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ABSTRACT
This work evaluated gene expression differences between a hanging-drop 3D 

NSCLC model and 2D cell cultures and their in-vivo relevance by comparison to 
patient-derived data from The Cancer Genome Atlas. 

Gene expression of 2D and 3D cultures for Colo699 and A549 were assessed using 
Affymetrix HuGene 1.0 ST gene chips. Biostatistical analyses tested for reproducibility, 
comparability and significant differences in gene expression profiles between cell 
lines, experiments and culture methods.

The analyses revealed a high interassay correlation within specific culture 
systems proving a high validity. 979 genes were altered in A549 and 1106 in Colo699 
cells due to 3D cultivation. The overlap of changed genes between the cell lines was 
small (149), but the involved pathways in the reactome and GO- analyses showed a 
high overlap with DNA methylation, cell cycle, SIRT1, PKN1 pathway, DNA repair and 
oxidative stress as well known cancer-associated representatives. Additional specific 
GSEA-analyses revealed changes in immunologic and endothelial cell proliferation 
pathways, whereas hypoxic, EMT and angiogenic pathways were downregulated. 

Gene enrichment analyses showed 3D-induced gene up-regulations in the cell lines 
38 to be represented in in-vivo samples of NSCLC patients using data of The Cancer 
Genome Atlas.

Thus, our 3D NSCLC model might provide a tool for early drug development 
and investigation of microenvironment-associated mechanisms. However, this work 
also highlights the need for further individualization and model adaption to address 
remaining challenges.

INTRODUCTION

Within recent years drug development was hampered 
by the high failure rate of substances in clinical trials [1–3]. 

This is partially caused by the lack of sufficient predictive 
preclinical models [4]. Therefore, there is a unmet need for 
biomarker research [3] and a major effort towards more 
relevant drug testing systems [5, 6]. 

                                                     Research Paper



Oncotarget112648www.impactjournals.com/oncotarget

Traditional monolayer cultures do not sufficiently 
reflect targeted drug responses at tissue levels [7] with 
various differing mechanisms, such as immunological 
process, epithelial mesenchymal transition (EMT), 
hypoxia and stemness [8]. Therefore, microtissues 
gained attention with their nutrient and oxygen gradients 
and microenvironmental factors including cell-to-cell 
interactions [9–12], thereby reflecting in-vivo tumor 
growth more reliably. Besides, their human origin, better 
cost effectiveness compared to animal models and reduced 
ethical issues favor this approach.

Hence, several 3D culture systems have been 
established, including scaffolds, matrix gels and hanging 
drops, each with distinct advantages and limitations 
[5, 12, 13]. 

The aim of our work was to highlight these 
differences in gene expression patterns between 2D and 
3D for NSCLC cell lines, their comparability, role in 
cancer-associated pathways and in-vivo relevance. 

Previous investigations stated relevant differences 
in gene expression profiles for several other cell lines 
cultured by different techniques, mainly scaffolds and 
matrix gels [11, 14–16]. 

For our work, the hanging drop model fulfilled our 
requirements to minimize external factors, such as the 
addition of growth factors and external matrices on the 
one hand, and to enable long-term cultivation and drug 
addition on the other. 

We tested two non-small-cell lung cancer cell lines, 
Colo699 and A549, for their differences in the mRNA 
expression profiles cultured in 2D or 3D with our prior 
established hanging drop lung cancer model [8]. 

RESULTS

We generated A549 and Colo699 microtissues 
using the hanging drop technology. The 2D cultured cells 
were harvested after 5 days, whereas 3D microtissues of 
Colo699 were harvested after 10 days and A549 after 5 
and 10 days, respectively.

The ten days of cultivation for 3D cultures were 
chosen based on our prior experience concerning 
microspheroid aggregation [8]. This was further evaluated 
and proven by light microscopic appearance, as well as 
viability tests for 3D cultures after 5, 7, 10 and 14 days by 
direct fluorescence staining and microscopic evaluation, as 
depicted in Figure 1A and 1B.

Cells were harvested, pooled and RNA isolation 
was performed for all cell lines and culture techniques 
followed by quality assessment, as indicated methods 
section. The chip analyses were run and raw data were 
processed following the procedures described within the 
statistical methods part.

A principal component analysis performed on the 
whole genome gene expression profiles revealed a clear 
separation of cell lines on principal component 1 (PC1) 

and culture techniques on principal component 2 (PC2) 
(see Figure 2).

