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,is paper presents a methodology for synchronizing noisy and nonnoisy multiple coupled neurobiological FitzHugh–Nagumo
(FHN) drive and slave neural networks with and without delayed coupling, under external electrical stimulation (EES), external
disturbance, and variable parameters for each state of both FHN networks. Each network of neurons was configured by
considering all aspects of real neurons communications in the brain, i.e., synapse and gap junctions. Novel adaptive control laws
were developed and proposed that guarantee the synchronization of FHN neural networks in different configurations. ,e
Lyapunov stability theory was utilized to analytically derive the sufficient conditions that ensure the synchronization of the FHN
networks. ,e effectiveness and robustness of the proposed control laws were shown through different numerical simulations.

1. Introduction

Generally, synchronization emerges when two or more
dynamical systems have strong enough coupling strength
[1–3]. In 1990, Pecora and Carroll presented a pioneer study
to understand the mechanism of synchronization by con-
sidering neuronal activities as chaotic systems [4]. ,e
synchronization phenomenon has fascinated, attracted, and
motivated researchers to investigate and explore the func-
tionality of the biologically complex brain and to understand
the synchronized neural firing [5]. Neuronal firing and
bursting with synchronization are essential for healthy brain
activities, such as decision making, executing commands,
and sending/receiving information by neurons [5–7].

Over the last few decades, several researchers have studied
various synchronization schemes and methodologies for
chaotic systems [8–14]. Among these, lag synchronization,
defined as the drive and response system that can achieve
synchronization with a positive constant time lag, is a fasci-
nating phenomenon and has been observed in electronic
circuits, neuronal communications, and lasers [13, 15–20]. In
many real-life scenarios, it is required to synchronize the re-
sponse system at a lag with the drive system rather than at the
same time owing to the limited transmission speed of signals
[21–24]. For instance, in a cellular communication system, the
voice from the transmitter side at time t is heard at t+τ time at
the receiver side [21, 23].,erefore, how to efficientlymake two
chaotic systems achieve lag synchronization is a critical topic
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that requires comprehensive investigation. Furthermore, time
delays are observed in most biological systems. Due to the
existence of synaptic gaps, delay plays a key role in the syn-
chronous operation of coupled neurons [25]. ,e finite
transmission speed of the membrane potential along the
neurons’ axons and time gaps due to synaptic (information
transmission) and dendritic (reception) processes between
neurons produce time delays in neuronal communications
[26]. It is previously shown that the unmyelinated axons can
cause a reduction in the transmission speed of the neurons that
could result in significantly high time delays (as high as 80m/s)
in communications between neuronal networks [27, 28].,us,
it is essential to include these time delays in mathematical
modeling and analysis to better understand the communica-
tion dynamics of neurons and their networks [29, 30]. Previous
studies have also shown that many factors including coupling
delays, connection configuration, and noise can affect the firing
dynamics of neurons. For instance, a recent study uncovered
that synchronized neuronal firing could be influenced by the
coupling delays present in the chemical or electrical synaptic
connections [31, 32]. Furthermore, many previous studies have
used neuroimaging systems to show that different brain net-
works are functionally connected, and they may have single or
multiple couplings, i.e., a neuronal network may have con-
nections with one or more other neuronal networks
[13, 26, 33–38]. On the other hand, a single neuron hasmultiple
axon terminals and dendrites that allow single or multiple
connections with other neurons [39].

Taking into account, numerous efforts have been made in
recent years to study the lag synchronization of delayed neural
networks and chaotic systems [13, 19, 21–24, 40–44]. For
example, the authors of [19] investigated the lag synchroni-
zation control for memristor-based delayed coupled neuronal
networks with mismatched parameters. In [23], periodically
intermittent control was used to study the effect of parameter
mismatch on lag synchronization of coupled delayed systems.
In [21], periodically intermittent control was utilized to explore
the exponential lag synchronization for neural networks with
mixed delays. In [44], adaptive control was designed to in-
vestigate the lag synchronization for competitive neural net-
works with mixed delays and uncertain hybrid perturbations.
In [43], the adaptive lag synchronization of Cohen–Grossberg
neural networks with discrete delays was discussed. In addition,
several researchers have utilized neuronal models without and
with time delays incorporated in gap junctions to analyze and
understand the lag synchronization in neurons.
[5, 13, 22, 26, 31, 34, 37, 45–53] Among different models, the
FitzHugh–Nagumo (FHN) neuronal model under the effect of
external electrical stimulation (EES) was a favorable choice due
to its medium complexity and a very close approximation of
real neuronal systems. For instance, our recent study investi-
gated and developed control schemes that guarantee the lag
synchronization of unidirectional and bidirectional time-
delayed ring-structured FHN neuronal systems in the presence
and absence of noise [13]. Bin Zhen et al. considered two
coupled FHN neurons and developed a variation of energy
algorithm under the condition of no delay in time for com-
munication to resolve the synchronization of neurons [54]. In
another study, Mao et al. presented the analysis of the

synchronization of two time-delayed FHN neurons to un-
derstand the root causes behind the evolution patrons and
complex characteristics in neurobiological systems [55].
Muhammad Siddique et al. presented an adaptive approach by
utilizing the Lyapunov Krasovskii functional to investigate the
synchronization in a bounded variable time-delayed system
with external disturbances [49].

