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Abstract
Spliceosomal SNRNP200 is a Ski2-like RNA helicase that is associated with retinitis pig-

mentosa 33 (RP33). Here we found that SNRNP200 promotes viral RNA sensing and IRF3

activation through the ability of its amino-terminal Sec63 domain (Sec63-1) to bind RNA

and to interact with TBK1. We show that SNRNP200 relocalizes into TBK1-containing cyto-

plasmic structures upon infection, in contrast to the RP33-associated S1087L mutant,

which is also unable to rescue antiviral response of SNRNP200 knockdown cells. This func-

tional rescue correlates with the Sec63-1-mediated binding of viral RNA. The hindered IFN-

β production of knockdown cells was further confirmed in peripheral blood cells of RP33

patients bearing missense mutation in SNRNP200 upon infection with Sendai virus (SeV).

This work identifies a novel immunoregulatory role of the spliceosomal SNRNP200 helicase

as an RNA sensor and TBK1 adaptor for the activation of IRF3-mediated antiviral innate

response.

Author Summary

The innate immune system is the first line of defense against pathogens and relies on the
recognition of molecular structures specific to pathogens by sensor receptors. These recep-
tors activate a signaling cascade and induce a protective cellular innate immune response.
In this study, we provide evidence for a role of the spliceosomal SNRNP200 RNA helicase
in promoting antiviral response that is clearly distinguishable of the one in pre-mRNA
splicing. The depletion of SNRNP200 in human cells resulted in a reduced interferon-β
(IFNB1) production and increased susceptibility to viral infection. We showed that
SNRNP200 positively regulates activation of the key transcription factor IRF3 via interac-
tion with TANK kinase 1 (TBK1). Upon infection, SNRNP200 binds viral RNA and relo-
calizes into TBK1-containing cytoplasmic structures to promote IRF3 activation and
IFNB1 production. Of clinical relevance, we observed a significantly hindered antiviral
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response of PBMCs from patients carrying a dominant SNRNP200 mutation associated
with retina pigmentosa type 33 (RP33), an inherited degenerative eye disease. We showed
that the RP33-associated S1087L SNRNP200 mutant has lost the ability to bind RNA and
that its expression fails to rescue antiviral response in SNRNP200 silenced cells. Our study
provides new insights into a role within the antiviral response for spliceosome SNRNP200
helicase as an RNA sensor and TBK1 adaptor in IRF3 signaling.

