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Background and Objective: Cervical cancer clinical target volume (CTV) outlining and organs at risk 
segmentation are crucial steps in the diagnosis and treatment of cervical cancer. Manual segmentation is 
inefficient and subjective, leading to the development of automated or semi-automated methods. However, 
limitation of image quality, organ motion, and individual differences still pose significant challenges. Apart from 
numbers of studies on the medical images’ segmentation, a comprehensive review within the field is lacking. 
The purpose of this paper is to comprehensively review the literatures on different types of medical image 
segmentation regarding cervical cancer and discuss the current level and challenges in segmentation process.
Methods: As of May 31, 2023, we conducted a comprehensive literature search on Google Scholar, 
PubMed, and Web of Science using the following term combinations: “cervical cancer images”, 
“segmentation”, and “outline”. The included studies focused on the segmentation of cervical cancer utilizing 
computed tomography (CT), magnetic resonance (MR), and positron emission tomography (PET) images, 
with screening for eligibility by two independent investigators.
Key Content and Findings: This paper reviews representative papers on CTV and organs at risk 
segmentation in cervical cancer and classifies the methods into three categories based on image modalities. 
The traditional or deep learning methods are comprehensively described. The similarities and differences 
of related methods are analyzed, and their advantages and limitations are discussed in-depth. We have also 
included experimental results by using our private datasets to verify the performance of selected methods. 
The results indicate that the residual module and squeeze-and-excitation blocks module can significantly 
improve the performance of the model. Additionally, the segmentation method based on improved level set 
demonstrates better segmentation accuracy than other methods.
Conclusions: The paper provides valuable insights into the current state-of-the-art in cervical cancer 
CTV outlining and organs at risk segmentation, highlighting areas for future research.
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Introduction

Cervical cancer is a highly malignant tumor that originates 
in the cervix and is among the most lethal cancer globally. 
Epidemiologic studies have shown that almost all cervical 
cancers are caused by persistent infection with one of 
approximately 15 high-risk human papillomavirus (HPV) 
types (1). According to 2020 World Health Organization 
statistics on 36 malignant tumors in 185 countries, cervical 
cancer ranks as the fourth most common malignant tumor 
in women. Each year, there are approximately 600,000 
new cases of cervical cancer worldwide, resulting in around 
340,000 deaths (2).

The treatment method of cervical cancer varies 
according to the stage of cervical cancer. Cervical cancer 
is categorized into four stages based on the location of 
the tumor. For patients with stage I B3 and II A2 cervical 
cancer, which is also locally advanced cervical cancer, the 
most common treatment is a combination of radiotherapy 
and chemotherapy (3). Radiotherapy includes conformal 
radiotherapy, intensity-modulated radiation therapy (IMRT) 
and precision radiotherapy. IMRT is the most widely used 
radiation technique for cervical cancer, as it provides high 
precision treatment dose to the tumor and reduces the dose 
to the organs at risk (4). For patients with severe parametrial 
and paravaginal involvement, their radiotherapy plans 
include external radiation therapy and brachytherapy (5).  
External radiation therapy involves irradiating the radiation 
source at a fixed distance from a lesion in the body. 
Brachytherapy, on the other hand, is a type of precision 
radiotherapy in which an interpolation needle is inserted 
inside the tumor for irradiation, based on the size, site of 
invasion, and depth of invasion of the cervical tumor. This 
provides additional local irradiation to the residual lesion 
and the cervix, completing the radiation therapy dose 
requirements.

The guideline for radiation therapy is to find a balance 
between delivering a sufficient dose to the tumor while 
minimizing radiation exposure to surrounding areas and 
healthy organs. The accurate outlining of the clinical target 
volume (CTV) and organs at risk is essential for developing, 
evaluating, and optimizing radiation treatment plans. 
Generally, the target volume includes gross target volume 
(GTV), CTV, and planning target volume (PTV). According 
to consensus guidelines for CTV delineation, the CTV 
should include cervical tumor, cervical, uterine, parametrial, 
ovarian, vaginal tissue, and lymph node CTVs (6),  
while organs at risk for cervical cancer radiation therapy 

generally include the bladder, vagina, rectum, sigmoid 
colon, small intestine, and bilateral femoral bones adjacent 
to the cervix. CTV, PTV and organs at risk outlines are 
shown in Figure 1. In order to maximize the treatment 
efficacy, the precise contouring of the CTV and adjacent 
normal organs is crucial in the radiation planning for 
cervical cancer. During radiation therapy, several imaging 
sessions are needed to verify the tumor’s location and 
constantly adjust the radiation plan due to uncertain factors 
such as tumor regression and movement of organs in the 
body, including the effect of bladder filling level and rectal 
movement (7). The organ movement is shown in Figure 2.

Modern imaging techniques,  such as  magnetic 
resonance imaging (MRI), computed tomography (CT) 
and 18F-fluorodeoxyglucose positron emission tomography 
(FDG-PET), play a crucial role in adjusting the radiation 
dose to different target volumes and minimizing the impact 
of radiation on healthy organs. By providing accurate 
information on tumor location and surrounding structures, 
image-guided radiotherapy has significantly improved 
the accuracy of brachytherapy for cervical cancer and the 
treatment outcomes for patients.

Currently, the segmentation of cervical cancer’s CTV and 
organs at risk is mainly performed manually by physicians, 
which is time-consuming and prone to subjective errors. 
Therefore, it is highly demanding for accurate, efficient, and 
objective segmentation methods in cervical cancer diagnosis. 
Ghose et al. (8) firstly reviewed the segmentation of CT 
and magnetic resonance (MR) images by using registration 
method for cervical cancer in 2015. Recently, Yang et al. (9) 
introduced the studies on the segmentation of CT images by 
using deep learning method, while Zaki et al. (10) reviewed 
the graph-based method of segmenting cervical cancer based 
on colposcopic images and Pap smears. Apart from numbers 
of studies on the automatic medical images’ segmentation, a 
comprehensive review for cervical cancer is lacking.

Therefore, starting from three modalities of CT/MR/
PET images, this paper reviews the segmentation methods 
in the field of cervical cancer. Both traditional and deep 
learning methods are comprehensively described. The 
similarities and differences of related methods are analyzed, 
and their advantages and limitations are discussed in-depth. 
By reviewing the relevant literature and methods of cervical 
cancer medical image segmentation, we can fully understand 
the current research status and latest progress in the field, 
including segmentation methods of different modes of 
images, technical characteristics, and applications. Through 
the comparison and analysis of various segmentation 
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methods, their advantages, limitations, and applicable 
scenarios can be evaluated. This helps researchers and 
clinicians to choose appropriate segmentation methods and 
improve the accuracy and stability of segmentation results. 
The results indicate that the residual module and squeeze-
and-excitation blocks module can significantly improve the 
performance of the model. Additionally, the segmentation 
method based on improved level set demonstrates better 
segmentation accuracy than other methods. Our finding 
provides valuable insights into the current state-of-the-
art in cervical cancer CTV outlining and organs at risk 
segmentation, highlighting areas for future research. We 
present this article in accordance with the Narrative Review 
reporting checklist (available at https://qims.amegroups.com/
article/view/10.21037/qims-24-369/rc). 

Methods

Literature search method

For this review, the detailed research strategies are shown 
in Table 1 and 64 eligible papers have been included in our 
reference list.

Integration of information

At present, the segmentation methods of cervical cancer 
radiological CTV and organs at risk by CT, MRI and 
PET images are mainly divided into two categories, which 
are traditional segmentation methods and deep learning 
segmentation methods. Traditional segmentation methods, 
including registration, atlas segmentation, level set, region 
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Figure 2 Changes of bladder, colon, intestine, rectum and CTV movement under different CT scans (bladder: green, rectum: blue, 
intestines: pink, colon: yellow, CTV: red). CTV, clinical target volume; CT, computed tomography.

