

Sensors 2018, 18, 4129 14 of 17 

 

The proposed architecture is an ideal fit for implementing it on reconfigurable devices such as 
FPGAs and MPSoCs because of its overall small footprint. Each sub-task is designed in such a way 
that its internal working can easily be unfolded, while keeping the hardware resources in check, to 
further reduce the overall processing time of algorithm. The efficiency of the proposed at higher 
number of PE shows divergence from ideal speedup, this trend can be improved by the use of 
efficient communication interface such as Network-on-Chip (NoC) for linking of multiple cores. 
Researchers have provided various platforms for NoC based MPSoC models [39,40]. The use of NoC 
in multicore models in various application has shown promising results in terms of scalability and 
efficiency [14,41–45]. 

 
Figure 11. Top to bottom: original image, segmentation result of proposed model of PAM algorithm, 
result of K-Medoids clustering by [17]: (a) MRI scan of a brain to detect tumor (T2W image with full 
brain coverage in axial plane), SSIM = 0.97; (b) Fluorescein angiography of a retina to detect 
neovascular AMD, SSIM = 1.00; (c) MRI scan of a leg to detect fluid collection in calf muscles due to 
injury (T2W image in coronal plane), SSIM = 0.93. 

5. Conclusions 

Clustering is a commonly used platform for labeling of unknown data based on similarity. 
Among the many clustering scheme variants the Partitioning Around Medoids (PAM) algorithm 
belongs to the partitioning-based methods of clustering used for numerous applications ranging from 
object categorization to data compression. In today’s world a significant increase in available data for 
clustering has made clustering algorithms computationally expensive thus they can’t be used in their 
original form for real-time processing. In this paper a scalable multi-core parallel architecture for 
implementation of PAM is presented. The architecture is aimed towards dividing the algorithm into 

Figure 11. Top to bottom: original image, segmentation result of proposed model of PAM algorithm,
result of K-Medoids clustering by [17]: (a) MRI scan of a brain to detect tumor (T2W image with
full brain coverage in axial plane), SSIM = 0.97; (b) Fluorescein angiography of a retina to detect
neovascular AMD, SSIM = 1.00; (c) MRI scan of a leg to detect fluid collection in calf muscles due to
injury (T2W image in coronal plane), SSIM = 0.93.



Sensors 2018, 18, 4129 15 of 17

5. Conclusions

Clustering is a commonly used platform for labeling of unknown data based on similarity.
Among the many clustering scheme variants the Partitioning Around Medoids (PAM) algorithm
belongs to the partitioning-based methods of clustering used for numerous applications ranging
from object categorization to data compression. In today’s world a significant increase in available
data for clustering has made clustering algorithms computationally expensive thus they can’t be
used in their original form for real-time processing. In this paper a scalable multi-core parallel
architecture for implementation of PAM is presented. The architecture is aimed towards dividing the
algorithm into sub-tasks and implementing them in parallel in order to reduce the computation time.
The proposed architecture has been designed while keeping in view the reconfigurable architectures
such as FPGA and MPSoC or for multi-core processor platform. Our model equally divides the
data among available processing cores which perform homogeneous tasks in parallel on respective
local data points. The intermediate results of each core are shared with other cores for finalizing the
ultimate clusters thus forming a collaborative working environment (CWE). Experiments were carried
out on randomly generated datasets and colored images. The computational time of our proposed
solution was compared against sequential implementation of the PAM algorithm. The results showed
an exponential decrease in the computational complexity of the algorithm with the increase in the
number of processing cores. Similarly, the speedup trends showed an almost linear increase against the
sequential algorithm. It was also observed that speedup of the proposed implementation becomes more
linear as the size of the data set increases and also as the clusters become more uniform for the same data
set size. In the future, the proposed algorithm can be implemented using an effective communication
interface such as NoC in order to reduce the communication overhead causing non-linearity of speedup
which occurs at a high number of cores. Furthermore, more experimentation can be done on real-time
video feeds to validate the effectiveness of the algorithm and increase its application base to include
video processing as well.

Author Contributions: Conceptualization, H.M., M.U.A., S.G.K. and S.A.K.; Methodology, H.M.; Software, H.M.;
Validation, M.U.A., S.G.K., A.-u.Y. and S.A.K.; Resources, H.M. and M.U.A.; Data Curation, H.M.; Writing–Original
Draft Preparation, H.M.; Writing—Review & Editing, M.U.A., S.K., M.M., and S.G.K.; Supervision, S.A.K.; Project
Administration, M.U.A.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, F.; Hong, J. Efficient certificateless access control for wireless body area networks. IEEE Sens. J. 2016, 16,
5389–5396. [CrossRef]

2. Pirbhulal, S.; Zhang, H.; Wu, W.; Mukhopadhyay, S.C.; Zhang, Y.T. Heart-beats based biometric random
binary sequences generation to secure wireless body sensor networks. IEEE Trans. Biomed. Eng. 2018.
[CrossRef]

3. Agrawal, D.P. Personal/body area networks and healthcare applications. In Embedded Sensor Systems;
Springer: Singapore, 2017; pp. 353–390.