Introduction
The innate immune system is the first line of defense against pathogens, and it relies on the rec-
ognition of pathogen-associated molecular patterns (PAMPs) by specific pattern recognition
receptors (PRRs). Upon viral infection, intracellular foreign nucleic acids are detected by spe-
cific DExD-box RNA helicases of the RIG-I-like receptor (RLRs) family: RIG-I (also known as
DDX58), MDA5 (also known as IFIH1), and LGP2 (also known as DHX58) [1]. In response to
sensing viral RNA, these RLRs associate with the MAVS adaptor (also called IPS-1, Cardif, and
VISA) [2–5] to induce its multimerization [6,7] and to activate multiple kinases, including
IKK, TBK1, and IKBKE. Upon signal transduction, the activation of transcription factors such
as AP-1 (also known as ATF-2/c-jun), NF-κB, IRF3, and IRF7 induces the expression of pro-
inflammatory and antiviral cytokines and chemokines. Type I Interferons (IFNs) then trigger
the activation of STAT1, STAT2, and IRF9, forming a transcription factor complex known as
IFN-stimulated gene factor 3 (ISGF3) to ultimately induce a large number of IFN-stimulated
genes (ISGs). In a recent genome-wide RNAi screening that assessed virus-induced IFNB1
transcription [8], spliceosomal factors, including the SNRNP200 RNA helicase, that positively
modulate the RLR-mediated antiviral pathway were identified. Few studies have described a
contribution of spliceosomal factors in pathogen-mediated immune responses, though studies
have examined the effects of alternative mRNA splicing of innate immunity genes, such as
DDX58, MyD88, and IRF3 [9–11]. Interestingly, many DExD/H-box RNA helicases were
recently identified as viral nucleic acids sensor and/or mediator components of antiviral innate
immunity [12,13]. DHX15 and DHX9 helicases were shown to interact with MAVS, following
dsRNA recognition, and to activate NF-κB, IRF3, and MAPK pathways in myeloid dendritic
cells (mDC) [12,14]. An RNA helicase complex composed of DDX1, DDX21, and DHX36 was
reported to induce type I IFN through TRIF-dependent signaling in mDC [15]. Two other heli-
cases, DDX60 and DDX3, were shown to bind DDX58/MDA5 and to enhance its recognition
of dsRNA while also enhancing downstream type I IFN production [16,17]. DDX3 acts as an
adaptor protein of TBK1 and IKBKE, thereby synergistically enhancing IFNB1 promoter
induction [18,19]. Finally, DDX41 helicase is a DNA sensor that activates type I IFN via a
STING-TBK1 complex [20]. In the present study, it was found that silencing SNRNP200, a
core spliceosome RNA helicase and unique member of the Ski2-like subfamily, leads to a
strong decrease in the antiviral innate response by positively regulating IRF3 signaling upon
Sendai virus (SeV) infection. In SNRNP200 knockdown (KD) cells, unlike the expression of
wild-type (WT) protein, expression of the S1087L variant associated with retinitis pigmentosa
33 (RP33) is unable to rescue IFNB1 transcription. The functional rescue phenotype correlates
with the ability of the amino-terminal Sec63 domain (Sec63-1) of SNRNP200 to bind surrogate
polyinosinic-polycytidylic acid (poly I:C) and viral RNA. For instance, upon infection by SeV,
viral RNA allows SNRNP200 to relocalize into TBK1-containing cytosolic structures. A physi-
cal interaction between SNRNP200 and TBK1 was also observed, and this interaction was
mapped to the Sec63-1 domain. Finally, a significantly hindered antiviral response was
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demonstrated in human monocyte-derived macrophages (MDM) silenced for SNRNP200 and
in peripheral blood cells (PMBCs) from RP33 patients with pathogenic missense S1087L muta-
tion in SNRNP200. Ultimately, this study revealed a novel immunoregulatory role of spliceo-
some SNRNP200 helicase in viral RNA sensing and in promoting IRF3-dependent antiviral
innate immune responses.

