
NeuroImage 195 (2019) 78–88
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Inherent and unpredictable bias in multi-component DESPOT myelin water
fraction estimation

Daniel J. West a,*, Rui P.A.G. Teixeira a,b, Tobias C. Wood c, Joseph V. Hajnal a,b,
Jacques-Donald Tournier a,b, Shaihan J. Malik a,b

a Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, United
Kingdom
b Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, United Kingdom
c Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, Camberwell, London, SE5 8AB, United Kingdom
A R T I C L E I N F O

Keywords:
mcDESPOT
Myelin water fraction
Stochastic region contraction
Intercompartmental exchange
White matter-grey matter contrast
Quantitative MRI
* Corresponding author. Department of Perinatal
E-mail address: daniel.d.west@kcl.ac.uk (D.J. W

https://doi.org/10.1016/j.neuroimage.2019.03.049
Received 11 January 2019; Received in revised for
Available online 28 March 2019
1053-8119/© 2019 The Authors. Published by Else
A B S T R A C T

Multicomponent driven equilibrium steady-state observation of T1 and T2 (mcDESPOT) aims to quantify the
Myelin Water Fraction (MWF) using a two-pool microstructural model. The MWF has been used to track neu-
rodevelopment and neurodegeneration and has been histologically correlated to myelin content. mcDESPOT has a
clinically feasible acquisition time and high signal-to-noise ratio (SNR) relative to other MWF techniques.
However, disagreement exists in the literature between experimental studies that show MWF maps with plausible
grey matter-white matter (GM-WM) contrast and theoretical work that questions the accuracy and precision of
mcDESPOT. We demonstrate that mcDESPOT parameter estimation is inaccurate and imprecise if inter-
compartmental exchange is included in the microstructural model, but that significant bias results if exchange is
neglected. The source of apparent MWF contrast is likely due to the complex convergence behaviour of the
Stochastic Region Contraction (SRC) method commonly used to fit the mcDESPOT model. mcDESPOT-derived
parameter estimates are hence not directly relatable to the underlying microstructural model and are only
comparable to others using similar acquisition schemes and fitting constraints.
1. Introduction

Originally proposed by Deoni et al. (2008), “multicomponent driven
equilibrium steady-state observation of T1 and T2” (mcDESPOT) is the
multi-component adaptation of the established driven-equilibrium sin-
gle-pulse observation of T1 (DESPOT1), also called the Variable Flip
Angle (VFA) method, and T2 (DESPOT2) techniques that enable accurate
and precise determination of longitudinal and transverse relaxation times
respectively (Deoni et al., 2003). mcDESPOT attempts to quantify the
proportion of MR-visible water protons in a voxel that are trapped be-
tween myelin lipid bilayers, referred to as the Myelin Water Fraction
(MWF). The remaining MR-visible protons are contained in the intra- or
extra-cellular (IE) spaces (Does, 2018). As myelin water is a substantial
component of myelin composition, the MWF has been suggested as a
direct measure of myelin content through histological studies, and hence
has potential as a biomarker for neurological conditions (Laule et al.,
2006; Wood et al., 2016).

Multiexponential T2 (MET2) imaging remains the gold-standard for
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myelin water imaging but is hindered by a long acquisition time and
limited coverage (MacKay et al., 1994; Alonso-Ortiz et al., 2015). Instead,
mcDESPOT is based on rapid spoiled gradient-recalled (SPGR) echo and
balanced steady-state free precession (bSSFP) sequences, and hence
benefits from high SNR efficiency and clinically feasible scan times with
whole-brain coverage and reasonable isotropic resolution. Signals are
fitted to a tissue model comprising fast-relaxing (myelin water) and
slow-relaxing IE pools of magnetisation. The model can be described by
the relaxation times of both pools: T1F, T1S, T2F and T2S where the sub-
scripts F and S refer to fast and slow respectively; their relative sizes,
represented by equilibrium magnetisations M0F and M0S; and the inter-
compartmental exchange rates, kFS and kSF. Under the assumption that
M0FþM0S¼ 1, M0F is the myelin water fraction.

It is accepted that the MWF derived frommcDESPOT is overestimated
compared to alternative methods (Alonso-Ortiz et al., 2015; Deoni et al.,
2013). Deoni et al. proposed that this could be due to an ill-conditioned
fitting approach, ill-posed tissue model, and/or neglect of magnetisation
transfer (MT) effects (Deoni and Kolind, 2015). Lankford and Does
uth Wing, St. Thomas' Hospital, London, SE1 7EH, United Kingdom.
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(2013) computed Cramer Rao Lower Bounds to conclude that mcDESPOT
using “feasibly attainable signal-to-noise ratios cannot provide parameter
estimates with useful levels of precision”. Yet, using the Stochastic Re-
gion Contraction (SRC) (Berger and Silverman, 1991) fitting method, a
range of studies have produced plausible MWF maps that show reason-
able grey matter-white matter (GM-WM) contrast (Zhang et al., 2015a;
Deoni, 2011) and can produce realistic developmental myelination tra-
jectories (Deoni et al., 2012, 2013). As also suggested by Lankford and
Does, there are two possible explanations for this discrepancy: (i) the
model does not satisfactorily describe the tissue signal response or (ii) the
estimation process is biased (their analysis assumed an unbiased
estimator).