In past research, researchers have investigated the inter-
action between neurons and their networks in different brain
regions using techniques like neuroimaging systems [56–59]
and used computational models to predict the complex dy-
namics of neurons [60, 61] and showed that noise plays an
important role in the dynamical functionality of the neurons
and their networks [62, 63].,e fundamentals of the noise and
delay in the communication of neuronal networks are still
ubiquitous but they have a very strong implication for the
functionality of neurons and their networks and in general, the
synchronized functionality of the brain [64, 65].,e noise has a
tremendous effect as amplification of the weak neuronal signal
and therefore enhances the detection of useful information in
the signal [64].,e addition of noise in such networks/systems
has unveiled hidden facts such as the development of the
stochastic methodology to understand respective resonance
[66], noise sustained synchronization [67], vibrational reso-
nance [68, 69], chaotic resonance [70], and coherent-resonance
[71] in nonlinear dynamical systems. ,e presence of noise in
neuronal networks enforces the neurons to optimize their
firing patterns which are essentially required for communi-
cations [72]. It is therefore concluded that the addition of noise
in the neuronal network under time-delayed characteristics will
create a more realistic picture with the cost of complexity. ,is
also results in a challenging investigation of the synchroni-
zation process considering the drive and salve networks.

In the light of the above, this paper presents a meth-
odology for lag synchronization of noisy and nonnoisy
multiple coupled neurobiological FitzHugh–Nagumo
(FHN) master and slave networks with and without delayed
coupling, under EES, external disturbances, and different
parameters for each state of the networks. Each drive and
slave network contains n coupled neurons and all neurons in
both networks are connected with other neurons of the same
network via synapse and there is a special junction to
communicate with target cells. ,e interactions between
neurobiological coupled neurons, namely, the coupling
junctions, have a great impact on the dynamical properties
of the neurobiological network. ,erefore, such configura-
tion shows more challenging and intriguing dynamical
characteristics and more intricate dynamical behavior than
two, three, or n neurons within the same network. Various
novel and diverse control schemes are proposed for both
multiple coupled neurobiological networks under different
scenarios. ,ese scenarios may conclude neuronal networks
with and without time delays for both drive and slave
networks in addition to the absence/presence of noise. Using
the theory of the Lyapunov stability, we derived the nec-
essary and sufficient conditions that ensure the synchro-
nization of both multiple with and without delay coupled
FHN neurobiological networks. Furthermore, the proposed
diverse control laws have been verified by using five neurons
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of each network in both neurobiological networks of coupled
FHN neurons under the conditions of (with/without) ex-
ternal noises through numerical simulations. Figure 1 shows
the general configuration of FHN networks.

,e rest of the article is organized as follows. ,e model
formulation of noisy and nonnoisy FHN multiple neuro-
biological networks and designing of adaptive controllers are
briefly described in Section 2. In Section 3, numerical results
are presented.,e conclusions have been summarized in the
last section.

2. Model Formulation of Noisy and Nonnoisy
FHN Multiple Neurobiological Networks

,is section describes the formulation of the synchroniza-
tion problem for two multiple neurobiological noisy and
nonnoisy FHN networks with and without delay in gap
junctions under EES. Different parameters for each state of
both FHN networks are considered. Consequently, four
different multiple neurobiological networks with nonnoisy
and noisy FHN neurons are formulated and utilized for the
exploration of synchronization phenomena in coupled
neural networks. Each network formulated in each case
consists of n neurons.

2.1. FHN Multiple without Delay Neurobiological Networks.
In this section, multiple neuronal models are mathematically
expressed without introducing a delay in the gap junctions
dynamics, but noisy and nonnoisy networks are considered.

2.1.1. Multiple without Delay Neurobiological Nonnoisy FHN
Networks. Let us consider nonnoisy multiple FHN neuro-
biological nondelayed networks each composed of n neu-
rons. Mathematically,

_xi1 � xi1 xi1 − 1( 􏼁 1 − ri1xi1( 􏼁 − xi2

+ 􏽘
n

j�1
gijxj1 + Ii1 + di1 + uxi1

,

_xi2 � bi1xi1 − ci1xi2 i � 1, 2, 3, . . . , n,

(1)

_yi1 � yi1 yi1 − 1( 􏼁 1 − ri1yi1( 􏼁 − yi2

+ 􏽘

n

j�1
gijyj1 + Ii1 + di1 + uyi1

,

_yi2 � bi1yi1 − ci1yi2,

(2)

where xi1, ∈ R represents membrane-potential and xi2 ∈ R
the recovery-variable of the ith neuron of neurobiological
FHN drive network, respectively, where yi1 ∈ R represents
membrane-potential and yi2 ∈ R the recovery-variable of
the ith neuron of neurobiological FHN slave network,

respectively, ri1, bi1, and ci1 are positive parameters, Ii1 �

(A/ω)cos(ωt) is the EES with frequency ω and A amplitude,
di1 is the ionic gate disturbance, uxi1

and uyi1
is the ith control

parameter of the drive and slave networks respectively, and
G � (gij)N×N representing the topology of the network and
is known as coupling matrix whose elements are defined as
below:

gij �

gij ≥ 0, if i↔j,∀i≠ j,

gij � 0, if i↔j,∀i≠ j,

gij � − 􏽘
N

j�1

j≠ i

gij ∀i≠ j.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

In addition, we assumed that I11 � I21 � · · · � In1.