Results

Identification of spliceosome SNRNP200 required for SeV-induced
IFNB1 transcription
A genome-wide gene silencing screen that assessed the transcriptional activity of the IFNB1
promoter following SeV infection was previously performed to identify novel regulators of
innate immunity [8]. Six genes that encode spliceosome components that reduced IFNB1 tran-
scription upon gene silencing were identified (Fig 1A). Among these genes, one encodes an
RNA helicase (SNRNP200) and two (SF3A1 and SRSF1) were shown to regulate innate
immune responses by the alternative splicing of either Myd88 or IRF3 [10,11]. To further
explore RNA helicases that play central roles in splicing and that often function in proofread-
ing events in pre-mRNA splicing [21], an RNAi mini-screen using five independent lentivi-
ruses that express short hairpin RNA (shRNA) targeting most spliceosomal RNA helicases was
performed (S1A Fig). SNRNP200 was the only RNA helicase assigned to the Ski2-like helicase
subfamily that showed a significant reduction in IFNB1 promoter-driven reporter activity. The
KD of SNRNP200 was validated through the marked decrease in the mRNA and the protein
levels while its specificity was validated by the absence of any off-target effects on other spliceo-
some gene hits (S1B and S1C Fig). The depletion of SNRNP200 reduced IFN-β production at 8
hours post-infection reaching levels comparable to those obtained in DDX58 KD cells at 48
hours post-infection (Fig 1B). Interestingly, while the depletion of SNRNP200 completely
inhibited IFIT1 (also known as ISG56) induction (S1C Fig), its overexpression could not
increase IFIT1 levels in neither the non-infected nor the SeV-infected cells. To further investi-
gate SNRNP200’s contribution to the antiviral response, the viral susceptibility of SNRNP200
KD cells was monitored in a time-course experiment by following IFIT1 induction along with
the production of infectious particles and the viral protein levels (Fig 1C and 1D). In control
HEK 293T cells transduced with a non-target sequence shRNA (shNT)-expressing lentivirus,
SeV protein was only detectable at 24 hours post-infection which coincided with IFIT1 induc-
tion (Fig 1C). In contrast, in SNRNP200 KD cells, SeV protein was readily detectable at 8 hours
post-infection becoming more significant at 24 hours post-infection. However, IFIT1 induction
was only detected at 48 hours post-infection. Of notable importance, SNRNP200 KD cells were
observed to yield up to a 2-log increase in viral titers when compared to the control (Fig 1D).
Correlating with a reduced early IFNB1 induction, it was confirmed that silencing SNRNP200
also increased the replicative potential of influenza A virus (FLUA) and hepatitis C virus
(HCV) in HEK 293T and Huh7 cells, respectively (S2 Fig). Based on the epistasis analysis, the
transcriptional activity of the IFNB1 promoter is slightly affected by ectopic expression of con-
stitutively active IRF3(5D) [22], while it was completely blocked in SeV infected or MAVS
overexpressing cells transduced at a high multiplicity of infection (MOI of 20) with lentiviral-
expressing shRNA (Fig 1E). Similar results were obtained in A549 cells (S3A and S3B Fig).
Interestingly, upon SeV infection and in contrast to IRF3 overexpression, the ectopic expres-
sion of IRF3(5D) could rescue the induction of IFIT1 (Fig 1F), suggesting a role for SNRNP200
in IRF3 activation. The effect of SNRNP200 KD in NF-κB-dependent transcription was then
investigated using a reporter assay (p2xNF-κB_fLUC) in HEK 293T cells. It was found that
SNRNP200 KD cells display no attenuation of poly (I:C)-, MAVS-, TBK1-, or p65-mediated
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activation of the NF-κB promoter (S4A Fig). In contrast, in these cells, there was a significant
inhibition of SeV-, poly (I:C)-, TBK1-, and IFN-α-mediated activation of the ISG56 promoter
(S4B Fig). It was confirmed that SNRNP200 silencing does not affect NF-κB-dependent tran-
scription in SeV-infected A549 cells through the quantification of TNF, NFKBIA, and
TNFAIP3 mRNA levels using qRT-PCR (S3C Fig). Interestingly, neither the TRIF nor the
cGAS/STING pathways are affected in SNRNP200 KD cells whereas the RLR pathway, which
converge to the TBK1-mediated phosphorylation of their respective adaptors (TRIF, STING,
and MAVS) to recruit IRF3 and to license IRF3 for phosphorylation [23]. These data suggest
that, upon RNA virus infection, SNRNP200 may function between MAVS signal transduction
and TBK1-mediated IRF3 licensing. These observations led to exploring a specific regulatory
role of SNRNP200, a core component of U4/U6-U5 small nuclear RNA (snRNA) [24], in the
downstream activation of IRF3, of production of IFNB1 and ultimately of an optimal antiviral
response.