Figure 1 CTV and the location of organs at risk. CTV, clinical target volume; PTV, planning target volume.

https://qims.amegroups.com/article/view/10.21037/qims-24-369/rc
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Table 1 The search strategy summary

Items Specification

Date of search June 10, 2023

Databases and other sources searched Google Scholar, PubMed, and Web of Science

Search terms used Use a combination of the following terms: “cervical cancer images”, “segmentation”, and 
“outline”

Timeframe January 1, 2000 to May 31, 2023

Inclusion and exclusion criteria No language restrictions were set during the search, and cervical cancer segmentation literature 
using colposcopy images, Pap Smear, and cell images were excluded

Selection process Two researchers independently conducted the literature screening, and in case of any 
disagreements, a third researcher made the final judgment
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Figure 3 Summary of methods for searching papers. FCM, fuzzy c-means; KNN, K nearest neighbors; LDA, linear discriminant analysis; 
GAN, generative adversarial network.

growth, graph cut, and watershed segmentation, have 
been widely applied. In recent years, deep learning-based 
segmentation methods, such as UNet, V-Net, and their 
improved networks, have gained people’s attention due 
to their superior performance. The percentage of these 
methods in the retrieved papers is shown in Figure 3.

Among the 64 papers retrieved, the earliest one was 
published in 2011 and the number of cervical cancer image 
segmentation papers has increased substantially since 

2019. The statistics of paper publication year and image 
modality are shown in Figure 4. The images characteristics 
of these three modalities differ in their ability to present 
cervical cancer CTV and organs at risk. CT can obtain 
continuous thin layer images by multi-phase scanning 
and enable observation of tumors from different angles by 
reconstruction techniques. It can display the size, depth of 
infiltration, and invasion of the primary tumor, as well as 
identify whether the cancer has spread to bones and other 
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places. CT imaging is also not affected by metal. However, 
CT images have poor resolution and contrast, which can 
make it difficult to distinguish smaller tumors, and the upper 
edge of the cervix may not be clearly displayed. Compared 
with CT images, MRI images have higher tissue resolution 
and can achieve accurate diagnosis of cervical cancer. It can 
also perform multi-directional and multi-sequence scans to 
understand the cervical cancer site, parametrial invasion, 
lymph node metastasis. Internal pelvic organs and inter-
tissue signals can be observed to identify the cervical cancer 
stage. MRI images with high contrast are important for 
cervical cancer patients, as the lesions’ large geometry and 
the soft tissue borders are not obvious in the images. But 
MRI is susceptible to metal, prone to artifacts and relatively 
expensive. Compared to the first two imaging modalities, 
PET complements MRI in assessing the extent of localized 
disease and helps to depict the margins of invasive tumors. 
In cases where the tumor extends upward into the uterine 
cavity and caudally into the vaginal cuff, PET is particularly 
helpful (11). FDG-PET is more sensitive in detecting pelvic 
and para-aortic lymph node metastases. Detection of lymph 
nodes by PET allows physicians to modify treatment plans 
and enables radiation oncologists to expand the radiation 
treatment volume to include metastatic lymph nodes (12).

Current state of cervical cancer segmentation 
methods for different image techniques 

Cervical cancer segmentation based on CT images 

CT-based brachytherapy for cervical cancer is widely 
used in treatment centers for cervical cancer radiation 
therapy programs. Many automatic segmentation methods 

relying on CT images to segment target areas and organs 
at risk have been proposed. Because cervical cancer 
and normal cervical regions have similar attenuation 
in CT images and cannot be accurately distinguished, 
there is less literature on the segmentation of cervical 
cancer CT images using tradit ional  methods.  By 
searching Google Scholar, PubMed, and Web of Science 
websites, only four articles met the requirements. Putri 
et al. (13) used the fuzzy C-mean method to achieve 
segmentation of the cervical region and localization of 
cervical cancer in 2015. Other three studies utilized atlas 
for their segmentation. With the rapid development 
of deep learning, K nearest neighbors (KNN) (14)  
and convolutional neural networks (CNNs) have been 
used to segment cervical cancer CT images. In a recent 
study, Wang et al. (15) used ResUNet as a segmentation 
model to compare the variability of resident and model’s 
learning ability. The model was first trained using a gold 
standard outlined by a particular senior physician. In the 
meanwhile, residents were mentored by the same senior 
physician for eight months. The segmentation results 
obtained by the model segmentation were compared with 
those obtained by the residents. There was little difference 
in segmentation accuracy between two. However, the model 
takes only 2 minutes to complete segmentation, while the 
residents required 90 minutes to complete the same task. 
This suggests that the model was much more efficient than 
manual segmentation by residents. The implementation 
of deep learning models holds tremendous promise for 
enhancing both the efficiency and accuracy of medical 
image segmentation. UNet, V-Net and their variants 
have shown state-of-the-art performance in various image 
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segmentation tasks.

Atlas-based segmentation
One commonly used traditional method is atlas-based 
segmentation. It involves deformable image registration to 
obtain the contours of the target area and the organs at risk. 
To be more specific, an accurately labeled image is obtained 
as an atlas, and then the image to be segmented is mapped 
onto the atlas using the registration method. The resulting 
transformation is then used to propagate the atlas labels 
onto the new image, generating a segmentation result. The 
whole process is depicted in Figure 5. The segmentation 
accuracy of the atlas method is closely related to the quality 
of the atlas library. Typically, the accuracy is higher when 
the images in the atlas library are more similar to the image 
being segmented. Langerak et al. (16), Kim et al. (17) and Li 
et al. (18) have used the atlas method in their studies for the 
segmentation of cervical cancer. The effect of atlas library 
size on the accuracy and efficiency of the automatic atlas-
based segmentation (ABAS) method has also been explored 
by Kim et al. (17) and Li et al. (18). However, they reached 
opposite conclusions regarding the optimal atlas library size. 
Kim et al. (17) showed experimentally that the worst outline 

results were obtained with a small number of patients in the 
atlas. They found that increasing the number of patients in 
the atlas improved the segmentation accuracy. On the other 
hand, Li et al. (18) concluded that no significant differences 
were found in the segmentation accuracy, measured using 
the dice similarity coefficient (DSC) and hausdorff distance 
(HD) metrics, between different atlas library sizes. These 
differing conclusions highlight the importance of carefully 
selecting the optimal atlas library size for the specific 
application at hand. While increasing the size of the atlas 
library can improve segmentation accuracy, it may not 
always be necessary, as a small atlas library combined with 
appropriate registration algorithms can also yield accurate 
results.

Two-dimensional UNet (2D UNet)
In recent years, the UNet network and its variants have 
emerged as some of the most popular architectures for this 
task (19-30). UNet was developed for biomedical image 
segmentation at the Computer Science Department of the 
University of Freiburg (31). The network is based on the 
fully convolutional network and its architecture has been 
modified and extended to work with fewer training images 
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Figure 5 Atlas segmentation process.
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and to yield more precise segmentations. The structure of a 
typical UNet network consists of a contracting path, which 
captures context and reduces the spatial resolution of the 
input image, and an expanding path, which recovers the 
spatial information and generates the segmentation mask. 
Segmentation of a 512×512 image using either UNet or 
its variants can take less than a second on a modern GPU. 
UNet adopts an encoder-decoder structure, in which the 
encoder learns features of different scales through multiple 
convolutional and pooling operations, and the decoder 
maps global features to the pixel level. The inclusion of 
skip connections facilitates the transmission of information 
to capture features of objects at different scales and levels, 
enhancing the model’s understanding of the target (32). 
Moreover, the encoder-decoder approach can be trained 
end-to-end, enabling the network to simultaneously learn 
feature extraction and pixel-level classification, simplifying 
model design and training processes. Additionally, the 
flexibility to modify the encoder, decoder, and skip 
connections further enhances the model’s feature extraction 
and fusion capabilities (33,34). Mohammadi et al. (35) and 
Liu et al. (36,37) successively used the improved UNet to 
segment cervical cancer and achieved accurate segmentation 
of cervical cancer CTV and organs-at risk (OARs). To get 
the 3D information of CT scans, Liu et al. (6) and Huang 
et al. (28) designed the model as a 2.5D architecture by 
assigning different amount of adjacent slices into the three 
channels. The output was the delineation result of the 
middle slice. To gain a comprehensive overview of 2D 
UNet-based segmentation, summaries of representative 
methods and their performance on segmenting cervical 
cancer images are listed in Table 2. The datasets they used 
were unpublished private datasets, and the evaluation 
metrics were chosen as DSC and HD, which are commonly 
used in the segmentation field.