On the first point, MT is the most obvious candidate to explain such a
discrepancy. On-resonance MT effects can result in significant deviations
from signal models based purely on the Bloch equation, and are partic-
ularly relevant for the short repetition time pulsed sequences used by
mcDESPOT. For example MT-effects can attenuate the bSSFP signal by
over 30% in brain tissue (Bieri and Scheffler, 2006). This is an issue for
VFA measurement because each flip angle is realised by scaling the
amplitude or duration of the RF pulse, which causes the energy per pulse
and hence the saturation of the macromolecular pool to be dependent on
flip angle. It has been shown that this can cause systematic errors of
approximately 10% in DESPOT1 measurements (Ou and Gochberg,
2008). Zhang et al. (2015b) found large differences in estimated
mcDESPOT parameters depending on the pulse duration, although the
effect on MWF itself was small. Their explanation was that this may be
due to the complexity of the search space involved in model fitting. Liu
et al. (2016) attempted to account for this by proposing a two-stage
fitting process that considers macromolecular pool magnetisation in
addition to the IE and myelin water. They show that this leads to a
reduction in estimation bias, at the cost of estimating more parameters.
Teixeira et al. proposed to mitigate the effect of variable saturation power
in VFA methods by using novel RF pulse types that change the flip angle
while keeping the saturation power fixed (Teixeira et al., 2018).
Recently, we demonstrated that this approach would also work for
mcDESPOT, but that the expected values of the measured parameters
(includingMWF) would be modified depending on the amount of applied
RF power (West et al., 2018).

On the estimation process itself, the SRC method is a likely source of
bias given that the realised parameter variance is much smaller than
would be expected from an unbiased estimate (Lankford and Does,
2013). As an alternative, Bouhrara et al. (Bouhrara and Spencer, 2016,
2017) developed a Bayesian Monte Carlo (BMC) fitting approach that
provides improved parameter estimation accuracy and precision
compared to SRC but requires computationally intensive high dimen-
sional integration for parameter marginalisation and yields more vari-
able parameter estimates compared to the literature. This method
assumed no exchange between water pools in order to simplify the
estimation. However, there is abundant evidence in the literature (Dortch
et al., 2013; Harkins et al., 2012) that intercompartmental exchange does
exist in biological tissue. Recent work by van Gelderen and Duyn used a
more realistic multilayer model of exchange within the myelin sheath
and derived exchange rates notably faster than previous estimates,
implying that exchange is an important part of tissue microstructure that
cannot be neglected (van Gelderen and Duyn, 2018).

In this article, we present a study of the stability and reproducibility
of parameter estimation in mcDESPOT using SRC fitting both with and
without exchange, addressing two central questions: (i) how are appar-
ently biologically plausible measurements made from mcDESPOT with
relatively high precision? and (ii) what are the estimation biases that
result from the ‘standard’ SRC fitting approach?

2. Materials and methods

Our methodology comprises both simulated and in-vivo in-
vestigations. Simulation work focused on the model fitting aspects by
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considering a best-case scenario where the model perfectly describes the
tissue response. The presence/absence of intercompartmental exchange
in both the simulated data and the fitted model was also investigated. For
the in-vivo study, we employed the Constant Saturation Magnetisation
Transfer (CSMT) method to minimise confounding MT effects (Teixeira
et al., 2017).

SRC was used for model fitting, and was implemented as specified in
Deoni et al. (Deoni, 2011) In this method, a large number of random
combinations of model parameter values are chosen from within an
initial bound set, and then the corresponding signals and sum-of-squares
residual against the data computed for each. The best (lowest residual)
50 combinations are then used to redefine the bounds to gradually
contract the search space; an ‘expansion factor’ prevents
over-contraction. This procedure is iterated until either the maximum
number of iterations is reached, or the upper and lower bounds are
within some small tolerance of one another. Following Bouhrara et al. we
used 40,000 random candidates at each iteration, maximum 30 itera-
tions, and a tolerance of 1% for convergence - this is more computa-
tionally expensive than other implementations, but has been shown to
better ensure convergence (Bouhrara et al., 2016). Simulations were
implemented in MATLAB 2018a with signal functions coded in
Cþþ/MEX using the Eigen linear algebra library (Guennebaud and
Jacob, 2010). We chose to use a two-pool model without any ‘semisolid’
pool that would interact via magnetisation transfer. The signals were
hence modelled using Equations (1)–(7) from Deoni et al. (2008). SPGR
and bSSFP data were normalised to the mean signal from each sequence
(Deoni et al., 2013). According to UK research councils’ Common Prin-
ciples on Data Policy, all simulation code supporting this study will be
openly available at: http://doi.org/10.5281/zenodo.2613725.
2.1. Simulated tissue models and acquisitions

Different initial bound sets and acquisition schemes from the litera-
ture are summarised in Table 1 and Table 2 respectively. Simulated data
was generated for different sets of tissue parameters, shown in Table 3.
Here ‘HB’ is based on parameters used by Bouhrara et al. obtained from
“human brain imaging” (Bouhrara et al., 2016); WML is ‘white matter--
like’ (shorter T1, T2 and larger MWF); GML is ‘grey matter-like’ (longer
T1, T2 and smaller MWF) and INT has intermediate properties.
2.2. Signal model and search space behaviour

mcDESPOT is characterised by a complex, six-dimensional search
space (seven if off-resonance is also estimated, which we exclude in this
work). In order to visualise the search space, we examined the normal-
ised root mean-square residuals, η, defined as:

η
�
θ; bθ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
j¼1

�
SjðθÞ � Sj

�bθ��2q
σ

(1)

whereN is the number of experiments or images, θ is the (vector) position

in the search space, bθ is the actual solution (i.e. the true tissue parame-
ters), SjðθÞ is the signal in the jth image for parameters θ using a
particular acquisition scheme, and σ represents the notional standard
deviation of the noise in the measurement. Therefore, η¼ 1 corresponds
to a solution which is one noise standard deviation from the true solution
on average over all measurements. Note that no noise was actually added
to the simulated signals for this part of the study; setting σ allows us to
identify good solutions at a particular SNR, and only affects the sharpness
of the distributions visualised in section 2.2.2.; it does not otherwise
influence any of the results shown.

2.2.1. Signals and solution manifold
Simulated signals for acquisition scheme S1 were calculated for 200

million randomly generated sets of tissue parameters θ, drawn uniformly

http://doi.org/10.5281/zenodo.2613725


Table 1
Different initial bound sets tested for Monte Carlo simulations. B1 is used by Bouhrara et al. (‘restricted bounds’ with extra kFS limits), B2 by Deoni et al. (‘default
boundary conditions’), B3 is from an in-house study and B4 is used by Zhang et al. The bottom row is a set with the widest parameter bounds (WPB) possible from B1-4.

Bound Set Literature Reference T1F (s) T1S (s) T2F (ms) T2S (ms) MWF kFS (s�1)

LB UB LB UB LB UB LB UB LB UB LB UB

B1 Bouhrara et al. (2016) 0.2 0.7 0.8 2 2 40 60 160 0 0.5 0.5 20
B2 Deoni and Kolind (2015) 0.3 0.65 0.9 5 1 30 50 165 0 0.35 1.67 40
B3 N/A 0.3 0.8 0.9 1.5 10 30 40 150 0.001 0.35 1.67 40
B4 Zhang et al. (2015a) 0.2 0.5 0.7 2.5 2 45 75 200 1e-7 0.3 0.5 20
WPB N/A 0.2 0.8 0.7 5 1 45 40 200 0 0.5 0.5 40

Table 2
Different acquisition schemes tested for Monte Carlo simulations. S1 is from Bouhrara and Spencer, S2 is from Deoni et al. (defined as ‘simulated acquisition param-
eters’) and S3 is an example reduced scheme used in-house for single-pool relaxometry. bSSFP180 is the usual phase-cycled bSSFP sequence and bSSFP0 is a non-phase
cycled version.

Acquisition
Scheme

Literature Reference TRSPGR

(ms)
TRbSSFP

(ms)
FASPGR (�) FAbSSFP180 (�) FAbSSFP0 (�)

S1 Bouhrara and Spencer
(2016)

6.5 6.5 2, 4, 6, 8, 10, 12, 14, 16, 18,
20

2, 6, 14, 22, 30, 38, 46, 54, 62,
70

2, 6, 14, 22, 30, 38, 46, 54, 62,
70

S2 Deoni and Kolind (2015) 5.6 4.4 4, 5, 6, 7, 9, 11, 14, 18 12, 16, 19, 23, 27, 34, 50, 70 12, 16, 19, 23, 27, 34, 50, 70
S3 N/A 7.0 7.0 6, 8, 10, 12, 14, 16 15, 25, 35, 45, 55, 65 25, 55

Table 3
Tissue parameter sets used in this work and chosen to be within all bound sets in
Table 1 (see text for more details). *Exchange is either included at 8s�1 or
excluded (0s�1) for the HB model. On-resonance is assumed for each set and so,
fitting of an off-resonance factor is not required.

Tissue Set T1F (s) T1S (s) T2F (ms) T2S (ms) MWF kFS (s�1)

HB 0.45 1.4 15 90 0.15 8/0*
WML 0.35 1.0 15 80 0.25 10
INT 0.4 1.15 20 110 0.175 7.5
GML 0.45 1.3 25 140 0.1 5
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from initial bound set WPB (no noise was added to these signals). η was
then evaluated for each of these sets of signals with respect to the actual
(although noiseless) signals produced by the model for the ground-truth

parameter values, bθ in Table 3. For each simulated tissue, the signals with
the 1000 lowest residuals (i.e. minimum η) were selected.

For the HB data, the manifold containing these top 1000 candidate
solutions was visualised using the dimensionality reduction technique of
kernel principal component analysis (kPCA) (Mika et al., 1999; van der
Maaten et al., 2009). To allow visualisation of the distribution of esti-
mated values of the non-exchange parameters in the presence or absence
of exchange, kPCA was performed on the five-dimensional space con-
sisting of T1 and T2 of each pool and MWF, for each of the top 1000
candidate solutions in each scenario.