SNRNP200 specifically regulates IRF3 signaling upon RNA virus
infection
To understand the manner in which SNRNP200, upon viral infection, contributes to IRF3-me-
diated IFNB1 production, the effect of SNRNP200 silencing on the expression of established
members of the RLR pathway was evaluated using a western blot analysis (S5A Fig). First, a
decreased protein expression of IRF3 in SNRNP200 KD cells was observed. This correlated
with the blockage of the SeV-mediated induction of IFIT1, DDX58, and IFIH1 proteins. The
decreased IRF3 protein levels were further confirmed at the mRNA level by qRT-PCR, parallel-
ing the reduced mRNA levels of SNRNP200 and its effector genes (IFNB1, IFIT1, DDX58, and
IFIH1) (S5B Fig). While the residual IRF3 protein levels of KD cells are sufficient for the activa-
tion of the cGAS/STING pathway (S4B Fig), a complete inhibition of IRF3 phosphorylation at
serine 386 following SeV infection (Fig 2A, see IRF3-p386) was observed. This suggested a spe-
cific contribution of SNRNP200 during IRF3-activation-mediated IFNB1 production. A weak
decrease of the basal protein expression levels of DDX58 in SNRNP200 KD cells was also
observed (S5A Fig). The mRNA levels, however, were comparable to the control shNT cells
(S5B Fig), suggesting that SNRNP200 enhances the RLR-mediated antiviral signaling potential
of DDX58 at the basal level. In contrast, the protein expression of MAVS, TBK1, IKBKE,
RELA (p65), and TRAF3, which all contribute to the signal propagation for IFNB1 induction,
remained unchanged in all conditions (S5A Fig). Similar observations were made for the

Fig 1. SNRNP200 spliceosome protein is required for virus-induced IFNB1 production to control viral replication. (A) HEK 293T cells
stably expressing an IFNB1promoter-driven luciferase gene (HEK 293T pIFNB1-Luc) are transduced with different lentiviral-expressing
shRNA targeting SNRNP200, SFRS1, SNRNP35, SF3A1, PHF5A and NHP2L1 genes. Left panel—Heat map (log2 scale) indicating the
modulation of IFNB1 promoter activity following silencing of spliceosome genes and infection with SeV or transfection of poly I:C, MAVS or
IRF3(5D) expression plasmids for 16 hours. Right panel—qRT-PCR validation data of the endogenous IFNB1 mRNA levels and target gene
KD efficiency of cells transduced with shRNA. (B) HEK 293T are transduced with lentiviral-expressing shRNA control (shNT) or targeting
SNRNP200 (shSNRNP200) or DDX58 (shDDX58) for three days and infected cells with SeV for 8, 24 or 48 hours. Supernatants are harvested
and IFN-β secretion levels are measured by ELISA. (C) Immunoblot analysis of HEK 293T cells infected with SeV for 8, 24 or 48 hours
following treatment with shNT or shSNRNP200 for three days. SeV, IFIT1 and actin proteins are resolved by immunobloting at the indicated
time. (D) Infectivity titers of SeV particles produced as indicated in (C) are determined by harvesting supernatants at the indicated time and
infecting VERO cells in virus plaque assays. (E) HEK 293T pIFNB1-Luc cells are transduced with four different shSNRNP200 at a multiplicity of
infection (MOI) of 5 and 20 for three days. Relative IFNB1 promoter activity are reported as percentage of the control shRNA NT after infection
with SeV or transfection of poly I:C, MAVS or IRF3(5D) expression plasmids for 16 hours (left). Simplified schematic of RLR signaling pathway
leading to IFN-β promoter induction (right). Deduced points of action of SNRNP200 are marked with asterisks (blue and green for MOI = 5 and
20, respectively). Knockdown efficiencies at the various MOI are determined by immunobloting analysis of SNRNP200 protein levels. (F)
Immunoblot analysis of HEK 293T cells transduced with shNT or shSNRNP200 for three days and subjected to SeV infection for 16 hours.
Plasmids encoding eYFP, IRF3 and IRF3(5D) are transfected for 48 hours. Following cell harvesting, IRF3 and IFIT1 protein levels are
resolved by immunobloting analysis of cell lysates.