Three-dimensional UNet (3D UNet)
Medical images are volumetric data because their slices 
have continuity, the anatomical environment of 3D images 
is much more complex compared to 2D images. 3D CNN 
do not need to process the input volume in a 2D slice by 
slice manner. They can take the whole picture as input to 
the model. In cervical cancer image segmentation, networks 
with 3D UNet and V-Net as the basic architecture are 
commonly used (38-49). The structure of V-Net network 
is shown in Figure 6. Ding et al. (44) verified the feasibility 
of the V-Net network to outline CTV and organs at risk 
in cervical cancer. In comparison with the 2D network 

UNet, the study found that the V-Net performed 
significantly better in the colon segmentation. Table 3 
shows the summary of papers on segmentation of cervical 
cancer target areas and organs at risk using V-net-based 
architecture.

Jiang et al. (50) and Xiao et al. (51) validated the 
feasibility of RefineNet segmentation of cervical cancer and 
proved that RefineNetPlus3D achieves better performance 
than 2D-RefineNet in the organ segmentation task. The 
RefineNet structure is shown in Figure 7. In general, 3D 
neural networks can obtain contextual connections between 
images and obtain better segmentation results. Table 4 
lists the segmentation performance of the representative 
methods of cervical cancer image segmentation based on 
3D U-shaped network.

One of the main drawbacks of the 3D networks is that 
their memory consumption is very large. A 3D UNet 
requires a specific amount of input data in the spatial 
dimension, and many patients’ data may not meet the input 
requirements of the network. Therefore, Chang et al. (43) 
proposed a method for segmentation of high-risk clinical 
target volume (HRCTV) and GTV of cervical cancer that 
combines 3D UNet with long short-term memory (LSTM) 
network. This method was developed to address the 
challenges of segmenting cervical cancer images containing 
organs at risk such as bladder, bowel, and uterus. The use 
of LSTM networks with bidirectional convolution allows 
the network to achieve good performance with only seven 
consecutive CT images, reducing the limitations associated 
with spatial dimensionality and memory. The LSTM 
structure is shown in Figure 8.

While 3D networks have high advantages in processing 
medical images, they often face various optimization 
difficulties such as overfitting and gradient disappearance. 
These challenges arise due to the large size and complexity 
of 3D images. To address these challenges, researchers 
have developed various techniques. Ju et al. (45) combined 
two network models, Dense Net and V-Net, to improve 
the ability of the model to extract features and to solve the 
problems of gradient disappearance and insufficient training 
data. To minimize the training time, the two models were 
trained separately and then fused together when the best 
training results were achieved. The parameters of both 
Dense Net and V-Net models were optimized separately. 
The fusion layer is fine-tuned when the loss functions of 
both models reached their optimal values. This process 
allowed the Dense V-Net model to achieve the best 
network fusion in the shortest time and improving the 
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Table 2 Summary list of 2D UNet-based CT image segmentation technique for cervical cancer

Author, year Method
Number of 

patients
Data 

volume
Evaluation 

metrics
Result Highlights

Wang J  
2022 (21)

U-shaped 
network

375 patients NA DSC CTV: 77% The network consists of three encoders 
and three decoders, with skip 
connections in the middle

Organs at risk: 88–93%

95% HD CTV: 5.81

Organs at risk: 1.03–2.96

Wang J  
2023 (26)

U-shaped 
network

60 patients NA DSC HRCTV: 87% The segmentation results were 
scored by two experienced radiation 
oncologists

Bladder: 94%

Rectum: 86%

Sigmoid: 79%

Small intestine: 92%

HD HRCTV: 1.45

Bladder: 4.52

Rectum: 2.52

Sigmoid: 10.92

Small intestine: 8.83

Mohammadi  
R 2021 (35)

ResUNet 113 patients NA DSC Bladder: 95.7% ResUNet deep convolutional neural 
network architecture is used, which 
uses long and short jump connections 
to improve the accuracy of the feature 
extraction process and segmentation

Rectum: 96.6%

Sigmoid colon: 92.2%

HD Bladder: 4.05

Rectum: 1.96

Sigmoid colon: 3.15

Liu Z  
2020 (36)

Improved 
UNet

105 patients NA DSC Bladder: 92.4% (I) Formulated this OARs segmentation 
problem as a binary pixel-level 
classification problem 
(II) The convolutional layers in the UNet 
are replaced by Context Aggregation 
Blocks 
(III) Use the Squeeze-Extract block 
to assign different weights to each 
channel, thus, to reweight each organ 
mask importance

Bone marrow: 85.4%

Rectum: 79.1%

Small intestine: 83.3%

Spinal cord: 82.7%

HD Bladder: 5.098

Bone marrow: 1.993

Rectum: 5.949

Small intestine: 5.281

Spinal cord: 3.269

Table 2 (continued)
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Table 2 (continued) 

Author, year Method
Number of 

patients
Data 

volume
Evaluation 

metrics
Result Highlights

Liu Z 2021 (37) Improved 
DpnUNet

237 patients NA DSC CTV: 88% (I) A novel adversarial deep-learning-
based auto-segmentation model is 
hence proposed 
(II) All encoder and decoder 
components in UNet are replaced with 
DPN components 
(III) A three-stage multicenter 
randomized controlled evaluation was 
used, including performance metrics, 
oncologist evaluation and the Turing 
imitation test

95% HD CTV: 3.46

2D UNet, two-dimensional UNet; CT, computed tomography; NA, not applicable; DSC, dice similarity coefficient; CTV, clinical target 
volume; HD, hausdorff distance; HRCTV, high-risk clinical target volume; DPN, Dual Path Networks.

model’s accuracy and robustness. They experimentally 
demonstrated that the segmentation results of the fusion 
model were higher than either single model (46).

In addition to fusing the two network models to improve 
the model segmentation capability, the researchers have 
utilized the registration in combination with the network 
model. Ma et al. (47) proposed a novel VB-Net network 
for cervical cancer segmentation. This network reduced 
the model parameters by replacing the convolutional, 
normalization, and activation layers in V-Net with a 
bottleneck structure. This replacement made the model 
easier to be generalized. The model outlining results were 
compared with those of primary, secondary, and advanced 
doctors. The accuracy of the outlining obtained using the 
VB-Net model was comparable to that of advanced doctors. 
This suggests that the VB-Net method has great potential 
for assisting doctors in clinical practice. They further 
investigated the effect of combining VB-Net network with 
registration to improve segmentation accuracy (48). The 
performance of four cervical cancer target area segmentation 
methods were compared, namely, rigid registration method, 
deformable registration method, combination of rigid 
registration and VB-Net, and combination of deformable 
registration and VB-Net. The experimental results showed 
that the segmentation results after combining the deep 
learning network with the registration were higher than 
those of the registration method alone. This highlights 
the potential of combining deep learning methods with 
traditional image processing techniques to achieve more 
accurate medical image segmentation.

Cervical cancer segmentation based on MR images 

MRI is the most advanced equipment in radiological 
examination. Compared with the single parameter index 
of CT, MRI is capable of performing multiple weighted 
imaging and responding to different characteristics of 
different tissues. It can also perform multi-directional 
imaging with high image contrast, resulting in clear soft 
tissue images that are crucial for cervical cancer images 
segmentation. The main methods for segmentation of 
cervical cancer target areas and organs at risk using MRI 
images include atlas registration methods, level sets, region 
growth, UNet networks, and their variants.

Traditional methods
Before deep learning became popular, atlas-based, and 
registration-based segmentation methods were the primary 
techniques used for segmentation of cervical cancer 
organs at risk in MR images. Registration is the process 
of aligning two images by estimating the coordinate 
geometric transformation. The two images used for 
registration are called the moving image and the target 
image, respectively. During the coordinate transformation, 
the appropriate similarity metric is optimized to align the 
two images. The key to the registration technique depends 
on the optimization method used to achieve the best 
transformation (52). As early as 2011, Berendsen et al. (53)  
used an atlas and registration method to segment the 
bladder in cervical cancer organs at risk. In their study, the 
registration was divided into two parts. Firstly, a global 
transformation involves the B spline method to obtain a 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 7 July 2024 5185

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):5176-5204 | https://dx.doi.org/10.21037/qims-24-369

roughly aligned image. And then, a local registration of 
the image used a statistical model combined with a prior 
knowledge to improve the accuracy of the registration. The 
accuracy of DSC was 0.5 when the global transformation 
was applied, and the accuracy was further improved to 
0.67 after local registration. This value was higher than 
the accuracy of bladder segmentation reached by other 
traditional methods. However, when large and complex 
deformations are encountered, it is common for the 
registration to end up in a local minimum. To address this 
issue, Berendsen et al. (54) proposed incorporating prior 
knowledge-based regularization terms into the registration 
and using statistical models to improve the accuracy of the 

inter-patient registration. The considerable discrepancy 
between organ structure and size in the MR images of the 
two patients can cause great difficulties for registration. 
However, the proposed method successfully achieved 
segmentation of CTV with bladder for cervical cancer, 
and its effectiveness was validated using the leave-one-out 
method.