2.2.2. Search space visualisation
The search space was explored in two different ways. Firstly, 2D

projections were created by evaluating η on regular grids spanning two
selected parameters; for each point on these grids 100,000 random
combinations of the other parameters were generated, with η evaluated
for each and the minimum value stored. Secondly, 2D cuts through the

space were made, both in planes intersecting the true solution bθ, and in
planes intersecting solutions found via SRC fitting. For this last case, SRC
was performed for data generated for acquisition scheme S1 and S2 (see
Supplementary Material results for the latter) and initial bound set B1
with no noise added. In all cases, tissue parameters HB were used (both
including and excluding exchange).

2.3. Bias and sensitivity of SRC

Monte Carlo simulations were used to investigate the sensitivity of
SRC-based mcDESPOT to the initial bound sets. For all Monte Carlo
80
simulations, random Gaussian noise was added to forward modelled
signals. The noise level was set to simulate SNR¼ 100 defined with
respect to the mean SPGR signal across all flip angles, so the SNR of in-
dividual data points varies as would be the case in reality. In particular,
the SNR of the bSSFP scans is greater by up to a factor of 2. In each case,
SRC fitting was repeated for data with 1000 different noise realisations.
The SNR was chosen given reported in-vivo SNRs from Deoni et al. (76
and 135 in a WM ROI in 14� SPGR and 30� bSSFP images respectively)
and to be within the range of SNRs simulated across the mcDESPOT
literature (Deoni et al., 2008). Monte Carlo simulations for different SNRs
and more detailed results for SNR¼ 30 (motivated by the ‘high--
resolution’ protocol in Bouhrara et al. (Bouhrara and Spencer, 2017)) are
shown in Supplementary Material.

2.3.1. Initial bound set sensitivity
All tissue parameter sets (Table 3) were used with acquisition scheme

S1, and all initial bound sets (Table 1). In addition, this was repeated for
tissue HB (including and excluding exchange) for all acquisition schemes
(Table 2). An additional scenario was investigated in which a model that
excludes exchange is fitted to signals generated with exchange present.
This is motivated by the fact that other researchers have suggested that a
stable approach would be to fit a model excluding exchange to in-vivo
data (Zhang et al., 2015a; Bouhrara and Spencer, 2016). However,
since the literature suggests intercompartmental exchange does exist
in-vivo (Dortch et al., 2013; Harkins et al., 2012) we investigated po-
tential bias resulting from the mismatch between model and data. The
WML tissue parameter set was used, as the tissue of most interest for our
in-vivo results, with kFS varied from 0s�1 (no exchange) to 20s�1 in in-
crements of 4s�1. For each increment, SRC (with B1-4) was performed for
1000 different noise realisations on data simulated using S1 and with
SNR¼ 100.

2.3.2. Sensitivity to individual parameter changes
To examine the ability of the method to track changes in individual

parameters and potential correlations between these, multiple different
tissue parameter sets were created by changing one model parameter at a
time starting from the HB set. SRC fitting was then used to estimate the
parameters, with acquisition scheme S1 and initial bound set B1 assumed.
2.4. In-vivo investigation

A whole-brain dataset was acquired for a healthy male volunteer
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(aged 23 years) using acquisition scheme S1, TESPGR¼ 2.25ms,
TEbSSFP¼ 3.24ms, field-of-view (FOV)¼ 230� 218� 190mm3,
1.5� 1.5� 1.5mm3 resolution on a Philips Achieva 3.0T scanner (Best,
Netherlands) with a 32-channel head coil. Since our principal aim was to
corroborate our simulation findings, no acceleration was necessary and
the acquisition (30 vol) required a scan time of approximately 1 h.

Using the standard deviation approach outlined in Dietrich et al.
(2007), we calculated our in-vivo SNR by taking the mean signal across
all non-CSF brain regions and all SPGR volumes, and dividing it by the
standard deviation of a region of interest outside the head containing
only noise, multiplied by the suggested correction factor due to the
Rayleigh distribution of noise in magnitude images.

Following recent work on minimising MT effects, the data were
Fig. 1. Top: Signal profiles for acquisition scheme S1 drawn from 200 million rando
Table 3, the signal profiles yielding the 1000 lowest residuals from this set were p
(circles). In each case, the 1000 different signals are almost exactly coincident so as to
the corresponding bSSFP180 signal profiles to highlight the extent of their degenerac
the other signals and different tissue types. Bottom: Histograms of individual tissue p
true parameter values for each tissue type. These histograms indicate that the 1000
though their signal profiles are very similar.
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acquired using the CSMT method (Teixeira et al., 2018; West et al.,
2018). This approach employs non-selective multiband excitation pulses
that are designed to have constant total RF power (B1,rms¼ 1.5 μT) across
all flip angles. Hence, the excitation pulses used have 3 bands; the
on-resonance band has the flip angle required for excitation, and then
two off-resonance bands supply additional RF power to maintain satu-
ration power. Duration of the pulses was 2.5ms and the off-resonance
lobes were located at �6 kHz. In this work the (on-resonance) flip an-
gles spanned from 2� to 70�; for these cases each off-resonance band had
nominal flip angle 49.5� and 0� respectively. The latter was 0� because
the 70� pulse produces all saturation on-resonance; the others include
off-resonant saturation to maintain the same total power. Please refer to
Fig. 2 in Reference 19 for an example illustration RF pulse. SRC was used
mly generated combinations of tissue parameters. For each of the tissue types in
lotted (solid lines) along with the true expected signal profiles for each tissue
be indistinguishable on this diagram. The HB inset (top left) is a zoomed plot of