doi:10.1371/journal.ppat.1005772.g001
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protein expression of the housekeeping genes ACTIN, TUBULIN, and GAPDH (S5A Fig). To
better evaluate the outcome of the reduced basal protein levels of DDX58 and IRF3 on IFNB1
production, ectopic expression of DDX58 and IRF3 in SNRNP200 KD cells was used in an
attempt to restore antiviral response. Surprisingly, overexpression of DDX58 and IRF3 neither
alone nor in combination could restore SeV-mediated IFIT1 induction (Fig 2B and S6A and
S6B Fig). Furthermore, ectopic expression of neither DDX58 nor IRF3 restored IFNB1 pro-
moter reporter activity or IFN-β cytokine production upon SeV infection (Fig 2D and 2E).
This was in stark contrast to the almost complete rescue achieved by the ectopic expression of
IRF3(5D) (Fig 2D and 2E). The phosphorylation of IRF3 at serine 386 (IRF3-p386) was also
noted as a key event for IRF3 activation and, as such, the proportion of IRF3-p386 in relation
to total IRF3 was investigated. The quantitative ratios of IRF3-p386 to total IRF3 in context of
endogenous or overexpressed DDX58, IRF3, IRF3(5D), and cGAS/STING were determined
(Fig 2B). When comparing control shNT-treated with SNRNP200 KD cells in the context of
SeV-mediated infection, regardless of whether or not DDX58 or IRF3 was overexpressed, a sig-
nificant reduction in the IRF3-p386/IRF3 ratios (from 0.6–0.9 to 0.1–0.2) was observed (Fig
2B). This establishes the requirement of SNRNP200 for downstream IRF3 activation indepen-
dent of its effects on protein expression. Furthermore, ectopic expression of IRF3(5D) in
SNRNP200 KD cells yielded IRF3-p386/IRF3 ratios comparable to those of the control shNT-
treated cells (0.8 vs 0.6–1.3) correlating with the almost complete restoration of SeV-mediated
IFNB1 production. The effect of SNRNP200 KD on the DNA sensing arm of the antiviral
response downstream of cGAS/STING was also investigated. It was shown that SNRNP200 is
dispensable for cGAS/STING-mediated IFIT1 induction, IFN-β production, and IFNB1 pro-
moter activity (Fig 2B, 2D and 2E), further implying a specific role for SNRNP200 in the RLR-
mediated IRF3 signaling pathway upon RNA virus infection. Interestingly, the higher
IRF3-p386/IRF3 ratios (4.5) in SNRNP200 KD cGAS/STING expressing cells versus control
cells (2.3) largely reflects a significant increase in IRF3 activation and hence in IFIT1 induction
(Fig 2B). This suggests that SNRNP200 potentially competes with the STING adaptor during
TBK1-mediated IRF3 phosphorylation. Although IRF3 expression slightly increased IFN-β
secretion and the IFNB1 promoter activity when activation of the cGAS/STING pathway and
SeV infection were combined in SNRNP200 KD cells (Fig 2D and 2E), similar IFNB1 induction
was observed in uninfected cells (Fig 2C), demonstrating that IRF3 protein levels in
SNRNP200 KD cells have little functional consequence on the cytosolic DNA sensing pathway.
Finally, the IRF3 mRNA splice junctions and the presence of exons were investigated to explain
the reduced mRNA and protein levels of IRF3. No splicing variants were observed excluding
an alternative splicing regulation of IRF3 and supporting a reduction in the efficiency of pre-
mRNAs splicing to explain the phenotype of SNRNP200 KD cells (S7 Fig).