Since the tumor size changes during radiation treatment, 
tumor regression in the registration of MR Images 
after different doses of radiotherapy poses a challenge 
for registration. Lu et al. (55) defined the registration 
problem as a mixture of two different distributions, the 
tumor category, and the normal tissue category. They 
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Figure 6 V-Net network structure. The figure was reproduced from Ding et al. (44) under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International License (CC BY -NC-ND 4.0). 
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Table 3 Summary of V-shaped network-based CT image segmentation technique for cervical cancer and its performance

Author, 
year

Method
Number of 

patients
Data 

volume
Highlights

Ding Y 
2022 (44)

3D V-net 130 NA The CT images of the upper and lower layers are integrated into a new input data to form 
a pseudo-3D image for learning. The data processing time of input terminal is reduced, 
so the learning effect and efficiency of CT image are improved

Ju Z  
2020 (45)

Dense 
V-Network

190 NA The isodose lines of 5, 10, 15 and 20 Gy in the radiotherapy scheme were transformed 
into structures for learning in the neural network to predict a suitable location for ovarian 
transposition

Ju Z  
2021 (46)

Dense V-Net 133 NA Dense V-Net is a deep learning network that integrates two deep learning models of 
Dense Net and V-Net

The residual connections are used between convolution operations to break network 
symmetry and enhance the sensitivity of gradient calculations

Ma CY 
2022 (47)

VB-Net 535 NA The convolution, normalization, and activation layers in V-Net are replaced by a 
bottleneck structure, which is the B in VB-Net

During the network training process, the multi-scale strategy with a 3D network was 
applied, by which we first trained a coarse-scale network for rapid positioning of target 
area and then a fine-scale segmentation model for precisely delineating targets’ contours 
based on previous coarse-scale network output

Ma CY 
2022 (48)

Registration 
and VB-Net

107 NA The performance of four cervical cancer target volume segmentation methods were 
compared, which were rigid registration method, deformable registration method, 
rigid registration and VB-Net combination, and deformable registration and VB-Net 
combination

Rhee DJ 
2020 (49)

3D V-net and 
2D FCN-8s

NA 2,254 Registration between the planning CT and the during-treatment CT is applied to 
align the CT series and the corresponding contour. The aligned planning CT and 
the corresponding CTV contour are then used as another two channels of input to 
the network. The output of the network is the estimated CTV contour on the during-
treatment CT

In order to overcome the problem that the GPU memory was not sufficient to train 
the full-resolution CT images, the size of the input image is adjusted to segment the 
primary CTV, and the center of mass of the primary CTV is estimated. Then the box that 
surrounds the primary CTV is cropped and placed on the center of mass predicted in 
the original CT scan. Finally, the V-Net segmentation model is applied to the cropped 3D 
image

CT, computed tomography; NA, not applicable; 3D, three-dimensional; CTV, clinical target volume; GPU, graphics processing unit.

described the statistical image grayscale changes for both 
categories. These mixture distributions were weighted by 
the tumor detection map, which assigned its abnormality 
probability to each voxel. The Jacobi determinant of the 
transformation was also constrained, which ensures the 
smoothness of the transformation and simulates the tumor 
regression process. Their study demonstrated that the 
method was highly suitable for applications in image-guided 
radiotherapy and computer-aided diagnosis. To improve the 
model’s performance, a Bayesian framework was utilized 
for registration, detection, and segmentation of cervical 
tumors in T2-weighted MR images (56). This method 

also generated tumor probability maps, which provided a 
better understanding of the tumor location and extent. The 
registration uses data to align the planned day images to the 
treatment day images. Then, the segmentation extends the 
level set model using shape prior information. One of their 
innovations is to perform non-rigid registration considering 
not only the organ surface but also the intensity. The 
intensity matching takes into account the distribution 
of both tumor and normal tissues. They used the tumor 
probability map to mix and weight the two distributions, 
thereby linking registration, detection, and segmentation 
together in an interdependent manner. This approach 
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achieved higher accuracy across all tasks.
In atlas-based segmentation, the accuracy of multi-

atlas segmentation is higher compared to single atlas. 
One potential challenge of using multi-atlas segmentation 
is that as the number of images in the atlas increases, 
the computational volume of segmentation can become 
significantly larger. Moreover, because there are many 
organs that can be endangered in cervical cancer, a multi-
atlas registration approach is often required for each 
of these organs to select the appropriate atlas, leading 
to a substantial computational demand. To overcome 
these problems, Daly et al. (52) proposed a multi-atlas 
segmentation method, which can automatically select 
atlases based on the similarity metric. In order to reduce the 
computational effort during the registration process, a two-
step registration was performed. First, a global radiometric 
registration is performed to obtain preliminary registration 
results. Then, a local non-rigid registration is applied for 
fine matching. This approach can significantly reduce the 
computational time required while still achieving accurate 

registration results.
Because of the intricated structure of the human 

abdomen, there is often intensity overlap in the images 
and noise can have a negative impact on the image quality, 
making it more difficult for distinguishing cervical tumors 
from other structures in a single image. Kao et al. (57) 
aligned T2-weighted images with diffusion-weighted MR 
images using a mutual information method and used the 
Confederative Maximum a Posterior (CMAP) algorithm 
to automatically segment cervical tumors. To mitigate the 
influence of surrounding structure such as the rectum and 
bladder walls, the authors segmented these structures first 
and then segmented the cervical tumor within the region of 
interest.

In addition to atlas and registration segmentation 
methods, traditional segmentation methods such as level 
set, region growing, and watershed are also widely used. 
Garg et al. (58) demonstrated an effective approach for 
segmenting cervical cancer tumor regions in MR images by 
combining thresholding and watershed techniques, which 

Figure 7 RefineNet structure. The figure was reproduced from Jiang et al. (51) under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International License (CC BY -NC-ND 4.0). RCU, residual convolution unit; CRP, chained residual 
pooling.
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Table 4 Summary of 3D U-shaped network-based CT image segmentation technique for cervical cancer and its performance

Author, year Method Number of patients Data volume Evaluation metrics Result

Wang Z 2020 (15) 3D ResUNet 125 NA DSC CTV: 86%

Bladder: 91%

Femoral head right: 88%

Femoral head left: 88%

Small intestine: 86%

Rectum: 81%

HD CTV: 14.84

Bladder: 7.82

Femoral head right: 6.18

Femoral head left: 6.17

Small intestine: 22.21

Rectum: 7.04

Sartor H 2020 (19) 3D Full Convolutional 
Network

75 cases of cervical 
cancer and 191 cases 

of anorectal cancer 

NA DSC Femoral head left: 92%

Femoral head right: 91%

Bladder: 83%

Bowel: 86%

CTVNs: 81%

Beekman C 2022 (20) 3D UNet 84 NA DSC CTV: 87%

Chung SY 2023 (27) 3D EfficientNet-B0 180 NA DSC CTV: 80%

Bladder: 88%

HD CTV: 13

Bladder: 6.93

Zhang D 2020 (38) DSD-UNet 91 91 DSC HRCTV: 82.9%

Bladder: 86.9%

Small intestine: 80.3%

Sigmoid colon: 64.5%

Rectum: 82.1%

HD HRCTV: 8.1

Bladder: 12.1

Small intestine: 27.8

Sigmoid colon: 19.6

Rectum: 9.2

Shi J 2021 (39) RA-CTVNet 462 NA DSC CTV: 79.2%

Yi H 2021 (40) GML 87 NA DSC CTV: 81.6%

HD CTV: 5.672

Table 4 (continued)
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Table 4 (continued)

Author, year Method Number of patients Data volume Evaluation metrics Result

Chang Y 2021 (41) Improved 3D UNet 400 NA DSC CTV: 88.2%

95% HD CTV: 6.853

Chen A 2022 (42) UNet 127 127 DSC OAR: 82–96%

95% HD OAR: 2.30–17.31

Chang JH 2021 (43) 3D UNet and LSTM 51 136 DSC HRCTV: 87%

GTV: 72%

Bowel: 72%

Foley: 95%

Bladder: 86%

Rectum: 77%

Sigmoid colon: 73%

Uterus: 93%

3D UNet, three-dimensional UNet; CT, computed tomography; NA, not applicable; DSC, dice similarity coefficient; CTV, clinical target 
volume; HD, Hausdorff distance; CTVNs, clinical target volume of lymph nodes; HRCTV, high-risk clinical target volume; RA-CTVNet, 
area-aware reweight strategy and recursive refinement strategy; GML, global multi-level attention; LSTM, long short-term memory; OARs, 
organs-at risk; GTV, gross target volume.