The observable low interreplicate variability along 
with the above described differences between sample 
groups demonstrate robust data and the results confirm 
differences in gene expression profiles between culture 
techniques and cell lines.

Gene expression changes induced by cultivation 
technique

We next compared the gene expression profiles of 
cells cultivated in 3D cell cultures with those from cells 
cultivated in conventional 2D cultures. Thereby, 979 and 
1106 genes were identified to differ significantly in A549 
and Colo699 cells, respectively (see Table 1 for the 30 
most significantly altered genes in each cell line). 

The expression differences were highlighted in the 
volcano plots (Figure 3A) and the heatmaps for both cell 
lines (Figure 3B). 

Only a small overlap of regulated genes (149 genes 
in total) was identified between both cell lines (see Table 2 
for a list of the most relevant changes in both cell lines and 
Supplementary Figure 1), suggesting that these two cell 
lines respond differently to the 3D cell culture condition. 
To rule out a potential cut-off bias [18], we directly 
compared the responses to 3D cultivation of both cell 
lines. The large number of differentially regulated genes 
in this comparison (1672) confirmed the findings above. 
Thus, on the individual gene level, the responses differed 
considerably between the two cell lines.

Validation of multiarray data by RT-PCR

To validate the multi-array findings, we ran additional 
qPCR tests for specific genes, either up- or down-regulated 
in one of the cell lines. We confirmed up-regulation of F5 
and TM4SF4 and down-regulation of CA9 in the A549 cell 
line. Additionally, down-regulation of IGF1 was confirmed 
in the Colo699 cell line (see Figure 4 and Table 4). These 
data show reproducibility of our results.

In an additional analysis, we investigated the time-
dependent regulation of CA9 and IGF1 after 5, 7, 10 and 
14 days of cultivation in 3D. These data underline the 
morphological and viability assessments, as they suggest 
a stabilization of the spheroids after 10 days (Figure 4B).

Pathway and GO enrichment analyses

Next we performed Reactome Pathway and Gene 
Ontology (GO) Enrichment Analyses to identify the 
affected biological processes and pathways. We found 
42 and 59 reactome (Figure 5B; Supplementary Tables 2 
and 3) and 35 and 36 biological pathways (Figure 5C; 
Supplementary Tables 4 and 5) with significant enrichment 
in A549 and Colo699 cells, respectively. 
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Figure 1: Morphological and viability assessment of spheroids. Bright field microscopy and calcein AM (live cells) and ethidium 
homodimer-1 (dead cells) fluorescence staining of 3D spheroids of A549 cells (A; left) and Colo699 cells (B; right) show the most stable 
spheroid structure with a limited number of dead cells at 10 days of cultivation. 

Figure 2: Principal component analysis. Separation occurs between cell lines (Colo699: circles; A549: rectangles) and culture 
conditions (2D culture condition: open symbols; 3D: filled symbols). 2D cultures were cultivated for 5 days, whereas 3D cultures were 
harvested after 10 days with the exception of the samples indicated by diamonds, which represent A549 cells cultured in 3D for 5 days. 
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For both cell lines most of the genes were involved 
in DNA methylation and packaging, cell cycle, SIRT1, 
PKN1 pathways, as well as DNA repair and oxidative 
stress pathways (Figure 5). Although the overlap of 
differentially expressed genes was small, the overlap of 
enriched pathways and, to a lower extend, of biological 
processes was strikingly high (Figure 5A). The different 
culture conditions induced comparable changes in gene 
expression profiles for data aggregated over reactome or 
biological pathways in both cancer cell lines.

The 10 day microtissue culture time was chosen 
based on our prior experiments [8], where spheroid 
aggregation was observed to be most stable after 10 

days (Figure 1 and 4B). As some of the gene expression 
changes might be attributed to the different culture times 
prior harvesting (i.e. 5 days for 2D and 10 days for 3D 
culture), we additionally compared gene expression 
profiles of A549 cells cultivated for 5 days in 3D cultures 
with the corresponding 2D and 10 day 3D cultures. Thus, 
1321 genes were identified to be differentially expressed 
between 5 day cultivation in 2D and 3D, about half 
(632) of them were also differentially expressed between 
10 day 3D and 5 day 2D cultures. Although more gene 
expressions were altered after 5 days of 3D culture, these 
were significantly overrepresented in fewer biological 
pathways (15 compared to 42) and biological processes 

Table 1: 30 most significant gene regulations
A549 3D vs 2D culture Colo699 3D vs 2D culture