y (note the axis tick label ranges and line thickness); this is also representative of
arameters for these 1000 lowest residual solutions; vertical dotted lines indicate
lowest residual solutions have a wide spread in underlying parameters, even
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to process these data with identical parameters to our simulations and
using B1-4. For comparison, non-linear least-squares fitting was also
performed using the ‘lsqnonlin’ function in MATLAB. We chose the
trust-region-reflective algorithm, bounded by B1 and with an initial point
defined as the midpoints between the corresponding lower and upper
bounds of each parameter. An off-resonance factor was directly fitted for
as an additional parameter for in-vivo analysis only, but its inclusion was
found to have a negligible effect on search space topology and MWF
estimation (data not shown) (Bouhrara et al., 2016).

Although our analysis demonstrated that S1 should give the most
precise measurement, in practice, it was found that using all datapoints
from S1 caused residual B0-artefacts in T2F and kFS parameter maps,
though MWF appeared relatively unchanged. Signals from the lowest
bSSFP0 flip angles were found to be susceptible to off-resonance effects,
and hence drifts in the main frequency. Therefore, in our analysis, these
datapoints were discarded and this was found to successfully suppress the
artefacts with negligible influence on parameter estimation.

3. Results

3.1. Signal model and search space behaviour

Fig. 1 plots the 1000 lowest residual solutions (see 2.2.1) for each of
the simulated tissue types, from 200 million randomly generated
parameter combinations within the initial bound set WPB. The histo-
grams on the lower half of Fig. 1 plot the distribution of parameter values
that these top 1000 solutions span. A very wide range of parameter
combinations are present (the histograms are wide), and the mode of
values in these histograms do not necessarily correspond to the true
parameter values for these tissues (dotted vertical lines). Different tissues
create distinct signal curves but within each tissue type all 1000 signals
are practically indistinguishable, despite a wide spread of parameter
values.

Fig. 2 presents visualisations of the solution manifold defined by the
1000 lowest residual solutions for tissue type HB in the three scenarios of
a single pool (T1¼ 1s, T2¼ 100ms, M0¼ 1; no dimensionality reduction
required), two non-exchanging pools and two pools with exchange. On
the figure, the colour is determined by the value of η; from this it is clear
that the single pool model solutions form a well-defined ellipsoid centred
around the true solution (green diamond) with the lowest residual so-
lutions at the centre. The two-pool model excluding exchange has a similar
manifold of low residual solutions centred around the true solution.
However, the two-pool model including exchange has a complex topology,
with the lowest residual solutions dispersed rather than clustered in one
position and the cloud of low residual points is not centred on the true
solution.

The search space for the HB tissue with exchange using acquisition
Fig. 2. Comparison of the solution manifolds for three cases: (a) single-pool mode
including exchange. Points are coloured according to the value of η, the ground-trut

82
scheme S1 is further visualised in Fig. 3. The top row shows 2Dminimum
intensity projections of η into planes defined by each parameter pairing in
turn - it is clear from this that there is a wide spread of parameter com-
binations with low residuals, and that optimal solution values for
different parameters are correlated (particularly the case for MWF with
both T2F and T2S). The middle row shows a cut (not a projection) through
the space at the position of the true solution (green dot) showing that this
is indeed a local minimum of the cost-function. However, the white boxes
indicate the convergence of the SRC algorithm when used to fit for a
signal defined using these parameters; the algorithm converges to a point
that appears to have low likelihood. The bottom row however, shows a
cut through the space at the position of the SRC solution with the true
solution projected into the same planes. It is evident that SRC has found a
local minimum, but it is not close to the true solution. Fig. 4 shows
equivalent results, now for the same tissue but excluding exchange (i.e.
there is no exchange in either the true signal or the fitted signal). The
search space still shows correlations between parameters but the SRC
method now finds the true solution.

3.2. Monte Carlo simulations of SRC

Fig. 5 summarises results from Monte Carlo simulation of SRC fitting
for tissue HB and for the different acquisition schemes and initial bound
sets, with each case repeated over 1000 different noise realisations. The
true solution is shown as dotted lines. Each combination of acquisition
scheme and bound set leads to different biases on the estimated param-
eters. For example, using acquisition scheme S1, different initial bound
sets lead to consistently differing values of MWF that are all above the
true value. Precision (i.e. variance) is also affected by choice of acquisi-
tion scheme; S1 is the best, which is to be expected since it comprises the
most (30) separate images. Fig. 6 shows the same result for the two pools
with no exchange; in this case there are no obvious biases in estimation of
any parameter.

Fig. 7 explores the effect of assuming no exchange during parameter
estimation for data generated from forward models that include ex-
change. Results indicate that a variable degree of bias can result, which in
some cases can be quite extreme.

Fig. 8 summarises the results of Monte Carlo simulations performed
by individually incrementing ground-truth values for MWF, T1S and T2S
to create twenty-four unique tissue sets for data simulation. The results
indicate that while increases in MWF, T1S and T2S all lead to monotonic
increases in their estimates, there is an offset and there is some non-
linearity in the response. Furthermore, the second row of the figure
shows how each of the other parameters varies in each case - here we see
that if the true underlying T1S or T2S change, this may also result in a large
change in the estimated MWF, even though in those cases MWF has
actually remained fixed.
l, (b) two-pool (HB) model excluding exchange and (c) two-pool model (HB)
h is marked as a green diamond and projections onto each axis plane are made.