2.1.2. Multiple without Delay Neurobiological Noisy FHN
Networks. Let us consider noisy multiple FHN neurobio-
logical nondelayed networks composed of n neurons.
Mathematically,

_xi1 � xi1 xi1 − 1( 􏼁 1 − ri1xi1( 􏼁 − xi2

+ 􏽘
n

j�1
gijxj1 + Ii1 + di1 + ξi1,

_xi2 � bi1xi1 − ci1xi2 i � 1, 2, 3, . . . , n,

(4)

_yi1 � yi1 yi1 − 1( 􏼁 1 − ri1yi1( 􏼁 − yi2 + 􏽘
n

j�1
gijyj1

+ Ii1 + di1 + ξi1 + uyi1
,

_yi2 � bi1yi1 − ci1yi2,

(5)

where ξi1 is the Gaussian noise [13] sources having zero
mean and correlation function:

〈ξi1(t)ξi1 t′( 􏼁〉 � 2 Dδ t − t′( 􏼁. (6)

2.1.3. Nonlinear Control Design for Multiple without Delay
Neurobiological FHN Networks. ,e error states of the
neurobiological FHN systems formulated in equations (1)
and (2) and (4) and (5) can be designed as follows:

exi1
�

xi1 − yi1

2
,

eyi1
�

xi2 − yi2

2
.

(7)

Taking the derivative of the error system (7) with respect
to time, we can obtain
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� −
1
2
r

x
3
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2
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x
2
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2
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x
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⋮

x
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Figure 1: Schematic diagram showing a general configuration of coupled neurobiological FitzHugh–Nagumo (FHN).
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where ui1 � uxi1
− uyi1

. Now, let us define the following terms
for simplification:

ex1 � ex11
ex21

. . . exn1􏽨 􏽩
T
,

ey1 � ey11
ey21

. . . eyn1􏽨 􏽩
T

,

cd � x3
11 − y3

11 x3
21 − y3

21 . . . x3
n1 − y3

n1􏼂 􏼃
T
,

sd � x2
11 − y2

11 x2
21 − y2

21 . . . x2
n1 − y2

n1􏼂 􏼃
T
,

G � gij􏼐 􏼑
N×N

,

u � u11 u21 . . . un1􏼂 􏼃
T
,

(9)

where ex1, ey1, cd, sd, u ∈ RNx1,G ∈ RNxN, and T represents
the transpose operator. As a result, (8) can be written as
follows:

_ex1 � −
1
2
rcd +

1
2
(1 + r)sd − ex1 − ey1 + Gex1 + u,

_ey1 � bex1 − cey1.
(10)

It can be concluded that the problem of synchronization
is substituted with the synchronized error system (10) with
the requirement to stabilize by using a suitable control input
u. Synchronization can be achieved by designing the con-
troller u such that for any initial conditions ex1 and ey1
converge to zero. ,is implies that the dynamics of the slave
system (2/5) can converge to that of the drive system (1/4).

Next, the Lyapunov stability and adaptive control the-
ories are utilized to design a unique and simple control
scheme that will guarantee the synchronization of the
coupled FHN neurobiological without delay networks.

Theorem 1. Consider the nonnoisy/noisy multiple FHN
neurobiological nondelayed networks described in equations
(1) and (2) and (4) and (5) with the error dynamics described
by equation (8). If the control laws in the error system de-
scribed by equation (10) are designed as ui1 � 2ex1(gi1+􏽮

(A/w)sin(wt) + bi1 + ci1) − 2ey1(gi2 − (A/w)cos(wt) − bi1 −

ci1)} then the synchronization of the nonnoisy/noisy multiple
FHN coupled neurobiological non-delayed networks can be
achieved.

Proof. ,e proof of this theorem and sufficient conditions
that ensured the synchronization can be obtained using the
theory of the Lyapunov stability. According to the theory of
the Lyapunov stability, the stability of a system can be proved
by choosing a positive definite function called as the Lya-
punov function candidate V. In this study, it is chosen as
follows:

V �
1
2

e2x1 + e2y1􏼐 􏼑, (11)

dv/dt< 0 for all t.
It is easy to verify that the chosen candidate function V is

a positive definite function. After taking the time derivative
of (11), we obtain the following:

_V � eT
x1

_ex1 + eT
y1

_ey1y1. (12)

Incorporating the synchronized error system (8) and the
control laws into (12) yields the following:

_V �

eT
x1

−
1
2
rcd +

1
2
(1 + r)sd − ex1 − ey1 + 2Gex1 + 2ex1 gi1 +

A

w
􏼒 􏼓sin(wt) + bi1 + ci1􏼒 􏼓

− 2ey1 gi2 −
A

w
􏼒 􏼓cos(wt) − bi1 − ci1􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+eT
y1 bi1ex1 − ci1ey1􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (13)