Ct-1
Ct

ht-1

ht

ht

tanh

tanhSigmoid Sigmoid Sigmoid

Xt

Figure 8 LSTM structure. Ct-1 represents the memory cell internal state, ht represents the hidden state. LSTM, long short-term memory.

allowed for improved accuracy of the segmentation and 
successful identification of the tumor regions. Su et al. (59) 
presented a global adaptive region growing algorithm that 
combines image global information with region growing 
to achieve automatic threshold initialization segmentation. 
The proposed method sets reasonable thresholds based 
on different grayscale features of different images, which 

reduces human involvement and minimizes subjectivity 
and uncertainty. The algorithm was compared with the 
traditional methods, such as Region Growing, CV Level Set, 
and Threshold square, and outperformed these methods. 
Khoulqi et al. (60) introduced a region growth to achieve 
segmentation of cervical tumor regions. To obtain more 
information about the tumor, they used axial and vectorial 
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views of MR images. They preprocessed the images by 
K-means clustering to enhance the image quality before 
applying the region growth algorithm for segmentation. 
The authors also classified the segmented images using the 
cervical cancer classification criteria described in FIGO 
(International Federation of Gynecology and Obstetrics). 
However, this method was overly dependent on the quality 
of the images after preprocessing. Torheim et al. (61) used 
linear discriminant analysis (LDA) for voxel classification to 
achieve segmentation of cervical cancer tumor regions on 
multimodal MR images.

Deep learning methods
In the same way as segmenting cervical cancer in CT 
images, deep learning segmentation methods have been 
widely applied for segmentation of cervical cancer CTV 
with organs at risk on MR images. Bnouni et al. (62) first 
proposed a dynamic multiscale CNN forest to achieve 

segmentation of cervical tumors on T2-weighted MR 
images, involving aggregating different CNNs and 
obtaining bidirectional information flow between two 
consecutive CNNs. Since the low contrast between organs 
endangered and the real tumor in MRI images, cervical 
cancer is difficult for segmentation. Bnouni et al. (63) then 
proposed a new synergetic multiplex network (SMN) 
for the segmentation of pelvic multi-organs using multi-
view (MV) MRI. This method is based on the multi-stage 
deep learning architecture of cyclic GAN. The generator 
and discriminator structures in cyclic GAN are shown in 
Figures 9,10. The SMN enhances the spatial coherence 
between adjacent pixels within the same tissue, making it 
easy to distinguish various organs at risk with only small 
contrast differences. Zabihollahy et al. (64,65) evaluated 
2D Attention UNet, 3D UNet and 3D Dense UNet in the 
segamentaiton of CTVs and ORAs by using MRI images. 
Rodríguez Outeiral et al. (29) used nnUNet to segment 
cervical cancer and evaluated model performance based on 
FIGO stage and GTV volume. Lin et al. (66) used DeepLab 
V3+ as the pre-trained model and then adjusted the training 
data size and fine-tuning layers through transfer learning. 
Although the selection and union of models are important 
for image segmentation, the models become less effective 
for image segmentation due to image noise, intensity 
inhomogeneity, and other factors. To overcome this, Bnouni 
et al. (67) proposed a framework for automatic image 
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Figure 9 Generator structure. ReLU, rectified linear unit.

Figure 10 Discriminator structure. ReLU, rectified linear unit.
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preprocessing using histogram, smoothing, sharpening, 
and morphological processing methods. The preprocessed 
image is segmented using three identical CNN models. 
A voting mechanism is used to obtain the final segmented 
image.  The approach was  found to  improve  the 
segmentation accuracy compared to a baseline CNN model, 
and the effect of image preprocessing on segmentation was 
demonstrated.

Apart from image preprocessing, the use of prior 
knowledge can also improve the accuracy of cervical cancer 
segmentation (20). In practical, the definition of the cervical 
CTV is partially driven by clinical experience, which leads 
to different degrees of the inclusions of parametrial and 
vaginal regions. The boundaries of CTVs do not strictly 
correspond to the visible boundaries on medical images, 
which creates great difficulties in segmenting the CTV 
using CNNs. Incorporating prior knowledge about the 
expected shape and location of the cervical cancer can 
improve accuracy by guiding the segmentation process. 
Since the target area of cervical cancer is located behind the 
bladder, Zabihollahy et al. (65) used information about the 
location of the bladder and the target area to improve the 
segmentation accuracy of the target area.

In addition, researchers have developed a combination 
of 2D models with 3D models in MR images to improve 
model segmentation performance (23), overcoming the 
limitations of insufficient 3D data and lack of continuity 
in 2D data. Another approach is to use 2.5D models. 
Yoganathan et al. (68) used MV MR images combined with 
axial, coronal and sagittal images to construct a 2.5D model. 
The final experimental results of Yoganathan et al. (68) 
showed that the segmentation accuracy of the 2.5D network 
for the target area of cervical cancer with the organs at 
risk was higher than that of the 2D model. Gou et al. (69) 
proposed the MVFA-Net network to overcome specific 
challenges such as large MR slice thickness and image 
intensity inhomogeneity to achieve segmentation of cervical 
tumors. A multi-view attention (MVA) block was improved 
based on the residual network by replacing its convolutional 
layers with a MV block and a channel attention (C-Att) 
block. In the proposed MV block, multiple convolutional 
branches with different convolutional kernel sizes are used 
to target the problem of inconsistent spatial resolution in 
different views. Thus, they have leveraged information from 
the context of MR images to improve accuracy.

One of the most significant features of MRI is that 
it has multiple sequences that provide a rich source of 
information. However, using a single MRI sequence for 

segmentation tasks can limit the accuracy of the results. To 
address this, researchers have explored the use of multiple 
MRI sequences to improve segmentation accuracy. Huang 
et al. (70) proposed a modified FuseNet network to segment 
the organs at risk of cervical cancer and prostate cancer. The 
network used an attention mechanism to fuse multimodal 
images from T1-weighted, T2-weighted, and enhanced 
Dixon T1-weighted sequences. Similarly, Wang et al. (71) 
proposed a 3D CNN model to segment the full tumor 
region, core tumor region, and enhanced tumor region in 
multi-sequence MR cervical images. The model features a 
jump structure and residual connections to address gradient 
dispersion and a Group Normalization layer for faster 
convergence. Jin et al. (30) used EfficientNet as an encoder 
for UNet++ to achieve cervical cancer segmentation in 
multi-sequence MR Images. The use of multiple MRI 
sequences in segmentation tasks has shown promising 
results, highlighting the importance of leveraging the full 
potential of MRI data. Table 5 summarizes the literatures on 
MR image segmentation of cervical cancer using U-shaped 
networks.

Cervical cancer segmentation based on PET images 

18F-FDG is often used as a radiotracer during PET 
imaging to reveal metabolic activities in vivo (72). When 
patients are injected with 18F-FDG, PET scanners can 
construct images that reflect the distribution of 18F-FDG in 
the human body. Since tumor cells are more metabolically 
active than normal cells, tumor areas in the patient’s body 
will be more easily observed in PET images, reflecting the 
shape and size of tumors. 18F-FDG has been widely used 
for the diagnosis and staging of tumors (73). Several studies 
have used 18F-FDG PET for radiation therapy planning 
for different types of tumors (74,75). While CT and MR 
images provide detailed anatomical information, they may 
not be sufficient for accurately distinguishing between 
tumors and normal tissues based on metabolic activity. 
Therefore, PET imaging, either alone or in combination 
with CT and MR imaging, has been widely used for the 
segmentation of cervical cancer.