Gene FDR log2FC Gene FDR log2FC
CEACAM5 < 0.001 6,60 ADCY8 < 0.001 4,30
BPIFB1 < 0.001 6,30 CLEC1A < 0.001 4,10
BPIFA1 < 0.001 6,10 C12orf39 < 0.001 3,70
CATSPERB < 0.001 5,50 TENM2 < 0.001 3,50
FCGBP < 0.001 5,30 LINC00277 < 0.001 3,40
F5 < 0.001 4,90 RIMS1 < 0.001 3,40
TCN1 < 0.001 4,80 RP11–809H16.5 < 0.001 3,40
TSPAN1 < 0.001 4,60 TPD52L1 < 0.001 3,30
CEACAM6 < 0.001 4,50 METTL7A < 0.001 3,20
NOX1 < 0.001 4,50 ST8SIA1 < 0.001 3,10
ADH6 < 0.001 4,40 OCLN < 0.001 3,10
UGT2B15 < 0.001 4,30 SLC6A20 < 0.001 3,10
LYZ < 0.001 4,30 CD96 < 0.001 3,10
AQP3 < 0.001 4,20 MRGPRX3 < 0.001 3,00
CST1 < 0.001 4,10 ASS1 < 0.001 3,00
AGR3 < 0.001 4,00 COLEC12 < 0.001 2,90
GRHL3 < 0.001 4,00 IGF1 < 0.001 −3,80
LAMA4 < 0.001 3,80 MAP7D2 < 0.001 −3,60
FER1L6 < 0.001 3,80 OR4A16 < 0.001 −3,50
KCNJ2 < 0.001 3,70 GPR56 < 0.001 −3,50
ITIH2 < 0.001 3,70 SPP1 < 0.001 −3,50
C9orf152 < 0.001 3,60 MLPH < 0.001 −3,40
TM4SF4 < 0.001 3,60 U1 < 0.001 −3,20
GDA < 0.001 3,50 STON2 < 0.001 −3,10
IL33 < 0.001 3,50 PCDH17 < 0.001 −3,00
CFB < 0.001 3,50 GALNT3 < 0.001 −3,00
CDCP1 < 0.001 −3,20 ARHGAP28 < 0.001 −3,00
GREM1 < 0.001 −3,50 LMO3 < 0.001 −2,90
FAM129A < 0.001 −3,50 SULF1 < 0.001 −2,90
LOXL2 < 0.001 −4,20 CMKLR1 < 0.001 −2,90
The table lists the 30 most affected genes by 3D versus 2D cell cultivation for A549 and Colo699 (red: up-regulated, blue: 
down-regulated)
FDR is false discovery rate as used for the multiple testing correction of p-values according to the Benjamini Hochberg 
method; log2FC is log2 fold change.



Oncotarget112651www.impactjournals.com/oncotarget

(15 compared to 35) (Supplementary Tables 5–6). All of 
the enriched pathways and 66.6% of biological processes 
were also enriched in the comparison between 10 day 
3D and 5 day 2D cultures (Supplementary Figure 2). 

These results, in combination with our morphological 
assessments and viability measurements (Figure 1), 
as well as the qPCR data (Figure 4B) support that 3D 
cultures remain viable and adapt to culture conditions 

Figure 3: Gene expression differences. (A) The Volcano plots represent the differences in gene expression between 3D and 2D cell 
culture conditions for A549 (left) and Colo699 cells (right). The extent of the expression alterations are shown on the x-axis (M or log2 fold 
change value) against its significance on the y-axis (-log10 of the adjusted p-values). Genes in the light-grey rectangular regions are those 
defined as significantly altered. (B) The heat maps depicture differentially expressed gene profiles between 2D and 3D cultures for A549 
(left) (2D cultures (pink) after 5 days (blue) and 3D cultures (green) after 5 (blue) & 10 (red) days) and Colo699 (right) (2D cultures (pink) 
after 5 days (blue) and 3D cultures (green) after 10 days (red).
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after 10 days, whereas after 5 days this adaption was still 
ongoing. This was reflected by the larger perturbation in 
the gene expression profiles but lesser involved biological 
processes.