Fig. 3. Search space visualisation for tissue HB including exchange and acquisition scheme S1. The colour corresponds to the value of η (Eq. (1)). Top: Minimum
projection heat maps for parameter pairs. Middle: Cuts of the space through the true solution (green dot). Bottom: Cuts through the solution found by SRC; a low
residual region does not appear around the true solution because these cuts are made in a different plane. On the lower two rows, white boxes show the contracting
search bounds used by SRC at each iteration. Note that the solution found by SRC is a local minimum of the cost-function though it is not easy to see from the diagram.

Fig. 4. Search space visualisation for tissue HB excluding exchange and using acquisition scheme S1. The colour corresponds to the value of η (Eq. (1)). Top: Minimum
projection heat maps for parameter pairs. Bottom: Cuts through the true solution, with boxes marking the contracting search bounds used by SRC. Unlike Fig. 3, in this
case, SRC converges on the true solution.
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3.3. SRC repeatability: simulations and in-vivo study

The high degree of degeneracy in the two-pool model with exchange
(Fig. 1) suggests that in-vivo parameter maps should have poor precision,
yet many studies have shown that this is not the case (Deoni et al., 2013;
Zhang et al., 2015b; Kolind and Deoni, 2011). This is illustrated by Fig. 9,
which collates the result of SRC fitting for each uniquely defined tissue
type (WML, INT, GML), using acquisition scheme S1, SNR¼ 100 and
varying initial bound sets. The grey bars represent the low residual so-
lutions plotted on Fig. 1, whereas the coloured lines plot the histograms
of the MWF found from SRC estimation with each initial bound set. It is
apparent that SRC results in a smaller than expected variance but a
variable degree of bias that depends on the initial bound set used. Each
different set would therefore yield plausible and repeatable measures
that are different to the results that would be obtained by using different
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search bounds. Supporting Figure SF6 shows equivalent results for the no
exchange case, where the distribution of MWF values estimated by SRC
more closely resembles the distribution of low residual solutions within
the search bounds. That figure also shows results for the case in which the
forward model includes exchange, but this is excluded from the fitting;
results are highly unpredictable and far from the true values.

Finally, Fig. 10 shows in-vivo MWF estimated maps (acquisition
scheme S1) fitted using the different initial bound sets. Each map (a-d),
except for ‘lsqnonlin’ (e) which was produced by classic non-linear
optimisation, shows plausible GM-WM contrast; however, the absolute
values are variable. Histograms from a WM mask (acquired using FSL
BET and FAST tools (Jenkinson et al., 2012)) show different biases in the
estimated MWF, depending on the initial bound set, similar to Fig. 9.
Representative signal plots from an individual voxel show that all solu-
tions pass equally well through the measured data points, even though



Fig. 5. Results of Monte Carlo simulation for SRC fitting for the HB tissue (including exchange). The labels “SxBy” correspond to acquisition scheme x and search
bounds y (Tables 1 and 2). The true parameter values are indicated by the dashed black line. Results indicate estimation biases that are dependent on both the
acquisition scheme and initial bound set.

Fig. 6. As Fig. 5, but now for the HB tissue excluding exchange between compartments. In this case, there are no large biases in estimation from any combination of
acquisition scheme and initial bound set.
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the fitted parameters are rather different. Supporting Figure SF5 shows
equivalent results for the same data, but this time fitted assuming kFS¼ 0.
Here, a much wider spread of MWF values results, in each case clustering
close to the upper bound of the initial search parameter.

4. Discussion

This work investigated sources of parameter estimation bias from the
SRC fitting method for mcDESPOT data. This was motivated by previous
theoretical analyses (Lankford and Does, 2013) suggesting that mcDES-
POT should be unable to provide useful parameter estimates at attainable
SNR. Nevertheless, there are many examples in the literature of plausible
84
mcDESPOTMWFmaps with precision in excess of what would be implied
by the Cramer-Rao Lower Bound (Lankford and Does, 2013), suggestive
of a biased fitting. It has also been shown by others that removal of ex-
change results in a more stable model (Bouhrara and Spencer, 2016).
However, inclusion of exchange is biologically plausible and likely
carries important microstructural information (Harkins et al., 2012).
Studies have observed exchange in ex-vivo rat optic and frog sciatic nerve
(Dortch et al., 2013), and a recent 7T study found evidence for a rela-
tively fast exchange in human brain (van Gelderen and Duyn, 2018).
Hence, assuming no exchange may also be expected to cause some esti-
mation bias.