_V �

−
1
2
reT

x1
cd +

1
2
(1 + r)eT

x1
sd − eT

x1
ex1 − eT

x1
ey1 + 2eT

x1
Gex1 + 2eT

x1
ex1gi1+

2eT
x1ex1

A

w
􏼒 􏼓sin(wt) + 2eT

x1ex1bi1 + 2eT
x1ex1ci1 − 2eT

x1ey1gi2 + 2eT
x1ey1

A

w
􏼒 􏼓cos(wt)

+2eT
x1
ey1bi1 + 2eT

x1
ey1ci1 + bi1e

T
y1
ex1 − ci1e

T
y1
ey1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Now,
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eT
x1sd � ex11

ex21
. . . exn1􏽨 􏽩

x11 + y11( 􏼁ex11

x21 + y21( 􏼁ex21

⋮

xn1 + yn1( 􏼁exn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ ex11
ex21

. . . exn1􏽨 􏽩

x11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + y11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑ex11

x21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + y21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑ex21

⋮

xn1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + yn1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑exn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Moreover, it is known that neurons have bounded
trajectories i.e., system (1) and (2) and (4) and (5) are
bounded with some positive constant qxi

and qyi
satisfying

|xi1|≤ qxi
and |yi1|≤ qyi

, ∀i � 1, 2, 3 . . . , n. Additionally, as-
suming that q1 � max(qxi

+ qyi
; i � 1, 2, 3 . . . , n), (15) results

into

eT
x1sd ≤ q1e

T
x1ex1. (16)

Correspondingly,

eT
x1cd ≤ q2e

T
x1ex1. (17)

Incorporating (16) and (17) into (14) gives

_V≤ −

eT
x1ex1

1
2
r −

1
2
(1 + r) + I − 2G − 2gi1 − 2

A

w
􏼒 􏼓sin(wt) − 2bi1 − 2ci1􏼒 􏼓

+eT
x1
ey1 I + 2gi2 − 2

A

w
􏼒 􏼓cos(wt) − 2bi1 − 2ci1􏼒 􏼓

− bi1e
T
y1Iex1 + ci1e

T
y1Iey1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

where I ∈ RN×N, is the identity matrix,

_V(t) ≤ − EPET
, (19)

where E �
ex1
ey1

􏼢 􏼣 and P �

1/2r − 1/2(1 + r) + I − 2G − 2gi1
− 2(A/w)sin(wt) − 2bi1 − 2ci1

􏼠 􏼡
I + 2gi2 − 2(A/w)cos(wt)

− 2bi1 − 2ci1
􏼠 􏼡

− bi1I ci1I
􏼢 􏼣.

It can be concluded that the matrix P should be a positive
definite to ensure the asymptotic stability of the synchro-
nized error system (10) at the origin. ,e positive defi-
niteness of P could be easily derived for considered networks
of neurons (e.g., a network of five neurons) using themethod
of determinants, i.e., determinants of all leading principal
minors have positive values [5]. Accordingly, the origin of
the error system (10) is asymptotically stable. Consequently,
these networks of n-identical neurobiological FHN neurons,
under ionic gates disturbance, EES, and with and without
external noise will achieve synchronization. ,is completes
the proof. □

2.2. FHN Multiple Delayed Neurobiological Networks.
Multiple neurobiological noisy and nonnoisy FHN networks
are modeled with delays in gap-junction dynamics.

2.2.1. Multiple Delayed Neurobiological Nonnoisy FHN
Networks. Let us consider nonnoisy multiple FHN neuro-
biological delayed networks composed of n neurons.
Mathematically,

_xi1 � xi1 xi1 − 1( 􏼁 1 − ri1xi1( 􏼁 − xi2

+ 􏽘
n

j�1
gijxj1 t − τ1( 􏼁 + Ii1 + di1 + uxi1

,

_xi2 � bi1xi1 − ci1xi2 i � 1, 2, 3, . . . , n,

(20)

_yi1 � yi1 yi1 − 1( 􏼁 1 − ri1yi1( 􏼁 − yi2

+ 􏽘
n

j�1
gijyj1 t − τ2( 􏼁 + Ii1 + di1 + uyi1

,

_yi2 � bi1yi1 − ci1yi2.

(21)

2.2.2. Multiple Delayed Neurobiological Noisy FHN
Networks. Let us consider noisy multiple FHN neurobio-
logical delayed networks composed of n neurons.
Mathematically,

_xi1 � xi1 xi1 − 1( 􏼁 1 − ri1xi1( 􏼁 − xi2

+ 􏽘
n

j�1
gijxj1 t − τ1( 􏼁 + Ii1 + di1 + ξi1,

_xi2 � bi1xi1 − ci1xi2 i � 1, 2, 3, . . . , n,

(22)

_yi1 � yi1 yi1 − 1( 􏼁 1 − ri1yi1( 􏼁 − yi2

+ 􏽘
n

j�1
gijyj1 t − τ2( 􏼁 + Ii1 + di1 + ξi1 + ui1,

_yi2 � bi1yi1 − ci1yi2.

(23)
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2.2.3. Nonlinear Control Design for Multiple Delayed Neu-
robiological FHN Networks. ,e error states of the neuro-
biological FHN systems formulated in equations (20–23) can
be designed as follows:

e
τ
xi1

�
xi1 t − τ1( 􏼁 − yi1 t − τ2( 􏼁

2
,

e
τ
yi1

�
xi2 t − τ1( 􏼁 − yi2 t − τ2( 􏼁

2
.