Specific gene signature enrichment analyses 
(GSEA)

Furthermore, specific gene signature enrichment 
analyses were run to investigate and depict up- or down-
regulation due to culture technique of clinically and 
scientifically hot topic pathways via xtools.gsea. For the 
A549 significantly up-regulated gene signatures included 
immunological/inflammatory pathways and endothelial 
proliferation (Figure 6A). Most of these pathways were 
also found to be up-regulated in Colo699, even though 
they did not reach significance. On the other side, 
unexpectedly several pathways, such as hypoxia, tumor 
invasion, p53-signaling, EMT and TGF-beta, as well as 
angiogenesis (Figure 6A) were down regulated in A549 
cells, with concordant findings in Colo699 for cell cycle, 
p53 signaling and hypoxia (Figure 6B).

In-vivo data comparison

Based on the hypothesis of this work that 3D cell 
cultivation not only alters the gene expression patterns, 
but also mimics the in-vivo situation more accurate, we 
identified patient derived data sets in The Cancer Genome 
Atlas (TCGA) of tumor versus normal tissue samples and 
metastatic samples versus primary tumors. 

We ran a gene set enrichment analysis for the 
regulated genes (> 2FC expression change) of our 3D to 2D 
comparison in these patient-derived data sets. For the A549 
cell line the 3D altered gene profile was compared to data 
from tumor versus normal tissues (n = 58) (Figure 7A). For 
the Colo699, due to their metastatic origin, we compared 
their profile to metastatic samples versus primary tumors 
(M0: n = 347, M1: n = 25) (Figure 7B). In both cases we 
were able to identify a statistical significant enrichment of 
our 3D-gene profiles in the in-vivo setting.

DISCUSSION

The frequent failures of targeted drugs in late 
drug development lead to the establishment of several 

Table 2: Concordant regulated genes for both cell lines
Gene expression changes 3D vs 2D

 A549 Colo699
Gene FDR log2FC FDR log2FC
EFCAB4B < 0.001 2,70 < 0.001 1,20
PDE3A < 0.001 2,20 < 0.001 1,80
UNC13A < 0.001 2,20 < 0.001 2,10
CEACAM1 < 0.001 1,30 < 0.001 2,50
PKDCC < 0.001 1,20 < 0.001 2,40
AZGP1 < 0.001 2,00 < 0.001 2,10
FAM129A < 0.001 −3,50 < 0.001 −1,50
RBM24 < 0.001 −2,70 < 0.001 −1,40
ZEB2 < 0.001 −2,50 < 0.001 −1,30
FOXM1 < 0.001 −2,30 < 0.001 −1,50
CDC20 < 0.001 −2,10 < 0.001 −1,70
FHOD3 < 0.001 −2,10 < 0.001 −1,90
JAG1 < 0.001 −2,10 < 0.001 −1,80
TNS1 < 0.001 −2,10 < 0.001 −2,60
CENPI < 0.001 −1,60 < 0.001 −2,50
GPNMB < 0.001 −2,00 < 0.001 −2,10
HAS2 < 0.001 −1,60 < 0.001 −2,00
GRIN2B < 0.001 −1,50 < 0.001 −2,00
The table describes the concordant altered genes in both cell lines (A549 and Colo699) with at least a 2-fold change in 
expression within one cell line. 
FDR is false discovery rate as used for the multiple testing correction of p-values according to the Benjamini Hochberg 
method; log2FC is log2 fold change.
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3-dimensional cancer models for more in-vivo like 
conditions. Several recent publications showed a 
difference in drug sensitivity for 3D models [5, 12, 17, 
18], suggesting of course that alteration in protein and 
RNA/gene expressions lead to drug resistance. 

Our work now confirms changes of RNA expression 
profiles in a hanging drop 3D culture system. 

The hanging drop model was chosen, as the system 
enables long time cultivation, repeated drug application 
and medium exchange in comparison to other 3D culture 
methods [5, 8]. In addition, no external influencing factors, 
such as growth factors or artificial skeleton/structures, 
need to be added in our system [19]. 

Our analyses proved a high reproducibility in three 
independent experiments providing a high validity for our 
results. 

For this work two adenocarcinoma cell lines, the 
A549, as primary-derived tumor cell line, and the Colo699 
with metastatic origin from pleural effusion were chosen. 
Thus, the primarily observed small overlap of changes in 
gene expression (see Supplementary Figure 2) and their 
clear separation within the component analyses (Figure 2) 
between these two tumor cell lines might reflect their 
difference in origin and over all tumor heterogeneity. 
This further supports the need for innovative drug testing 
systems reflecting individual tumors. 