The challenge for mcDESPOT parameter estimation in the presence of



Fig. 7. Estimation bias apparent when assuming no exchange with non-zero exchange in underlying simulated data, assuming the WML tissue set. Each box represents
SRC parameter estimate from 1000 noise realisations at SNR¼ 100, and each colour refers to a different initial bound set. The black dashed lines are ground-truth
parameter values.
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intercompartment exchange is clearly illustrated by Fig. 1, which shows
that the fitting problem is highly degenerate. For each tissue type we
have plotted 1000 signal curves that cover a wide spread in underlying
parameters but are indistinguishable by eye. Fig. 2 demonstrates that
these degenerate solutions form a complex hypersurface in the search
space. The result of this is that SRC fitting converges to local minimum of
the cost-function (Fig. 3) but there is no way to determine which is the
true solution. The result for parameter estimation is then illustrated by
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Fig. 5: Monte Carlo analysis demonstrates that there is an unpredictable
degree of bias in the parameter values, and that this bias is a function of
both the acquisition scheme (i.e. which combinations of flip angles,
repetition times, and balanced or spoiled sequences are used) and the
initial bound sets used by the SRC algorithm.

When exchange is not present, the solutions are much better behaved
(Fig. 2), as also shown by Bouhrara et al. (Bouhrara and Spencer, 2016)
This is also borne out by Monte Carlo simulations (Fig. 6) using different



Fig. 8. Trends in parameter estimates as ground-truth MWF, T1S and T2S are incremented, assuming acquisition scheme S1, bound set B1 and SNR¼ 100. All other
ground-truth parameter values for each trial were as per tissue set HB (including exchange). The top row shows the change in each estimated parameter as it is itself
varied - estimated parameters increase monotonically with the true values but not always linearly. The bottom row shows the changes in all other parameters as one is
varied, in each case normalised to the true value. For example, if T2S is reduced to 40ms, the estimated MWF will increase to three times the true value, when it was
actually unchanged in the underlying model. Note that due to the sensitivity of SRC to acquisition scheme and fitting bound set, these plots are only true for S1 and B1.

Fig. 9. Summary of Monte Carlo simulation of SRC fitting of a model including exchange and using different search bounds. Each panel corresponds to a different
tissue type and focuses on MWF (though all parameters were estimated). Since HB is a mixture of the other three tissue types (as the low residual solutions in Fig. 1
shows), it is excluded from this analysis for clarity. Ground-truth values are shown as black dashed lines, histograms of SRC estimated MWF by coloured dotted lines
and bounds by colour-matched vertical lines. Grey bars correspond to the low residual solutions identified in Fig. 1. Similar plots are shown in Supplementary Material
for when a model excluding exchange is fitted to WML, INT and GML data.
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acquisition schemes and initial bound sets. Though precision varies be-
tween different choices of acquisition scheme, as would be expected
since they include different numbers of measurements, all combinations
correctly estimate parameter values within one standard deviation of the
true values. As another illustration, the example search space in Fig. 4
contains a well-defined cost-function minimum that coincides with the
true solution, and this is reliably found by the SRC fitting. The case of two
exchanging pools has a very different search space with many equally
likely solutions that have widely differing parameter values. This pro-
vides a mechanism for the observed bias through interaction between the
complex manifold of degenerate solutions and the progressively
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contracting search bounds employed by SRC. Different choices of initial
bound set largely dictate where in this degenerate manifold the algo-
rithm will converge. Hence, the observed variance in estimation when
using SRC is expected to be smaller than the true spread of possible
degenerate solutions. This was confirmed by Monte Carlo simulation
using different initial bound sets (see Fig. 9).

Results from our in-vivo investigation are in agreement with these
simulations. Fig. 10 shows four different MWF maps reconstructed from
the same underlying data, with the same SRC algorithm except that the
initial bound sets are different. The result is four maps that are all
different but appear reasonable. The histograms of estimated MWF in



Fig. 10. In-vivo MWF maps calculated using SRC with different bounds and standard non-linear fitting (top). Our SNR, calculated as described in the methods, was
approximately 120, which is in-line with our simulations. SRC produces plausible contrast but the absolute level of MWF depends on the bounds, whereas non-linear
fitting often converges to highly different minima. Corresponding histograms from WM show clear similarities are seen between the bound-sensitivity shown here and
in Fig. 9. The bottom right tile shows data (circles) acquired from a single internal capsule voxel (marked in green in top panel) and the signal curves corresponding to
the parameters for each fitting method/bound set (dashed lines), which are almost indistinguishable despite the very different levels of MWF. This implies that the
different fitted parameter sets fit the data equally well.
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WM show qualitatively similar behaviour to Fig. 9. Signal profiles from a
single voxel, also shown in Fig. 10, indicate that the solutions found are
degenerate even though the estimated parameters are different (see
Table 4). This sensitivity to search bounds has been commented on in
previous studies, for example Zhang et al. (2015a) demonstrated signif-
icant differences in MWF when extending the search bounds. Note that
the issue is not that the true solution lies outside of the defined bounds,
such that the optimiser hits these bounds when converging. All of the
defined initial bound sets in Table 1 contain all of the modelled tissue
‘true’ values in Table 3, for example. Rather, we conclude from this
investigation that the different bounds interact with the hypersurface of
degenerate solutions, leading to a different subset being found,
depending on the initial bound set. A related problem is highlighted by
Fig. 8: though this does show that monotonic changes in underlying
parameters also lead to monotonic changes in their estimates, these re-
lationships aren't always linear and more problematically, they can be
coupled with marked changes in the estimated values of other parame-
ters that aren't actually changing. A clear example is that changes in T1S
and T2S both lead to changes in estimated MWF. As a comparison with
SRC, a standard non-linear fitting algorithm was also used (‘lsqnonlin’,
see Fig. 10) and did not give an anatomically plausible MWF. This
approach yielded ‘noisy’ looking parameter estimates, since it did not
force convergence onto a smaller subset of the possible solutions in the
way that SRC does.