(24)

Taking the derivative of the error system (17) with re-
spect to time yields

_e
τ
x11

_e
τ
x21

⋮

_e
τ
xn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

−
1
2
r

x
3
11 t − τ1( 􏼁 − y

3
11 t − τ2( 􏼁

x
3
21 t − τ1( 􏼁 − y

3
21 t − τ2( 􏼁

⋮

x
3
n1 t − τ1( 􏼁 − y

3
n1 t − τ2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
1
2
(1 + r)

x
2
11 t − τ1( 􏼁 − y

2
11 t − τ2( 􏼁

x
2
21 t − τ1( 􏼁 − y

2
21 t − τ2( 􏼁

⋮

x
2
n1 t − τ1( 􏼁 − y

2
n1 t − τ2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

e
τ
x11

e
τ
x21

⋮

e
τ
xn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

e
τ
y11

e
τ
y21

⋮

e
τ
yn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 􏽘

N

j�1
g1j

xi1 t − τ1( 􏼁 − yi1 t − τ2( 􏼁( 􏼁

2
􏽘

N

j�1
g2j

xi1 t − τ1( 􏼁 − yi1 t − τ2( 􏼁( 􏼁

2
⋮􏽘

N

j�1
gnj

xi1 t − τ1( 􏼁 − yi1 t − τ2( 􏼁( 􏼁

2
⎡⎢⎢⎣ ⎤⎥⎥⎦ +

u11

u21

⋮

un1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

_e
τ
y11

_e
τ
y21

⋮

_e
τ
yn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� b

e
τ
x11

e
τ
x21

⋮

e
τ
xn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− c

e
τ
y11

e
τ
y21

⋮

e
τ
yn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

where ui1 � uxi1
− uyi1

. Now, let us define the following terms
for simplification,

eτx1 � eτx11
eτx21

. . . eτxn1
􏽨 􏽩

T
,

eτy1 � eτy11
eτy21

. . . eτyn1
􏽨 􏽩

T
,

cτd � x3
11 t − τ1( 􏼁 − y3

11 t − τ2( 􏼁 x3
21 t − τ1( 􏼁 − y3

21 t − τ2( 􏼁 . . . x3
n1 t − τ1( 􏼁 − y3

n1 t − τ2( 􏼁􏼂 􏼃
T
,

sτd � x2
11 t − τ1( 􏼁 − y2

11 t − τ2( 􏼁 x2
21 t − τ1( 􏼁 − y2

21 t − τ2( 􏼁 . . . x2
n1 t − τ1( 􏼁 − y2

n1 t − τ2( 􏼁􏼂 􏼃
T
,

G � gij􏼐 􏼑
N×N

,

u � u11 u21 . . . un1􏼂 􏼃
T
,

(26)

where eτx1 , e
τ
y1 , c

τ
d, sτd,u ∈ RN×1,G ∈ RN×N and T represents

the transpose operator. As a result, (25) can be written as
follows:

_e
τ
x1 � −

1
2
rcτd +

1
2
(1 + r)sτd − eτx1 − eτy1 + Geτx1 + u,

_e
τ
y1 � beτx1 − ceτy1 .

(27)
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It can be concluded that the problem of synchronization
is substituted with the synchronized error system (27) with
the requirement to stabilize by using a suitable control input
u. Synchronization can be achieved by designing the con-
troller u such that for any initial conditions eτx1 and eτy1
converge to zero. ,is implies that the dynamics of the slave
system (20/22) can converge to that of the drive system (19/
21).

Theorem 2. Consider the nonnoisy/noisy multiple FHN
neurobiological delayed systems as described in equations
(20–23) with the error dynamics described by equation (25). If
the controllers defined in equation (27) are designed as
ui1 � − gi1(bi1 − ci1)eτx1 − (bi1 − ci1)eτy1􏽮 􏽯, then the synchro-
nization of the nonnoisy/noisy multiple FHN neurobiological
delayed networks presented in equations (20–23) can be
achieved.

Proof. ,e Lyapunov function candidate V is chosen as
follows:

V �
1
2

eτ2x1 + eτ2y1􏼐 􏼑, (28)

dv/dt< 0 for all t.
It is easy to verify that the chosen candidate function V is

a positive definite function. After taking the time derivative
of (27), we obtain the following:

_V � eτT
x1

_e
τ
x1

+ eτT
y1

_e
τ
y1

. (29)

Incorporating the synchronized error system (25) and
the control laws into (29) yields the following:

_V �

eτΤx1 −
1
2
rcτd +

1
2
(1 + r)sτd − eτx1 − eτy1 + Geτx1 − gi1 bi1 − ci1( 􏼁eτx1 − bi1 − ci1( 􏼁eτy1􏼒 􏼓

+eτΤx1 bi1e
τ
x1

− ci1e
τ
y1􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (30)