Concerning the altered genes illustrated in Tables 2 
and 3 most have been described to play a role in cancer 

progression, invasiveness and metastases. For example the 
CEA-family with CEACAM 5 & 6 are well established 
tumor markers for CRC. Both were highly up-regulated 
in the A549 cell line during 3D cultivation and have 
been associated with cancer progression and metastases 
[20, 21]. Nevertheless, the pathway analyses revealed a 
down regulation for the tumor invasiveness in A549 cells. 
CEACAM 1 was also found to be up-regulated in both cell 
lines during 3D cultivation and described to be responsible 
for the angiogenic potential of lung cancers [22]. Others, 
such as the BPIFA1 have been associated with lung disease, 
as well as nasopharyngeal carcinomas [23]. F5, as part of 
the coagulation cascade, might be involved in the hyper-
coagulation in solid tumor patients and their prognosis [24].

Besides the small number of overlapping gene 
alterations between the cell lines, the thereby affected 
pathways showed a great overlap, suggesting the 
underlying molecular mechanisms to be more comparable 
for both cell lines.

Most of these regulated pathways are known key 
cancer pathways, underlining the importance of the 3D 
cultivation technique and supporting the results stated by 
others [25].

Besides growth and cell division affecting pathways, 
also epigenetic alterations including DNA methylation 
are affected. These changes are known to play a role in 
transforming processes during carcinogenesis and some of 
them are also described in lung cancer [26–29]. Several 

Figure 4: Validation of microarrays by qPCR. Specific up- and down-regulated genes between 2D and 3D were measured by qPCR in 
A549 and Colo699 cell lines (A) and time series for the down-regulated genes in A549 and Colo699 (B) were run to provide additional insights 
in gene expression changes due to cultivation time and underline the chosen time points for the microarrays (n = 3; error bars depict SD).
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Figure 5: Overlap and enrichment analyses of altered reactome and G0 biological pathways. (A) The venn diagrams represent 
the number of significantly enriched reactome pathways (left) and GO biological pathways (right) between 3D and 2D cell cultures for A549 
and Colo699 cells. (B and C) The enrichment analyses summarize the differentially expressed genes between 2D and 3D cultures according to 
reactome pathways (B) and GO biological pathways (C) for A549 (left) and Colo699 (right) cell lines, respectively.
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of the other altered pathways, such as DNA damage 
repair [30], rhoGTPase [31], Wnt/ß-catenin with PKN1  
[32, 33] and notch with SIRT1 [34–36] signaling 
pathways, are involved in cancerogenesis in general 
and described in lung cancers. They were associated 
with outcomes, invasiveness/aggressiveness and drug 
resistance. In particular, SIRT1 has been associated with 
poor prognosis in lung cancer patients [34]. The Wnt-
signalling pathway has been associated with rhoGTPase 
regulation [37] and notch signaling in lung cancer [38]. 
This highlights another indication for the usage of our 3D 
cell model – to investigate the cross talks of pathways – 
for example between wnt, rhoGTPase and notch signaling. 

In another analysis we focused on specific pathways 
with actual clinical relevance [39–41]. Thereby, the 
immunological pathways, endothelial proliferation and 
angiogenesis, hypoxia, invasiveness, EMT and TGF-beta, 
but also cell cycle and p53 signaling were found to be 

affected by 3D cultivation in our gene enrichment analyses. 
During the last years, especially the immune system and 
its alterations have become a hot topic for translational 
research with several new agents targeting tumor-immune 
system interactions [40, 41]. Thus, the up-regulation of 
the innate and adaptive immune response in A549 cells 
cultured in 3D is of major interest and suggests the use 
of the 3D culture system to address immunological issues 
and drug testing, as also stated for various applications by 
others [42]. Some of these described cancer pathways were 
found unexpectedly down-regulated in our 3D cultures. 
This includes EMT, hypoxia, angiogenesis and the p53 
pathway. These pathways are associated with tumor 
aggressiveness [43], invasion [44, 45] and drug resistance 
[46, 47]. Their down-regulations warrant mechanistic 
investigations with a more detailed examination of the 
role and impact of specific genes within these pathways. 
These findings also need to be considered in future works 

Figure 6: Gene signature enrichment analyses for specific pathways. The GEAs depict the enrichment of altered genes for specific, 
chosen hot-topic pathways in microspheroids of the A549 cell line (A) and Colo699 cell line (B) Red indicates in total an up-regulation of 
involved genes, whereas blue depicts an overall down regulation within the specific pathway. NES describes the normalized enrichment 
scores and FDR the false discovery rate.