4. Pirbhulal, S.; Zhang, H.; Alahi, M.E.; Ghayvat, H.; Mukhopadhyay, S.C.; Zhang, Y.T.; Wu, W. A novel secure
IoT-based smart home automation system using a wireless sensor network. Sensors 2016, 17, 69. [CrossRef]
[PubMed]

5. Sodhro, A.H.; Pirbhulal, S.; Sangaiah, A.K. Convergence of IoT and product lifecycle management in medical
health care. Future Gener. Comput. Syst. 2018, 86, 380–391. [CrossRef]

6. Wu, W.; Pirbhulal, S.; Sangaiah, A.K.; Mukhopadhyay, S.C.; Li, G. Optimization of signal quality over
comfortability of textile electrodes for ECG monitoring in fog computing based medical applications.
Future Gener. Comput. Syst. 2018, 86, 515–526. [CrossRef]

http://dx.doi.org/10.1109/JSEN.2016.2554625
http://dx.doi.org/10.1109/TBME.2018.2815155
http://dx.doi.org/10.3390/s17010069
http://www.ncbi.nlm.nih.gov/pubmed/28042831
http://dx.doi.org/10.1016/j.future.2018.03.052
http://dx.doi.org/10.1016/j.future.2018.04.024


Sensors 2018, 18, 4129 16 of 17

7. Pirbhulal, S.; Zhang, H.; Mukhopadhyay, S.C.; Li, C.; Wang, Y.; Li, G.; Wu, W.; Zhang, Y.T. An efficient
biometric-based algorithm using heart rate variability for securing body sensor networks. Sensors 2015, 15,
15067–15089. [CrossRef] [PubMed]

8. Rechkalov, T.V.; Zymbler, M. Accelerating Medoids-based Clustering with the Intel Many Integrated Core
Architecture. In Proceedings of the 2015 9th International Conference on Application of Information and
Communication Technologies (AICT), Rostov on Don, Russia, 14–16 October 2015; pp. 413–417. [CrossRef]

9. Tehreem, A.; Khawaja, S.G.; Akram, M.U.; Khan, S.A. A Novel Mean-shift Architecture for Scalable
Multiprocessor Implementation. In Proceedings of the 2016 Future Technologies Conference (FTC),
San Francisco, CA, USA, 6–7 December 2016; pp. 1107–1111. [CrossRef]

10. Girolami, M.; He, C. Probability density estimation from optimally condensed data samples. IEEE Trans.
Pattern Anal. Mach. Intell. 2003, 25, 1253–1264. [CrossRef]

11. Oyelade, O.J.; Oladipupo, O.O.; Obagbuwa, I.C. Application of K-Means Clustering algorithm for prediction
of Students Academic Performance. arXiv, 2010; arXiv:1002.2425.

12. Akkaya, K.; Senel, F.; McLaughlan, B. Clustering of wireless sensor and actor networks based on sensor
distribution and connectivity. J. Parallel Distrib. Comput. 2009, 69, 573–587. [CrossRef]

13. Schaible, T. Method and System to Derive Glycemic Patterns from Clustering of Glucose Data. U.S. Patent
No. 9,504,412, 29 November 2016.

14. Khawaja, S.G.; Akram, M.U.; Khan, S.A.; Shaukat, A.; Rehman, S. Network-on-Chip based MPSoC
Architecture for K-Mean Clustering Algorithm. Microprocess. Microsyst. 2016, 46, 1–10. [CrossRef]

15. Wu, W.; Zhang, Z.; Pirbhulal, S.; Mukhopadhyay, S.C.; Zhang, Y.T. Assessment of biofeedback training for
emotion management through wearable textile physiological monitoring system. IEEE Sens. J. 2018, 15,
7087–7095. [CrossRef]

16. Pirbhulal, S.; Shang, P.; Wu, W.; Sangaiah, A.K.; Samuel, O.W.; Li, G. Fuzzy vault-based biometric security
method for tele-health monitoring systems. Comput. Electr. Eng. 2018, 71, 546–557. [CrossRef]