Tumor volumes in PET images are influenced by 
threshold selection (76), which causes interference in 
the outlining of tumor. Erlich et al. (77) evaluated semi-
automatic segmentation algorithms for GTV depiction in 
cervical cancer patients using PET images. They compared 
metabolic PET-derived volumes with MR-based anatomical 
volumes using three different threshold values, GTV2SD, 
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Table 5 Summary of U-shaped network-based MR image segmentation technique for cervical cancer and its performance

Author, year Method Number of patients Data volume Evaluation metrics Result

Kano Y 2021 (23) 2DUNet and  
3DUNet

98 NA DSC Tumor (median value): 83% 

HD Tumor (median value): 4.7

Lu P 2022 (24) AugMS-Net NA 894 DSC Tumor: 87.21%

HD Tumor: 0.7012

Lin YC 2020 (25) UNet 169 NA DSC Tumor: 82%

Rodríguez Outeiral R  
2023 (29)

3D nnUNet 195 524 DSC GTV: 73%

95% HD GTV: 6.8

Jin S 2023 (30) UNet++ 228 NA DSC CTV: 78.6%

95% HD CTV: 3.779

Zabihollahy F 2021 (64) 3D UNet and 3D 
Dense UNet

181 283 DSC Bladder: 93%

Rectum: 87%

Sigmoid colon: 80%

Zabihollahy F 2022 (65) 2D Attention UNet 
and 3D UNet 

125 213 DSC CTV: 85%

95% HD CTV: 3.7

Gou S 2022 (69) MVFA-Net 160 160 DSC Tumor: 74.4%

95% HD Tumor: 11.18 

Huang S 2021 (70) Improvement of  
UNet

87 84 DSC Bladder: 89.8%

Rectum: 78.1%

95% HD Bladder: 8.738

Rectum: 11.775

MR, magnetic resonance; NA, not applicable; DSC, dice similarity coefficient; HD, Hausdorff distance; GTV, gross target volume; CTV, 
clinical target volume. 

GTV40% and GTV50%. GTV2SD was defined as pixels 
with 2 standard deviations of the mean plus liver intensity, 
while GTV40% and GTV50% were defined as pixels with 
40% and 50% of the maximum tumor intensity, respectively. 
The comparison validated the GTV2SD method is more 
accurate for PET tumor segmentation in cervical cancer 
patients. Monteiro et al. (78) verified the effectiveness of the 
region growth algorithm for segmentation of cervical tumor 
regions in PET images. They combined the information 
from PET, CT, and MR images. Firstly, the MR images 
were affine aligned with PET/CT images to ensure the 
correspondence between each patient image. Then, a region 
growth algorithm was used to segment the tumor regions. 
To improve the accuracy and reliability of the segmentation 
results, a multi-criteria decision process was implemented 
by applying four classifiers KNN, LDA, PROAFTN (79) 
and Naive Bayes to different image pattern combinations. 

Recently, Baydoun et al. (80) implemented automatic 
segmentation of cervical tumors on small datasets of PET/
MR images using shallow UNet networks, by invoking the 
concepts of focus and sequential training to achieve accurate 
segmentation on small datasets.

PET images are highly sensitive to the metabolic activity 
of tissues and organs, including the bladder, which can 
interfere with accurate segmentation of cervical tumors. To 
overcome this issue, several studies have been focused on 
separating the bladder from the tumor before segmentation. 
One approach is to use morphological manipulation, 
regional growth, and other image processing methods 
to remove the influence of the bladder (81). Another 
approach is to construct a hyper-image by combining CT 
and PET images to depict rough tumor regions based 
on tissue specificity. Additionally, gradient information 
from the hyper-image can be introduced into the level set 
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function to reduce the influence of the bladder on tumor  
segmentation (82). Mu et al. (83) segmented cervical tumors 
by adding intensity and gradient field information to the 
level set framework after Gaussian filtering of PET images. 
In addition to this, they also investigated the effect of image 
texture features on cervical cancer staging and verified that 
texture features are highly correlated with tumor staging 
and can provide valuable prognostic information. Overall, 
their methods offer a more precise and comprehensive 
approach to cervical tumor segmentation. Chen et al. (84) 
segmented cervical tumors in PET images by a two-stage 
segmentation. First, coarse segmentation was performed 
by measuring voxel local similarity using a graphical cut 
method. Then, the initial segmentation was fine-tuned 
using a similarity-based variational model. This was done 
by using the information that the tumor shape and location 
did not vary much between adjacent slices, which helped to 
improve the accuracy of the final segmentation results. The 
authors then (85) proposed a prior information constrained 
(PIC)-spatial information embedded CNN model (S-CNN) 
by combining prior knowledge into CNN model to 
separate bladder and cervical tumor before segmenting 
cervical tumor. Since roundness has been shown to be a 
feature of cervical tumors in previous studies (86-88) and 
the location of the bladder and cervical tumor is fixed, 
with the bladder always in front of the cervical tumor, 
adding this prior knowledge to the CNN model reduces 
the influence of the bladder on subsequent cervical tumor 
segmentation. Iantsen et al. (22), on the other hand, used 
manual separation of the bladder from the cervical tumor. 
They determined the volume of the cervical tumor using 
the FLAB algorithm, which was used as the gold standard. 
Then, they used a modified 3D UNet network to achieve 
automatic segmentation of the cervical tumor, where the 
maximum pooling operation in the network was replaced 
with downsampling and a concurrent spatial and channel 
squeeze and excitation (scSE) module was included in the 
residual block. The original UNet network was optimized, 
and the model applicability was assessed using five-fold 
cross-validation.

Current challenges and limitations

The main treatment modality for middle and advanced 
cervical cancer involves a combination of external pelvic 
irradiation therapy, intracavitary brachytherapy, and 
chemotherapy. In brachytherapy, precise positioning of 
the tumor area and organs at risk is critical for doctors 

to determine the appropriate radiation dose and develop 
accurate outlines for the CTV and organs at risk. This 
process enables reasonable dose planning that can deliver 
a high radiation dose to the tumor area while minimizing 
damage to healthy surrounding organs. Failure to achieve 
precise positioning can result in deviations in plan 
evaluation and dose projection, negatively impacting the 
effectiveness of tumor treatment.

The segmentation of cervical tumors and organs at risk 
is based on image data from three modalities: CT, MR, and 
PET, and the segmentation methods are broadly classified 
into two categories: deep learning segmentation methods 
based on UNet networks and their variants, and traditional 
methods that rely on registration and atlas for segmentation.

Comparison between the atlas-based and deep learning 
based automatic segmentation
Berendsen et al. (53) used a single-atlas approach to segment 
the bladder in cervical cancer patients by combining global 
rigid registration and local registration. However, the volume 
and location differences between the target image and the 
atlas image were too large, which significantly decreased the 
resulting segmentation accuracy. Multi-atlas registration can 
solve the problems that arise from single-atlas registration 
(52,54). It relies more on the topology established between 
the moving image and the target image (17). Since the soft 
tissue resolution of CT images is low, the segmentation 
method of atlas is more dependent on the image quality. 
Rhee et al. (49) compared the difference in the results of 
cervical cancer segmentation using the atlas method with 
the deep learning method. The accuracy of segmentation 
of CT images of cervical cancer using atlas is relatively low 
compared with that using deep learning methods, among 
which U- and V-shaped networks and their variants are 
the most frequently used networks for cervical cancer 
segmentation (35-41,43-47). Additionally, UNet can be 
trained from scratch to achieve accurate segmentation 
results with very little labeled training data, which is 
important for medical image segmentation. Because the 
process of acquiring medical image datasets may involve 
patient privacy and other issues, and medical image 
annotation is time-consuming and laborious, medical image 
datasets are generally small and difficult to obtain.

MR imaging can distinguish between normal soft tissue 
and tumor-infiltrated soft tissue and can characterize 
deformable structures with excellent visualization. MR 
images of cervical cancer can be segmented using an atlas-
registration method. This process involves a transformation 
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between the two images. In atlas-based automatic 
segmentation methods, the segmentation structure from 
the atlas library can be propagated to the target image using 
a deformable image registration algorithm. Deformable 
image registration methods can be divided into two 
categories, an intensity method based on image gray values 
and another one based on image features. Considering the 
effect of cervical tumor fading during the treatment process, 
in the registration of cervical cancer images, feature-
based methods have better results than intensity-based 
registration methods (89). Lu et al. (56) proposed to use a 
maximum a posteriori (MAP) framework based on a non-
rigid registration considering organ surface registration 
and intensity matching, and the final model segmentation 
achieved an accuracy comparable to manual segmentation.