_V � −

1
2
reτΤx1 c

τ
d −

1
2
(1 + r)eτΤx1 s

τ
d + eτΤx1 e

τ
x1 + eτΤx1 e

τ
y1 − GeτΤx1 e

τ
x1 + gi1 bi1 − ci1( 􏼁eτΤx1 e

τ
x1

+ bi1 − ci1( 􏼁eτΤx1 e
τ
y1

− bi1e
τΤ
y1
eτx1 + ci1e

Ττ
y1
eτy1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

_V � −

1
2
reτΤx1 c

τ
d −

1
2
(1 + r)eτΤx1 s

τ
d + eτΤx1 e

τ
x1

+ eτΤx1 e
τ
y1

− GeτΤx1 e
τ
x1

+ gi1 bi1 − ci1( 􏼁eτΤx1 e
τ
x1

+ bi1 − ci1( 􏼁eτΤx1 e
τ
y1 − bi1e

τΤ
y1 e

τ
x1 + ci1e

τΤ
y1 e

τ
y1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

(31)

Now eτΤx1 s
τ
d �

e
τ
x11

e
τ
x21

. . . e
τ
xn1

􏽨 􏽩

x11 t − τ1( 􏼁 + y11 t − τ2( 􏼁( 􏼁e
τ
x11

x21 t − τ1( 􏼁 + y21 t − τ2( 􏼁( 􏼁e
τ
x21

⋮
xn1 t − τ1( 􏼁 + yn1 t − τ2( 􏼁( 􏼁e

τ
xn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

e
τ
x11

e
τ
x21

. . . e
τ
xn1

􏽨 􏽩

x11 t − τ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + y11 t − τ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑e
τ
x11

x21 t − τ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + y21 t − τ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑e
τ
x21

⋮
xn1 t − τ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yn1 t − τ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑e

τ
xn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (32)

Moreover, it is known that neurons have bounded
trajectories, i.e., the system (20–23) are bounded with some
positive constant qxi

and qyi
satisfying |xi1|≤ qxi

and
|yi1|≤ qyi

, ∀i � 1, 2, 3 . . . , n. Additionally, assuming that
q1 � max(qxi

+ qyi
; i � 1, 2, 3 . . . , n), (32) results into the

following:

eτT
x1 s

τ
d ≤ q1e

τT
y1 e

τ
x1 . (33)

Correspondingly,

eτT
y1 c

τ
d ≤ q2e

τT
x1 e

τ
x1 . (34)

Incorporating (33) and (34) into (31) gives
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_V≤ −

eτT
x1

1
2
rq2 −

1
2
(1 + r)q1 + I − G + gi1bi1 − gi1ci1􏼒 􏼓eτx1 + eτT

x1 I + bi1 − ci1( 􏼁eτy1

− bi1e
τT
y1 Ie

τ
x1 + ci1e

τT
Y1
Ieτy1

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (35)

where I ∈ RN×N is the identity matrix.

_V(t) ≤ − EPET
, (36)

where E �
ex1
ey1

􏼢 􏼣 and P �

1/2rq2 − 1/2(1 + r)q1 + I − G + gi1bi1 − gi1ci1 I + bi1 − ci1
− bi1I ci1I

􏼢 􏼣.

It can be concluded that the matrix P should be a positive
definite to ensure the asymptotic stability of the synchro-
nized error system (26) at the origin. ,e positive defi-
niteness of P could be easily derived for considered networks
of neurons (e.g., a network of five neurons) using themethod
of determinants, i.e., determinants of all leading principal
minors have positive values [5]. Accordingly, the origin of
the error system (26) is asymptotically stable. Consequently,
these networks of n-identical delayed neurobiological FHN
neural network composed of n neurons, under ionic gates
disturbance, EES, and with and without external noise will
achieve synchronization. ,is completes the proof. □

3. Numerical Results

In this section, the results of the numerical simulations are
discussed to analyze and validate the efficacy of the designed
control laws for the synchronization of noisy and nonnoisy
multiple neurobiological FHN networks with and without
delayed gap junctions. To perform this, we considered five
neurons of two noisy and nonnoisy multiple neurobiological
FHN networks with and without delay gap-junctions and
external noise. ,e parameter values used in this study are
r11 � 10, r21 � 10.2, r31 � 10.4, r41 � 10.6, r51 � 10.8, b11 � 1,
b21 � 1.001, b31 � 1.002, b41 � 1.003, b51 � 1.004, c11 � 0.001,
c21 � 0.002, c31 � 0.003, c41 � 0.004, c51 � 0.005, d11 � 0.001
sin(0.2 × t), d21 � 0.002 sin(0.2 × t), d31 � 0.003 sin(0.2 × t),
d41 � 0.004 sin(0.2 × t), d51 � 0.005 sin(0.2 × t), A � 0.1,
f � 0.129, ω� 2πf and initial conditions are x11(0) � 0,
y11(0) � 0, x12(0) � 0.1, y12(0) � 0.1, x21(0) � 0.05,
y21(0) � 0.05, x22(0) � 0.2, y22(0) � 0.2, x31(0) � 0.05,
y31(0) � 0.05, x32(0) � 0.2, y22(0) � 0.2, x41(0) � 0,
y41(0) � 0, x42(0) � 0.1, y42(0) � 0.1, x51(0) � 0.05,
y51(0) � 0.05, x52(0) � 0.2, and y52(0) � 0.2. ,e values of
the gap junctions are listed in the matrix G