17. Sodhro, A.H.; Pirbhulal, S.; Sangaiah, A.K.; Lohano, S.; Sodhro, G.H.; Luo, Z. 5G-Based Transmission Power
Control Mechanism in Fog Computing for Internet of Things Devices. Sustainability 2018, 10, 1258. [CrossRef]

18. Sodhro, A.H.; Sangaiah, A.K.; Pirphulal, S.; Sekhari, A.; Ouzrout, Y. Green media-aware medical IoT system.
Multimed. Tools Appl. 2018, 77, 1–20. [CrossRef]

19. Kaufman, L.; Rousseeuw, P.J. Clustering by Means of Medoids. In Statistical Data Analysis Based on the L1
Norm and Related Methods; Dodge, Y., Ed.; Birkhäuser: Amsterdam, The Netherlands, 1987; pp. 405–416.

20. Lloyd, S.P. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–136. [CrossRef]
21. Huang, Z. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values.

Data Min. Knowl. Discov. 1998, 2, 283–304. [CrossRef]
22. Ibrahim, A.; Gastaldo, P.; Chible, H.; Valle, M. Real-time digital signal processing based on FPGAs for

electronic skin implementation. Sensors 2017, 17, 558. [CrossRef] [PubMed]
23. Chen, C.A.; Chen, S.L.; Huang, H.Y.; Luo, C.H. An efficient micro control unit with a reconfigurable filter

design for wireless body sensor networks (WBSNs). Sensors 2012, 12, 16211–16227. [CrossRef] [PubMed]
24. Rodríguez, A.; Valverde, J.; Portilla, J.; Otero, A.; Riesgo, T.; de la Torre, E. FPGA-Based High-Performance

Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo3 Framework.
Sensors 2018, 18, 1877. [CrossRef] [PubMed]

25. Vishnoi, U.; Noll, T.G. Area-and energy-efficient CORDIC accelerators in deep sub-micron CMOS
technologies. Adv. Radio Sci. 2012, 10, 207–213. [CrossRef]

26. Gadea-Gironés, R.; Colom-Palero, R.; Herrero-Bosch, V. Optimization of Deep Neural Networks Using SoCs
with OpenCL. Sensors 2018, 18, 1384. [CrossRef] [PubMed]

27. Luo, J.H.; Lin, C.H. Pure FPGA implementation of an HOG based real-time pedestrian detection system.
Sensors 2018, 18, 1174. [CrossRef] [PubMed]

28. Mehmood, S.; Cagnoni, S.; Mordonini, M.; Farooq, M. Particle swarm optimisation as a hardware-oriented
meta-heuristic for image Analysis. In Proceedings of the Workshops on Applications of Evolutionary
Computation, Tübingen, Germany, 15–17 April 2009; Springer: Berlin/Heidelberg, Germany, 2009.

29. Vishnoi, U.; Noll, T.G. Cross-layer optimization of QRD accelerators. In Proceedings of the ESSCIRC
(ESSCIRC), Bucharest, Romania, 16–20 September 2013.

http://dx.doi.org/10.3390/s150715067
http://www.ncbi.nlm.nih.gov/pubmed/26131666
http://dx.doi.org/10.1109/ICAICT.2015.7338591
http://dx.doi.org/10.1109/FTC.2016.7821741
http://dx.doi.org/10.1109/TPAMI.2003.1233899
http://dx.doi.org/10.1016/j.jpdc.2009.02.004
http://dx.doi.org/10.1016/j.micpro.2016.08.006
http://dx.doi.org/10.1109/JSEN.2015.2470638
http://dx.doi.org/10.1016/j.compeleceng.2018.08.004
http://dx.doi.org/10.3390/su10041258
http://dx.doi.org/10.1007/s11042-018-5634-0
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1023/A:1009769707641
http://dx.doi.org/10.3390/s17030558
http://www.ncbi.nlm.nih.gov/pubmed/28287448
http://dx.doi.org/10.3390/s121216211
http://www.ncbi.nlm.nih.gov/pubmed/23443375
http://dx.doi.org/10.3390/s18061877
http://www.ncbi.nlm.nih.gov/pubmed/29890644
http://dx.doi.org/10.5194/ars-10-207-2012
http://dx.doi.org/10.3390/s18051384
http://www.ncbi.nlm.nih.gov/pubmed/29710875
http://dx.doi.org/10.3390/s18041174
http://www.ncbi.nlm.nih.gov/pubmed/29649146


Sensors 2018, 18, 4129 17 of 17

30. Aljoby, W.; Alenezi, K. Parallelization of K-Medoid Clustering Algorithm. In Proceedings of the 5th
International Conference on Information and Communication Technology for the Muslim World (ICT4M),
Rabat, Morocco, 26–27 March 2013. [CrossRef]

31. Rechkalov, T.V. Partition Around Medoids Clustering on the Intel Xeon Phi Many-Core Coprocessor.
In Proceedings of the 1st Ural Workshop on Parallel, Distributed, and Cloud Computing for Young Scientists
(Ural-PDC 2015), Yekaterinburg, Russia, 17 November 2015; pp. 29–41.