Existing segmentation accuracy of CTV and OARs
The most commonly used assessment metric for cervical 
cancer image segmentation is the use of quantitative 
measures such as DSC and HD for comparison with gross 
target contours, and Tables 6-8 show the papers using DSC/
HD as an assessment metric and their segmentation results.

For cervical cancer with organs at risk segmentation the 
most used methods were based on the UNet architecture 
for improvement. For organs at risk segmentation, taking 
the bladder as an example, as shown in Table 6, the DSC 
of these methods basically reached more than 90%, with 
the lowest DSC for software-based, mapping, registration, 
and full convolution methods, which may be related to 
differences in the size and shape of the patient’s bladder. 
The segmentation results of CTV are a bit worse than 
bladder, as shown in Table 7, and the DSC basically reached 
more than 80%, which is due to the complex composition 
and blurred boundary of CTV. The highest DSC of CTV 
among these methods was achieved by Mu et al. (83) using 
a level set approach to CTV segmentation combining 
intensity and gradient field information, with a DSC result 
of 91.78%. This is not much different from their accuracy 
in segmenting cervical tumors (82), which is due to the fact 
that CTV is obtained from GTV expansion, which is the 
cervical tumor region. The level set method showed high 
accuracy in segmenting cervical cancer. In addition, 3D 
models generally have higher accuracy in the segmentation 
of cervical cancer compared to 2D models (20,37,41).

Squeeze-and-excitation (SE), res, and dilated 
convolution
The UNet-based methods used by the researchers differ 

significantly from each other. One part fuses the UNet 
network with another network, and the fused network has 
the advantages of two single networks, which improves the 
segmentation of the fused network (45,46) and the fused 
model segmentation DSC accuracy is 0.07 higher than that 
of the single model (46), but its training time is higher than 
that of the single model. Another part of them embeds a 
part of other networks into the UNet network or replaces 
the convolutional layers in UNet and V-Net as a way to 
overcome the problem of unclear boundaries of the CTV of 
cervical cancer, which endangers organs with different sizes, 
shapes and locations (6,35,37,39,41,43,44,47).

The full use of SE blocks and residual blocks in a UNet 
network can improve the ability of the model to acquire 
certain features (15,35,38-41). SE blocks automatically 
acquire the importance of each feature channel by a 
squeeze operation and an excitation operation. This allows 
the network to promote useful features and suppress less 
informative features for the current task according to this 
importance. The residual block can be used to avoid gradient 
disappearance. This is because the residual connection allows 
the gradients to flow directly through the block, avoiding the 
vanishing gradient problem that can occur in deep neural 
networks. Residual blocks also help to preserve the details 
of the image, especially at the boundaries of abnormal cells, 
by allowing the model to learn residual mapping functions 
that capture the fine-grained details of the image. In addition 
to SE blocks and residual blocks, dilation convolution is 
also widely used in cervical cancer segmentation to improve 
the model’s ability to extract features. During the model 
segmentation, the feature maps are gradually down sampled 
to capture semantic contextual information at different image 
scales. Additionally, through the down sampling process, a 
larger receptive field is achieved, which can help improve the 
model’s ability to localize object boundaries and other fine 
details in the image. However, this down sampling process 
will reduce image resolution and lose information. Dilated 
convolution is proposed in response to this effect. It can 
obtain features in a larger receptive field without increasing 
the number of parameters. When being used in bottleneck 
structures, dilated convolution allows the model to better 
handle multi-scale information, preserve the image resolution, 
and improve the model’s ability to identify cervical cancer 
boundaries (36,38,40). Experiments by Mohammadi (35),  
Shi (39), etc. proved that the addition of residual structure 
and SE block can significantly improve the ability of the 
model to segment cervical cancer organs at risk.

Since there is no public data set in the field of cervical 
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Table 6 Summary of performance of papers using DSC/HD as an evaluation metric for segmentation of the bladder 

Author, year Method Number of patients Data volume Mode of image Evaluation metrics Result

Liu Z 2020 (6) DpnUNet 237 22,356 CT DSC 91%

HD 4.05

Wang Z 2020 (15) 3D ResUNet 125 NA CT DSC 91%

HD 7.82

Kim N 2020 (17) Atlas 75 NA CT DSC 54%

HD 60.2

Li Y 2022 (18) Atlas 140 140 CT DSC 86.6%

HD 1.591

Sartor H 2020 (19) 3D Full Convolutional  
Network

75 cases of cervical cancer 
and 191 cases of anorectal 

NA CT DSC 83%

Wang J 2023 (26) U-shaped network 60 NA CT DSC 94%

HD 4.52

Chung SY 2023 (27) 3D EfficientNet-B0 182 NA CT DSC 88%

HD 6.93

Mohammadi R  
2021 (35)

ResUNet 113 NA CT DSC 95.7%

HD 4.05

Liu Z 2020 (36) Improvement of UNet 105 NA CT DSC 92.4%

HD 5.098

Zhang D 2020 (38) DSD-UNet 91 91 CT DSC 86.9%

HD 12.1

Chang JH 2021 (43) 3D UNet and LSTM 51 136 CT DSC 86%

Ding Y 2022 (44) 3DV-net 130 NA CT DSC 94%

HD 4.52

Ju Z 2020 (45) Dense V-Network 190 NA CT DSC 95%

HD 0.65

Rhee DJ 2020 (49) 3DV-net and 2D  
FCN-8s

NA 2254 CT DSC 89%

HD 1.07 

Jiang X 2021 (50) RefineNet 200 NA CT DSC 86.0%

HD 19.981

Xiao C 2022 (51) RefineNetPlus3D 313 44,222 CT DSC 97%

Berendsen FF 2011 (53) Atlas 17 NA MR DSC 67%

Berendsen FF 2013 (54) Alignment 17 84 MR DSC 73%

HD 20

Bnouni N 2020 (63) Synergetic Multiplex  
Network (SMN)

15 NA MR DSC 95.75%

Zabihollahy F 2021 (64) 3-D UNet and 3-D  
Dense UNet

181 283 MR DSC 93%

Huang S 2021 (70) Improvement of UNet 87 84 MR DSC 89.8%

95% HD 8.738

DSC, dice similarity coefficient; HD, Hausdorff distance; CT, computed tomography; NA, not applicable; MR, magnetic resonance.
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Table 7 Summary of performance of papers using DSC/HD as an evaluation index for segmentation of CTV in cervical cancer 

Author, year Method Number of patients Data volume Mode of image Evaluation metrics Result

Liu Z 2020 (6) DpnUNet 237 22,356 CT DSC CTV: 86%

HD CTV: 5.34

Wang Z 2020 (15) 3D ResUNet 125 NA CT DSC CTV: 86%

HD CTV: 14.84

Kim N 2020 (17) Atlas 75 NA CT DSC CTV: 79%

HD CTV: 19.7

Li Y 2022 (18) Atlas 140 140 CT DSC CTV: 81.6%

HD CTV: 2.195

Beekman C 2022 (20) 3D UNet 84 NA CT DSC CTV: 87%

Wang J 2022 (21) U-shaped network 375 NA CT DSC CTV: 77%

95% HD CTV: 5.81

Wang J 2023 (26) U-shaped network 60 NA CT DSC HRCTV: 87%

HD HRCTV: 1.45

Chung SY 2023 (27) 3D EfficientNet-B0 180 NA CT DSC CTV: 80%

HD CTV: 13

Huang M 2023 (28) Improved MNet 53 5,438 CT DSC CTV: 88.28%

95% HD CTV: 3.2013

Jin S 2023 (30) UNet++ 228 NA MR DSC CTV: 78.6%

95% HD CTV: 3.779

Liu Z 2021 (37) Improvement of 
DpnUNet

237 NA CT DSC CTV: 88%

HD CTV: 3.46 

Zhang D 2020 (38) DSD-UNet 91 91 CT DSC HR-CTV: 82.9%

HD HR-CTV: 8.1

Shi J 2021 (39) RA-CTVNet 462 NA CT DSC CTV: 79.2%

Yi H 2021 (40) GML 87 NA CT DSC CTV: 81.6%

HD CTV: 5.672

Chang Y 2021 (41) Improved 3D UNet 400 NA CT DSC CTV: 88.2%

95% HD CTV: 6.853

Chang JH 2021 (43) 3D UNet and LSTM 51 136 CT DSC HRCTV: 87%

Ding Y 2022 (44) 3DV-net 130 NA CT DSC CTV: 85%

HD CTV: 11.2

Ju Z 2021 (46) Dense V-Net 133 NA CT DSC CTV: 82%

HD CTV: 1.86

Ma CY 2022 (47) VB-Net 535 NA CT DSC CTV: 70%

HD CTV: 22.44

Table 7 (continued)
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Table 7 (continued)