Interestingly, the induction of IFIT1, DDX58, and IFIH1 was also inhibited upon treatment
of SNRNP200 KD cells with IFN-α (Fig 2A). Furthermore, similar levels of IFNα/β receptor
alpha chain (IFNAR1), of STAT1, and of phosphorylation at tyrosine 701 (STAT1pY701) were

Fig 2. SNRNP200 KD restricts SeV- and type I IFN-mediated induction of antiviral response. (A) HEK 293T cells are transduced with
shNT or shSNRNP200 and infected with SeV or stimulated with IFN-α for 24 hours. Selected genes are resolved by immunobloting and
compared to shNT control cells. (B) HEK 293T are transduced with shNT or shSNRNP200 for 3 days and transfected with DDX58, IRF3,
IRF3(5D) and cGAS-STING expression plasmids for the last 48 hours, and subsequently infected with SeV for 24 hours. Selected genes
are resolved by immunobloting and compared with cells transduced with shNT. (C) HEK 293T pIFNB1-Luc cells are transduced with shNT
or shSNRNP200 for 3 days and transfected with DDX58, IRF3, IRF3(5D) and cGAS-STING expression plasmids for the last 48 hours.
Luciferase levels are resolved and compared to shNT control cells. (D) HEK 293T pIFNB1-Luc cells are transduced with shNT or
shSNRNP200 for 3 days and transfected with DDX58, IRF3, IRF3(5D) and cGAS-STING expression plasmids for the last 48 hours, and
subsequently infected with SeV for 24 hrs. Luciferase levels are resolved and compared to shNT cells. (E) HEK 293T cells are treated as
indicated in D. At 24 hrs post-infection, supernatants are harvested and IFN-β secretion levels are measured by ELISA.

doi:10.1371/journal.ppat.1005772.g002
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observed between control and SNRNP200 KD cells following stimulation with IFN-α. This
suggests the involvement of SNRNP200 at a later stage of type I IFN signaling downstream of
STAT1 phosphorylation. The negative effect of SNRNP200 KD on IFN-α signaling was also
demonstrated by the reduced mRNA levels of IFN inducible genes IFIT1, DDX58, and IFIH1
in A549 cells (S3C Fig).

To comprehensively understand the effect of SNRNP200 KD on type I IFN production
(early) and signaling (late), expression profiling studies of non-stimulated (NS), SeV-infected
and IFN-α-treated SNRNP200 KD cells versus control shNT HEK 293T cells were performed
to assess differential gene expression (Fig 3 and S8 Fig). The effect of SNRNP200 KD on basal
gene expression of NS cells was characterized; 2,880 altered transcripts (cutoff of 1,5 log2 fold
induction) that are primarily associated with immune system functions and cell cycle regula-
tion were found based on a Reactome pathway enrichment analysis (S8A Fig). A list of tran-
scriptionally altered genes by SeV infection or by IFN-α stimulation in control shNT cells was
then established. Using a stringent significance cutoff (p�0,001), 52 genes altered by SeV
infection and 55 genes altered by IFN-α stimulation were found to be transcriptionally affected
by SNRNP200 (Fig 3A). Within these subsets of genes, 13 were in common reflecting the
expected overlap of the early (SeV-mediated IFNB1 production) and the late (type I IFN signal-
ing) arms of the antiviral response. Within the subset of commonly affected genes, all showed
altered expression upon SNRNP200 silencing with a mean difference of 3,8 log2 fold change
when compared to the shNT control cells (Fig 3B). On the other hand, the two subsets of 39
SeV-specific and 42 IFN-α specific genes were hindered by SNRNP200 silencing by a mean dif-
ference of 2,6 and 2,5 log2 fold change, respectively, when compared to the shNT control cells
(Fig 3C and 3D). This demonstrated that SNRNP200 plays a distinct role in the early and the
late antiviral response pathways. The relationship between the affected gene subsets was
assessed by resolving their interaction and functional alignment networks. The assessment
showed that the top GO term for genes exclusively affected by SeV is “response to virus”, and
the top GO term for IFN-α is “response to type I interferon”. Furthermore, it showed that SeV-
specific genes affected by silencing SNRNP200 are IRF3-dependent (IFNB1, IL29, and BIRC6)
and that several IFN-α-specific genes are JAK-STAT1-dependent (ACVR1C, CIQA, IFIT5,
and OAS1). The latter might be explained by the reduction of IFN-induced IRF9 and STAT1
mRNA levels encoding key transcription factors of ISGF3 that mediates signaling of type I and
III IFNs (S2 Table). The molecular signature of differential gene expression strengthens the
observation that SNRNP200 silencing hinders IRF3-dependent gene induction, leading to a
general weakening of the RLR signaling pathway, and further suggests that SNRNP200 plays a
distinct regulatory role in type I IFN signaling. The results suggest that SNRNP200 specifically
regulates IRF3 activation upon RNA virus infection to promote IFNB1 induction and IFN
effector responses, and thus demonstrates its importance in controlling viral infections.