32. Velmurugan, T.; Santhanam, T. A Practical Approach of K-Medoids Clustering Algorithm for Artificial
data points. In Proceedings of the International Conference on Semantics, E-business and E-Commerce,
Tiruchirappalli, India, 4–6 November 2009.

33. Park, H.S.; Jun, C.H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009, 36,
3336–3341. [CrossRef]

34. Tehreem, A.; Khawaja, S.G.; Khan, A.M.; Akram, M.U.; Khan, S.A. Multiprocessor architecture for real-time
applications using mean shift clustering. J. Real-Time Image Process 2017, 1–14. [CrossRef]

35. Saponara, S.; Fanucci, L.; Petri, E. A multi-processor NoC-based architecture for real-time image/video
enhancement. J. Real-Time Image Process. 2013, 8, 111–125. [CrossRef]

36. Mehmood, S.; Cagnoni, S.; Mordonini, M.; Khan, S.A. An embedded architecture for real-time object
detection in digital images based on niching particle swarm optimization. J. Real-Time Image Process. 2015,
10, 75–89. [CrossRef]

37. Li, H.-Y.; Hwang, W.-J.; Chang, C.-Y. Efficient Fuzzy C-Means Architecture for Image Segmentation. Sensors
2011, 11, 6697–6718. [CrossRef] [PubMed]

38. Monemi, A.; Tang, J.W.; Palesi, M.; Marsono, M.N. ProNoC: A low latency network-on-chip based many-core
system-on-chip prototyping platform. Microprocess. Microsyst. 2017, 54, 60–74. [CrossRef]

39. Kaufman, L.; Rousseeuw, P.J. Partitioning of Medoids (Program PAM). In Finding Groups in Data an
Introduction to Cluster Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 68–125.

40. Ruaro, M.; Lazzarotto, F.B.; Marcon, C.A.; Moraes, F.G. DMNI: A specialized network interface for NoC-based
MPSoCs. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS),
Montreal, QC, Canada, 22–25 May 2016.

41. Sievers, G.; Hübener, B.; Ax, J.; Flasskamp, M.; Kelly, W.; Jungeblut, T.; Porrmann, M. The CoreVA-MPSoC:
A multiprocessor platform for software-defined radio. In Computing Platforms for Software-Defined Radio;
Springer: Cham, Switzerland, 2017; pp. 29–59.

42. Sepulveda, J.; Flórez, D.; Immler, V.; Gogniat, G.; Sigl, G. Efficient security zones implementation through
hierarchical group key management at NoC-based MPSoCs. Microprocess. Microsyst. 2017, 50, 164–174.
[CrossRef]

43. Wang, Z.; Liu, W.; Xu, J.; Li, B.; Iyer, R.; Illikkal, R.; Wu, X.; Mow, W.H.; Ye, W. A case study on the
communication and computation behaviors of real applications in NoC-based MPSoCs. In Proceedings of
the 2014 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA, 9–11 July 2014.

44. Kiani, V.; Reshadi, M. Mapping multiple applications onto 3D NoC-based MPSoCs supporting wireless links.
J. Supercomput. 2017, 73, 2187–2213. [CrossRef]

45. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to
structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ICT4M.2013.6518923
http://dx.doi.org/10.1016/j.eswa.2008.01.039
http://dx.doi.org/10.1007/s11554-017-0733-0
http://dx.doi.org/10.1007/s11554-011-0215-8
http://dx.doi.org/10.1007/s11554-012-0256-7
http://dx.doi.org/10.3390/s110706697
http://www.ncbi.nlm.nih.gov/pubmed/22163980
http://dx.doi.org/10.1016/j.micpro.2017.08.007
http://dx.doi.org/10.1016/j.micpro.2017.03.002
http://dx.doi.org/10.1007/s11227-016-1908-3
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Theory and Design of the Parallel PAM Algorithm 
	Overview of the PAM Algorithm 
	Proposed Design Flow 
	Sub-Tasking of PAM Algorithm 
	Paralleling the PAM Algorithm and Proposed Architecture 


	Experimentation and Results 
	Conclusions 
	References