Author, year Method Number of patients Data volume Mode of image Evaluation metrics Result

Ma CY 2022 (48) Registration and VB-
Net

107 NA CT DSC CTV: 89%

HD CTV: 6.14 

Rhee DJ 2020 (49) 3DV-net and 2D FCN-
8s

NA 2254 CT DSC CTV: 86%

HD CTV: 2.02 

Jiang X 2021 (50) RefineNet 200 NA CT DSC CTV: 86.1%

HD CTV: 6.005

Xiao C 2022 (51) RefineNetPlus3D 313 44,222 CT DSC CTV: 82%

Berendsen FF  
2013 (54)

Registration 17 84 MR DSC CTV: 57%

HD CTV: 36

Mu W 2015 (83) FCM-LSGF 42 NA PET DSC CTV: 91.78%

HD CTV: 7.94

DSC, dice similarity coefficient; HD, Hausdorff distance; CTV, clinical target volume; NA, not applicable; CT, computed tomography; MR, 
magnetic resonance; HRCTV, high-risk clinical target volume; PET, positron emission tomography.

cancer segmentation at present, in order to verify the 
generalization of res module and SE module, as well 
as explore the application of transformer-based U-Net 
networks, we used a private data set from our lab to 
verify the performance of selected methods. The data set 
included CT images of 53 cervical cancer patients, which 
were divided into training set, validation set, and test set 
according to the ratio of 8:1:1. The experimental results 
are shown in Table 9. We have obtained similar conclusions 
as pervious reports. By adding residual structure and SE 
module on the basis of UNet, the accuracy of cervical 
cancer CTV segmentation can be significantly improved. 
However, when residual structure and SE module are added 
into UNet, the network segmentation result is lower than 
that of ResUNet. Therefore, the effective combination of 
residual structure and SE module should be determined 
according to the nature of the data set.

High precision of segmentation and low clinical 
availability
Evaluation metrics such as mean DSC and HD are 
objective and represent the degree to which geometrically 
modeled segmentation results resemble the underlying 
facts, providing good reproducibility but not incorporating 
physician judgment (37). Since the CTV boundaries of 
cervical cancer depend on the definition of other tissues and 
organs in a given region, its boundaries are not clear, and 

the CTV may contain regions such as lymph nodes. These 
areas are small but clinically important, but performance 
indicators such as DSC and HD treat these important areas 
as the same as other normal tissues. Although high DSC/
HD has been achieved in experiments, in clinical practice it 
may omit important regions and make the model much less 
valuable to effectively assess its accuracy and applicability 
in real clinical settings (19,37). Sartor et al. (19) achieved 
a quantitative assessment of 0.82 for CTV by DSC, but 
qualitative results suggest that CNN segmentation for 
CTV is mostly unacceptable in clinical settings. Therefore, 
physician assessment as well as Turing test are important for 
model evaluation.

Inaccurate dose calculation
The evaluation indexes of cervical cancer target area and 
organs at risk include dose indexes besides geometric 
indexes such as DSC and HD. Wang et al. (21) used 
dose metrics such as Dmean and V100 to measure the 
segmentation accuracy of the model, where Dmean was 
defined as the average dose received by the structure and 
V100 was defined as the volume of CTV receiving 100% 
of the prescribed dose. Their results showed that most of 
the segmentation contours were more accurate, and the 
radiotherapy dose met the clinical requirements, but for 
CTV the dose did not meet the clinical requirements and 
needed further correction by radiation oncologists. Chen 



Wang et al. Review of cervical cancer segmentation5198

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):5176-5204 | https://dx.doi.org/10.21037/qims-24-369

Table 8 Summary of performance of papers using DSC/HD as an evaluation index for segmentation of rectum in cervical cancer 

Author, year Method
Number of 

patients
Data  

volume
Mode of 
image

Evaluation 
metrics

Result

Wang Z 2020 (15) 3D ResUNet 125 NA CT DSC 81%

HD 7.04

Li Y 2022 (18) Atlas 140 140 CT DSC 68.5%

HD 2.508

Wang J 2023 (26) U-shaped network 60 NA CT DSC 86%

HD 2.52

Mohammadi R 2021 (35) ResUNet 113 NA CT DSC 96.6%

HD 1.96

Liu Z 2020 (36) Improvement of UNet 105 NA CT DSC 79.1%

HD 5.949

Zhang D 2020 (38) DSD-UNet 91 91 CT DSC 82.1%

HD 9.2

Chang JH 2021 (43) 3D UNet and LSTM 51 136 CT DSC 77%

Ding Y 2022 (44) 3DV-net 130 NA CT DSC 85%

HD 4.35

Ju Z 2020 (45) Dense V-Network 190 NA CT DSC 87%

HD 0.79

Rhee DJ 2020 (49) 3DV-net and 2D FCN-8s NA 2,254 CT DSC 81%

HD 1.66

Jiang X 2021 (50) RefineNet 200 NA CT DSC 85.8%

HD 12.273

Xiao C 2022 (51) RefineNetPlus3D 313 44,222 CT DSC 91%

Zabihollahy F 2021 (64) 3-D UNet and 3-D Dense UNet 181 283 MR DSC 87 %

Huang S 2021 (70) Improvement of UNet 87 84 MR DSC 78.1%

HD 11.775

DSC, dice similarity coefficient; HD, Hausdorff distance; NA, not applicable; CT, computed tomography; LSTM, long short-term memory; 
MR, magnetic resonance.

et al. (42) focused on the same point as Wang et al. (21),  
who used automatically segmented and manually segmented 
organ contours for treatment plan optimization to explore 
the dose differences between automatically segmented 
and manually segmented treatment plans for organs at 
risk and target areas. The results showed that the dose 
distribution in the target area was unaffected when 
automatically segmented organ contours were used to 
design the treatment plan, whereas the effect of automatic 

segmentation on OAR dose was complex and required 
physician modification if necessary. This suggests that 
DL-based methods do not produce accurate dosimetric 
endpoints in cohorts of cervical cancer patients compared to 
standard manual contour lines.

No public dataset
Since there are few studies on brachytherapy for cervical 
cancer, no published imaging datasets during brachytherapy 
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for cervical cancer have been seen in published papers, and 
all experiments have been performed with private datasets. 
However, because there is no uniform clinical standard for 
CTV and organs at risk segmentation in cervical cancer, 
the personal experience of different oncologists in their 
segmentation varies, leading to different results in their 
manual segmentation (90,91). In addition, the use of 
imaging equipment parameters, different image acquisition 
protocols and the diversity of tumor staging in different 
centers make the data appear variable. Chang et al. (41) 
found that the variation of data from the same hospital 
was less than that from different hospitals, and too much 
variation in the dataset made it difficult to generalize the 
model, so consistent segmentation criteria with a common 
dataset is important for measuring the accuracy of the 
model.

Conclusions

This paper summarizes the segmentation methods of 
cervical cancer and organs at risk based on three modality 
images and introduces the applicable segmentation methods 
for different images and the improvements between 
different methods. Accurate segmentation of cervical 
cancer target areas and organs at risk requires extensive 
clinical experience for clinicians. In practical applications, 
computer-aided segmentation to help doctors obtain 
accurate segmentation results of CTV and organs at risk 
can reduce a lot of marking work and variability for doctors, 
making radiotherapy planning more effective and reliable 
and avoiding irreversible damage to patients caused by 
overtreatment.

Although many methods have been proposed to achieve 
segmentation of CTV for cervical cancer, the complexity 

of CTV composition and image quality have prevented 
its segmentation from achieving higher accuracy. Among 
them, the best segmentation results were achieved by 
methods based on improved level sets. In addition, because 
the datasets were not uniform, which prevented meaningful 
comparisons between the model proposed in the article and 
other models, it is important to establish a standard and 
uniform public dataset for cervical cancer and organs at risk 
segmentation in the future.
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