G �

− 1.0735 × 10− 03 3.6412 × 10− 04 4.0396 × 10− 04 2.064 × 10− 05 2.8481 × 10− 04

3.6412 × 10− 04
− 1.5070 × 10− 03 8.3269 × 10− 04 1.6223 × 10− 04 1.4797 × 10− 04

4.0396 × 10− 04 8.3269 × 10− 04
− 2.2451 × 10− 03 8.1832 × 10− 04 1.9013 × 10− 04

2.064 × 10− 05 1.6223 × 10− 04 8.1832 × 10− 04
− 1.6371 × 10− 03 6.3596 × 10− 04

2.8481 × 10− 04 1.4797 × 10− 04 1.9013 × 10− 04 6.3596 × 10− 04
− 1.2589 × 10− 03

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

Figures 2(a)–2(e) and 3(a)–3(e) illustrate the errors in
temporal dynamics with (red lines) and without (blue
lines) proposed control laws for nonnoisy coupled FHN
networks without delay for membrane potential states
and recovery variables states, respectively. ,e non-
converging behavior observed through spiked errors for
both membrane potential states and recovery states of
each network revealed the unsynchronized activities of
the networks (Figures 2(a)–2(e) and 3(a)–3(e), blue
lines). We used the strategy of controller switch off and
on for critically analyzing and evaluating the perfor-
mance of the proposed control scheme. As shown in
Figures 2(a)–2(e) and 3(a)–3(e) (red lines), the proposed
controller was not applied until t � 150 and the temporal
dynamics of the neurons is highly abrupt, but all the
errors converged to zero, proving synchronization be-
tween both states of all neurons in both networks, as soon
as the designed control laws are activated, showing the
efficacy of the proposed scheme.

Furthermore, the unsynchronized activities of the net-
works could also be observed through the abrupt behavior of
the phase plane diagrams for both states as shown in
Figures 4(a)–4(e) and 5(a)–5(e). In addition, the straight
lines in phase plane diagrams (Figures 4(a)–4(e) and 5(a)–
5(e), red lines) after the application of designed control laws
indicate that both membrane potential states and recovery
variable states of each neuron in both networks have syn-
chronized activities.

Figures 6(a)–6(e) and 7(a)–7(e) illustrate the errors in
temporal dynamics with (red lines) and without (blue lines)
proposed control laws for noisy multiple FHN without
delayed coupling for membrane potential states and re-
covery variables states, respectively. ,e nonconverging
behavior observed through spiked errors for bothmembrane
potential states and recovery states of each network revealed
the unsynchronized activities of the networks (Figures 6(a)–
6(e) and 7(a)–7(e), blue lines). We used the strategy of
controller switch off and on for critically analyzing and

Computational Intelligence and Neuroscience 9
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Figure 2: Synchronization error dynamics between membrane potential states of nonnoisy multiple FHN neurobiological networks
(redline: with control and blue line: without control). (a) Error dynamics ex11

� x11 − y11/2. (b) Error dynamics ex21
� x21 − y21/2. (c) Error

dynamics ex31
� x31 − y31/2. (d) Error dynamics ex41

� x41 − y41/2. (e) Error dynamics ex51
� x51 − y51/2.
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Figure 3: Continued.
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evaluating the performance of the proposed control scheme.
As shown in Figures 6(a)–6(e) and 7(a)–7(e)) (red lines), the
proposed controller was not applied until t� 150 and the

temporal dynamics of the neurons is highly abrupt, but all
the errors converged to zero, proving synchronization be-
tween both states of all neurons in both networks, as soon as

2

0

‑2

‑1

ey41

0 100 200 300 400

1

t

With control
Without control

(d)

t

2
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ey51
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Figure 3: Synchronization error dynamics between recovery states of nonnoisy multiple FHN neurobiological networks (redline: with
control and blue line: without control). (a) Error dynamics ey11

� x12 − y12/2 when b11 � 1, c11 � 0.001. (b) Error dynamics
ey21

� x22 − y22/2. (c) Error dynamics ey31
� x32 − y32/2. (d) Error dynamics ey41

� x42 − y42/2. (e) Error dynamics ey51
� x52 − y52/2.
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Figure 4: Synchronization analysis between membrane potential states of nonnoisy multiple FHN neurobiological networks (redline: with
control and blue line: without control). (a) Phase plane x11 − y11. (b) Phase plane x21 − y21. (c) Phase plane x31 − y31. (d) Phase plane
x41 − y41. (e) Phase plane x51 − y51.
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Figure 5: Synchronization analysis of the recovery variable states of nonnoisymultiple FHN neurobiological networks (redline: with control
and blue line: without control). (a) Phase plane x12 − y12. (b) Phase plane x22 − y22. (c) Phase plane x32 − y32. (d) Phase plane x42 − y42.
(e) Phase plane x52 − y52.
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Figure 6: Continued.
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the designed control laws are activated, showing the efficacy
of the proposed scheme. Furthermore, the unsynchronized
activities of the network could also be observed through the
abrupt behavior of the phase plane diagrams for both states

as shown in Figures 8(a)–8(e) and 9(a)–9(e). In addition, the
straight lines in phase plane diagrams (Figures 8(a)–8(e) and
9(a)–9(e), red lines) after the application of the designed
control laws indicate that both membrane potential states
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Figure 6: Synchronization error dynamics between membrane potential states of noisy multiple FHN neurobiological networks (redline:
with control and blue line: without control). (a) Error dynamics ex11

� x11 − y11/2. (b) Error dynamics ex21
� x21 − y21/2. (c) Error dynamics

ex31
� x31 − y31/2. (d) Error dynamics ex41

� x41 − y41/2. (e) Error dynamics ex51
� x51 − y51/2.
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Figure 7: Synchronization error dynamics between recovery variable states of noisy multiple FHN neurobiological networks (redline: with
control and blue line: without control). (a) Error dynamics ey11

� x12 − y12/2. (b) Error dynamics ey21
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and recovery variable states of each neuron in both networks
have synchronized activities.