Table 3: Summary of validation qPCR results
Microarray 2D/3D day 10

Cell line log2 FC
 A549 Colo699
  log2 FC Stabw  log2 FC Stabw

A549 4,9 F5 3,2 0,2 1,2 0,4
A549 3,6 TM4SF4 2,8 0,4 0,4 0,5
A549 −3,1 CA9 −3,8 0,1 −0,5 0,1
Colo699 −3,8 IGF 0,7 0,2 −2,8 0,1
The table summarizes the results of the validation qPCRs, depicting the log2 ΔΔCT values for each cell line (right) in 
comparison to the original microarray data (left).
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and suggest bigger spheroids to induce hypoxia or co-
culture models with fibroblasts and/or endothelial cells. By 
these co-cultures a denser spheroid structure and cell-cell 
interactions can be achieved. These play an important role 
in EMT and hypoxia [48, 49]. 

In addition, changes in proliferation due to 
differences between outer and inner zones might contribute 
to gene regulation. Nevertheless, the expression of ki67 
was low in A549 monocultures and evenly distributed in 
the Colo699 microtissues, as shown before. Hence, the 
confounding effect of various proliferation zones seems 
limited in these cultures and might as well occur in in-vivo 
samples. 

Several other groups have investigated other 3D cell 
culture models [13, 50, 51]: In contrast to our findings, 
analyses of A549 cells cultured in matrigel showed no 
differences in DNA repair mechanisms [14] and a down 
regulation of the immune response and complement 

system in GO analyses. Nevertheless, other findings of 
this work were concordant, such as the down-regulation 
of NFkappa B [15]. 

This underlines the influence of the used culture 
technique and culture duration, as these works used 
different time points for their analyses (4 days or 15 days, 
respectively). The influence of cultivation duration was 
also indicated in our comparison of 5 versus 10 days, even 
though the differences in affected pathways analyses were 
limited. Furthermore, matrigel is an artificial ECM enriched 
with growth factors and thereby induces signaling cascades 
that are not activated in the hanging drop technology. 

These issues should be regarded in future 
microtissue applications and investigations.

In summary, our experiments highlight the relevance 
of a 3D cultivation technique, but also warrant further 
investigations based on the high variability of the gene 
expressions between these two cell lines, as well as the 

Figure 7: Gene set enrichment analyses 3D versus in-vivo tumor samples. The enrichment plots depict gene set enrichment 
analyses of 3D vs 2D up-regulated genes (at least 2FC) in comparison to published NSCLC patient derived data from The Cancer Genome 
Atlas. For the A549 the regulated gene profiles of the 3D system were tested for their enrichment in tumour tissues compared to normal 
tissues (LUAD data set; n = 58) (A), whereas in the analyses of Colo699 the 3D profile was compared to changes between metastases and 
primary tumours (B). 

Table 4: Sequences of primer pairs for qPCR analysis
Gene name Forward primer Reverse primer

IGF1 5′-ATGTGACATTGCTCTCAACA-3′ 5′-GCATCTTCACCTTCAAGAAATC-3′
CA9 5′-TTTGAATGGGCGAGTGATT-3′ 5′-AGGAATTCAGCTGGACTGG-3′
F5 5′-GACATCGCCTCTGGGCTAAT-3′ 5′-GATGTCTGCTGCCCTCTGTA-3′
TM4SF4 5′-GCGATTTGCGATGTTCACCT-3′ 5′-AAGGGGTAGCCCCATGTACT-3′
18SRNA* 5′-GTTGGTGGAGCGATTTGTCT-3′ 5′-GGCCTCACTAAACCATCCAA-3′
*House keeping gene.
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partially unexpected down regulations, for example within 
hypoxic and EMT pathways. These findings in combination 
with our in-vivo comparisons support the importance of such 
models in mechanistic studies and early drug development 
in general to close the gap between in-vitro and in-vivo 
conditions, but underline the need to individualize and 
consider potential limitations of each model. 

MATERIALS AND METHODS

Cell culture 

The human non-small cell lung cancer cell line 
Colo699 (DSMZ, ACC196) and A549 (DSMZ, ACC-
107), which were authenticated using STR-profiling (see 
Supplementary Table 1) were used.