One strategy to avoid the poor behaviour of the model with exchange
is to exclude it from parameter estimation (Bouhrara and Spencer, 2016;
Table 4
Estimated parameters from each fitting attempt, for the WM voxel marked in
Fig. 10.

T1F (s) T1S (s) T2F (ms) T2S (ms) MWF kFS (s�1)

B1 0.472 0.901 15.7 105 0.373 5.04
B2 0.397 0.943 12.9 106 0.297 8.38
B3 0.411 0.945 13.4 102 0.317 6.07
B4 0.343 1.01 10.9 98.3 0.268 5.93
lsqnonlin (B1) 0.585 0.800 18.8 93.1 0.500 1.29
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Bouhrara et al., 2016). In this case, an important question is how does the
presence of exchange in the actual data manifest in parameter estima-
tion? To investigate this, we generated using variable non-zero kFS and
then fitted it with kFS fixed at 0s�1. The results (Fig. 7) suggest that the
derived parameter estimates would be highly variable depending on the
actual value of kFS. This was also observed with the in-vivo dataset
(Supporting Figure SF5); fitting a model excluding exchange led to MWF
estimates that also approach or hit the upper bounds of the search space
for each initial bound set used. Slight deviations in MWF estimates be-
tween simulations and in-vivo are due to differences between model
parameter values. The Bayesian method proposed by Bouhrara et al.
(Bouhrara and Spencer, 2016) may provide a means to better constrain
the ‘excluding exchange’ model, but we note that the authors of that
study did not report how the actual presence of exchange might affect
their results.
4.1. Magnetisation transfer effects

The signal models used in this work excluded a semisolid proton pool
that would lead to MT effects, instead the focus of this investigation was
the inherent ability with which a two-pool model including exchange
could be used for parameter estimation. Clearly a related issue is that MT
effects may also affect the estimation in-vivo (Zhang et al., 2015b), hence
we used the CSMT approach which leads to significantly improved sta-
bility over the normal approach to VFA imaging (Teixeira et al., 2018). A
key insight is that using the CSMT approach makes the two-pool system
consisting of one MR visible (water) proton pool and one invisible
semisolid pool behave as a single-pool system. In recent work we have
extended this to show that a system with two visible water pools (e.g.
myelin-water and IE-water) and one semisolid pool, will behave as a
system with two visible pools only (i.e. the model used in this work)
under the same CSMT conditions (West et al., 2018). However, the issues
with model degeneracy and SRC fitting were found to dominate over the
MT effects, and hence they are the main subject of this paper. Fig. 10
shows that the acquired CSMT signals are well-described by the standard
two-pool model.
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4.2. Other sources of bias in data

The majority of the results presented (apart from the in-vivo data)
investigate a ‘best case scenario’ in which the data and model fitting use
the same two-pool model. However, there are limitations with how well
this model can describe in-vivo data. For example, Deoni et al. have
proposed the inclusion of more than two pools of water protons to avoid
partial volume effects with CSF (Deoni et al., 2013). Though beneficial
for in-vivo analysis of voxels on the edge of the parenchyma, the inclu-
sion of additional model parameters would likely lead to even further
degeneracy and hence this was not investigated here.

On the subject of MT effects, the CSMT approach is designed to force
the system to behave as if the semisolid pool is not present; other
implementations of mcDESPOT would differ from this, and hence there
may also be systematic deviations present in other data that aren't pre-
sent in ours. Similarly, it is well known that RF spoiling (for the SPGR
sequences) is not perfect, and some have suggested corrections for this
(Preibisch and Deichmann, 2009); this was neglected in this work, as it
appears to be throughout the literature on mcDESPOT. Systematic de-
viations between model and tissue are a source of bias that are not pre-
sent in our simulation analysis. However, by examining the way in which
a two-pool model consisting of IE and myelin water can be fitted to itself,
we have demonstrated that even if the data were to fit the model
perfectly, biases in fitting would dominate. Additionally, the biases found
in in-vivo data appear to be consistent with the ‘best case’ simulation
study.

5. Conclusions

In conclusion, our results indicate that mcDESPOT using a signal
model that includes intercompartmental exchange does not provide
objective estimates of the underlying model parameters. Although stable
and reproducible results can be obtained, the degeneracy of the model
means that the parameter values obtained (focusing particularly on
MWF) are functions of both the particular acquisition scheme used and
the algorithm used to estimate the tissue parameters, including specific
parameters of that fitting approach. Hence, it does not make sense to
compare MWF estimated by mcDESPOT between studies unless the exact
same acquisition scheme and fitting algorithm are used with the same
search parameters. Full transparency in methods is required to ensure
this. If these conditions are met, then the approach could potentially be
used as a ‘semi-quantitative’ measure. However, even in this case,
caution is required since changes in some tissue parameters can errone-
ously appear as changes in others. As also found by others, if exchange
can be excluded then it is possible to make more objective measurements,
however if exchange is neglected during fitting for a system in which
intercompartmental exchange is actually present, unpredictable param-
eter bias may still result.
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