Figures 10(a)–10(e) and 11(a)–11(e) illustrate the errors
in temporal dynamics with (red lines) and without (blue
lines) proposed control laws for nonnoisy multiple FHN
with delayed coupling for membrane potential states and
recovery variables states, respectively. ,e nonconverging
behavior observed through spiked errors for bothmembrane
potential states and recovery states of each network revealed
the unsynchronized activities of the networks
(Figures 10(a)–10(e) and 11(a)–11(e), blue lines). We used
the strategy of controller switches off and on for critically
analyzing and evaluating the performance of the proposed
control scheme. As shown in Figures 10(a)–10(e) and 11(a)–
11(e) (red lines), the proposed controller was not applied
until t� 110 and the temporal dynamics of the neurons is
highly abrupt, but all the errors converged to zero, proving
synchronization between both states of all neurons in both
networks, as soon as the designed control laws are activated,
showing the efficacy of the proposed scheme. Furthermore,
the unsynchronized activities of the network could also be
observed through the abrupt behavior of the phase plane
diagrams for both states as shown in Figures 12(a)–12(e) and
13(a)–13(e). In addition, the straight lines in phase plane
diagrams (Figures 12(a)–12(e) and 13(a)–13(e), red lines)

after the application of designed control laws indicate that
both membrane potential states and recovery variable states
of each neuron in both networks have synchronized
activities.

Figures 14(a)–14(e) and 15(a)–15(e) illustrate the errors
in temporal dynamics with (red lines) and without (blue
lines) proposed control laws for noisy multiple FHN net-
works with delayed coupling for membrane potential states
and recovery variables states, respectively. ,e non-
converging behavior observed through spiked errors for
both membrane potential states and recovery states of each
network revealed the unsynchronized activities of the net-
works (Figures 14(a)–14(e) and 15(a)–15(e), blue lines). We
used the strategy of controller switch off and on for critically
analyzing and evaluating the performance of the proposed
control scheme. As shown in Figures 14(a)–14(e) and 15(a)–
15(e) (red lines), the proposed controller was not applied
until t� 110 and the temporal dynamics of the neurons is
highly abrupt, but all the errors converged to zero, proving
synchronization between both states of all neurons in both
networks, as soon as the designed control laws are activated,
showing the efficacy of the proposed scheme. Furthermore,
the unsynchronized activities of the network could also be
observed through the abrupt behavior of the phase plane
diagrams for both states as shown in Figures 16(a)–16(e) and
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Figure 8: Synchronization analysis between membrane potential states of noisy multiple FHN neurobiological networks (redline: with
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17(a)–17(e) (blue lines). In addition, the straight lines in
phase plane diagrams (Figures 16(a)–16(e) and 17(a)–17(e)),
red lines) after the application of designed control laws

indicate that both membrane potential states and recovery
variable states of each neuron in both networks have syn-
chronized activities.
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Figure 10: Synchronization error dynamics between membrane potential states of nonnoisy multiple FHN neurobiological delayed
networks (redline: with control and blue line: without control). (a) Error dynamics ex11
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4. Conclusion

,is paper presents the design of different control schemes
for the synchronization of noisy and nonnoisy multiple
neurobiological FHN networks with and without delay
coupling. Variable parameters have been used for each state
of both FHN networks. ,e proposed control laws for both
networks are different and unique to achieve synchroniza-
tion. ,e robust adaptive control theory was utilized to
propose robust and different adaptive control strategies to
investigate the synchronization problem of the noisy and
nonnoisy multiple neurobiological FHN networks with and
without delay coupling. Control laws are designed to sta-
bilize the error dynamics without direct cancelation and to
synchronize all the states of both FHN neurobiological
networks. Sufficient conditions for achieving synchroniza-
tion in the multiple noisy and nonnoisy neurobiological
networks were derived analytically using the Lyapunov
stability theory. ,e results of numerical simulations
demonstrated the efficacy of the designed control schemes.
,e most important contributions of this research consist of
(i) examining the nondelayed multiple coupled FHN neu-
robiological networks under the conditions of external noise
(with and without), different delayed gap-junctions, and
external disturbance, (ii) examining the delayed multiple
coupled FHN neurobiological networks under the condi-
tions of external noise (with and without), different delayed
gap-junctions and external disturbance, (iii) the develop-
ment of novel and diverse control laws under the conditions
of external noise (with and without) for both multiple FHN
neurobiological delayed and nondelayed networks, and (iv)
achieving the synchronization of multiple FHN neurobio-
logical networks membrane states and recovery variables
states for drive and slave networks using the proposed
control schemes.
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