Cells were either cultivated as monolayers in 
standard 12-well plates (PAA laboratories GmbH, 
Germany) or in the later described 3D system. 
DMEM low glucose (Lonza Group AG-REG, Swiss) 
supplemented with 10% fetal calf serum (FCS) (Sigma-
Aldrich, Germany) and 100 U/ml penicillin, 100 mg/
ml streptomycin solution, 2 mM L-Glutamine (PAA 
laboratories GmbH, Germany) was used as medium for 
2D and 3D cultivation. 

For RNA isolation 75,000 cells were cultivated in 12 
well plates for 5 days, or 96 spheroids were pooled after 5 
or 10 days, respectively. Their morphological appearance 
(spheroid formation) was assessed via light microscopy 
prior to pooling to exclude dead or unformed spheroids 
(see also Figure 1A). 

Microtissue culture 

Spheroids were grown in the Gravity-PLUSTM 
microtissue culture system (InSphero AG, Zurich, 
Switzerland), as described earlier [8]. In short, 2,500 
tumor cells from subconfluently 2D-grown cells (A549, 
Colo699) were seeded in the hanging drop plates. 
Therefore, 2D grown cells were detached with accutase 
(PAA laboratories GmbH, Germany) for five minutes at 
37°C. After dilution with medium cells were counted and 
seeded in 40 µl drops at a density of 2,500 cells/drop.

Both, cells and microtissues were cultivated at 
37°C in a humidified 5% CO2-containing atmosphere. 
Morphological appearances of the A549 and Colo699 3D 
microtissues were controlled via an Olympus IX70 (Japan) 
inverted light microscope.

Morphological and viability assessment

The LIVE/DEAD® Viability/Cytotoxicity Kit for 
mammalian cells“ (Thermo Fisher Scientific, USA) was 
performed according to manufacturer‘s instructions 
with some adoptions for our 3D cell culture system 
to stain for live and dead cells in our spheroids in the 

hanging drop on day 5, 7, 10 and 14. Stock solutions 
from calcein AM (CaAM, 4 mM, dye for live cells) and 
ethidium homodimer-1 (EthD-1, 2 mM, dye for dead 
cells) were diluted together with PBS (Lonza, Germany) 
to concentrations of 15 µM (CaAM) and 20 µM (EthD-
1). In the next step, 20 µL of media were removed from 
the hanging drop and replaced with 20 μL of the staining 
solution. The final concentration for CaAM was 7.5 µM 
and for EthD-1 10 µM. After an incubation time of 1 
hour at 37°C, stained spheroids were analyzed using the 
DMi8 inverted microscope (Leica, Germany) with the 
LAS X 1.1.0 software (Leica, Germany) (magnification: 
100x). Single stainings of spheroids were used to 
establish concentration of dyes and settings for the 
microscope.

RNA isolation and quality assessment

To demonstrate RNA expression differences, cells 
cultured in the 12-well 2D setting for 5 days, as well as 
those cultured in the 3D hanging drop system for five and 
ten days, were harvested and washed with PBS. Total RNA 
was isolated from pooled spheroids (96 spheroids/RNA 
isolation) and cells (75,000/well) using the Trizol protocol 
(TriReagent, Sigma Aldrich T9424). Quantity and integrity 
of RNA were assessed by optical density measurements 
using the nanodrop system (ThermoScientific Nano Drop 
2000) and the 2100 Bioanalyzer (Agilent Technologies, 
Palo Alto, CA) according to the manufacturer’s protocols. 
RNA samples with a 260/280 ratio > 1.85, a 230/260 ratio 
> 2.0 and RIN-values between 9.7 to 10 were used in 
subsequent analyses. 

Affymetrix chip analyses

The whole-genome gene expression data set 
consisting of in total 15 microarrays (3 replicates per 
sample group) was generated at the Expression Profiling 
Unit of the Medical University of Innsbruck. In brief, 
250 ng of high quality RNA per sample were processed 
using standard protocols employing the Affymetrix 
GeneChip WT Expression kit and Terminal labelling 
kit. The resulting biotinylated targets were hybridized 
to Affymetrix HuGene 1.0 ST microarrays, which, after 
staining in an Affymetrix fluidic station, were scanned in 
an Affymetrix scanner 3000. 

All further analyses were performed in R (version 
3.2.2) using packages from the Bioconductor project 
(version 3.2) [52]. Pre-processing of the raw microarray 
data was performed as described before [53]. In brief, 
pre-processing was performed using the general gcrma 
package [54] and employing a custom CDF that defines 
a probe set for each transcript of all genes defined in 
Ensembl version 75. Raw and pre-processed data have 
been deposited in the Gene Expression Omnibus (GEO, 
accession number: GSE78210). 
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These data are accessible by using the following 
link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?tok
en=ovcpsumanzivlsf&acc=GSE782369 10.

Differential expression analysis was performed 
using the limma package [55].The resulting p-values 
were adjusted for multiple hypothesis testing according 
to the Benjamini and Hochberg method [56]. Genes 
with an average M-value larger than 1 (more than 2-fold 
regulated) and an adjusted p-value smaller than 0.01 (1% 
false discovery rate) were considered to differ significantly 
in their expression.

Quantitative RT-PCR analysis to validate 
microarray results

To validate results of the microarray experiments, 
four significantly regulated genes were tested in additional 
qPCR analyses. Total mRNA was isolated, as described 
earlier from pooled microspheroids of three independent 
experiments. Genomic DNA in the RNA samples was 
digested with DNAse I (New England Biolabs). The 
cDNA was amplified from 1 µg total RNA using the 
SuperScript II Reverse Transcriptase Kit (Invitrogen Life 
Technologies). Quantitative real time polymerase chain 
reaction (RT-PCR) was performed using a SensiMix 
SYBR No-ROX Kit (Bioline), a Rotor-Gene 6000 
detection system (Corbett Research) and sets of gene-
specific primers (Table 1). The target-specific primers 
were generated using the NCBI Primer-BLAST. Ct 
values were determined using the Rotor-Gene 6000 Series 
Software 1.7. Expression ratios were calculated using the 
ΔΔCt-method. As reference gene, 18S-rRNA was chosen. 

Pathway and Gene Ontology enrichment 
analysis

We employed the hypergeometric testing framework 
of Bioconductor’s Category and GOstats packages [57] to 
identify pathways or biological processes with a significant 
enrichment of differentially expressed genes. All genes 
detectable on the microarray were used as background gene 
set as suggested by Rhee et al. [58] and the conditional test 
[57] was used for the gene ontology analysis to enrich for 
more specific terms/biological processes. The resulting 
p-values were adjusted using the Bonferroni method and 
all pathways or biological processes with a p-value smaller 
than 0.05 were considered to be significantly enriched. 
Reactome pathway definitions and Gene Ontology 
annotations used Bioconductor’s reactome.db (version 
1.54.1) and GO.db (version 3.2.2).

Gene set enrichment analyses (GSEA)

We pre-ranked genes for the A549 and the Colo699 
cell line based on differential expression between 3D 
and 2D cultures by log2 fold changes. To identify which 

gene sets of the major cancer pathways are enriched 
in the 3D vs 2D cell culture, we applied the GSEA 
software [59] (Broad Java web start implementation) 
on these pre-ranked gene lists using designated gene 
sets (hallmark collection from the molecular signature 
database (MSigDB) and other common cancer signatures/
signaling pathways). Standard settings with 1000 runs 
of gene permutations were employed. To compare the 
different gene expression between the 3D and 2D culture 
to in vivo profiles we downloaded RNAseq data (level 3 
RNAseq V2) from LUAD samples of The Cancer Genome 
Atlas (TCGA) via Firehose/Firebrowse. Differential gene 
expression for paired tumor and normal samples (n = 
58) and for metastatic samples (M1; n = 25) versus none 
metastatic samples (M0; n = 347) were determined using 
DESeq2 [60]. We tested the up-regulated genes (> 2FC) 
from A549 3D vs. 2D culture, using the same procedure 
described above, for their enrichment in this pre-ranked 
gene list from tumor versus paired normal tissue. As 
Colo699 originate from metastatic cancer the significantly 
up-regulated genes (> 2FC) were compared to the pre-
ranked gene list of differentially expressed ones between 
metastatic vs. none metastatic samples. Customized R 
scripts were used for all further visualizations.

CONCLUSIONS

Anticancer drug development is moving towards 
individualized biomarker-driven therapy, which urges the 
need for models reflecting in-vivo conditions. 

Microtissues with their tumor microenvironment 
are known to partially meet these requirements [17] along 
with extended cultivation and incubation times.

With this work, we proved data concerning relevant 
alterations in gene expression between 2D and 3D cultivation 
methods. The found differences affect most relevant cancer-
associated and resistance-mediating pathways, even though 
some warrant future mechanistic investigations. The genes, 
which were altered by our 3D culture techniques, were 
enriched in patient-derived data of The Cancer Genome 
Atlas, underlining the potential of this model. 
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