Sec63-1 domain of SNRNP200 is required for virus-mediated IFNB1
production
To examine the manner in which SNRNP200 directly contributes to IRF3-mediated IFNB1
activation upon SeV infection, a series of recombinant SNRNP200-truncated mutants were
tested for their ability to rescue IFNB1 reporter activity and ISG expression in SNRNP200 KD
cells (Fig 4 and S9 Fig). None of the truncated mutants could induce an antiviral response in
SNRNP200 KD cells (with the exception of a weak IFNB1 activation by expression of a D1-D3
construct). Indeed, the deletion of the C-terminal Sec63 domain (Sec63-2) alone, which was
reported in yeast (Sec63-2 deleted Brr2 protein) to reduce ATPase/helicase activity and splicing
[25], completely abolished the activation of IFNB1 promoter-driven reporter activity and the
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induction of IFIT1 and DDX58 upon SeV infection. To further explore a dual regulatory role
in splicing and RNA-mediated antiviral responses, the described SNRNP200 heterozygous
mutations associated with the autosomal dominant RP33 disease were considered [26–28]. In
particular, the SNRNP200 S1087L and R681C variants located within the Sec63-1 homology
domain and the N-terminal RecA-like ATPase/helicase domains, respectively, were investi-
gated (Fig 4A). It was first demonstrated that the ectopic expression of RNAi-resistant WT
SNRNP200 rescues the SeV-mediated IFN-β secretion and the IFNB1-driven reporter activity
in KD cells, further validating the specificity and minimal off-target effects of shSNRNP200
and its associated immunoregulatory phenotype (Fig 4). Surprisingly, expression of the
SNRNP200 S1087L mutant completely eliminated the ability to rescue IFNB1 activation (Fig
4B and 4C). Similar results were obtained using qRT-PCR as the rescue of endogenous IFNB1
mRNA levels was achieved only by the expression of WT SNRNP200 (S10 Fig). Concordantly,
WT SNRNP200, but not the S1087L mutant, restores IRF3 protein levels, and more impor-
tantly, restores the phosphorylation of IRF3 at serine 386 as well as the inducible levels of
DDX58 and IFIT1 upon SeV infection (Fig 4D). WT SNRNP200, but not the S1087L mutant,
also restores IFN-α-dependent DDX58 and IFIT1 induction. It was also determined that
expression of R681C variant only slightly rescues IFNB1 promoter-driven reporter activity and
IFN-β secretion (Fig 4B and 4C). Interestingly, while investigating a mutation within the ATP
binding motif, it was found that the ectopic expression of a SNRNP200 C502A variant elicited
an IFNB1 response independent of viral infection (S11 Fig) in line with the recently reported
natural gain-of-function of DDX58 and IFIH1 ATPase-deficient variants [29]. The constitutive
induction of IFNB1 with expression of SNRNP200 C502A is further enhanced upon SeV infec-
tion to levels similar to the WT enzyme (Fig 4B and 4C), thereby suggesting the requirement of
a functional SNRNP200 ATPase in conferring specificity to viral RNA and in preventing sig-
naling through the recognition of self-RNA. Thus, the data firmly establishes a critical role of
the Sec63-1 domain to promote virus-mediated IFNB1 production and further suggests a con-
tribution of the N-terminal ATPase/helicase domain in sensing viral RNA.

Sec63-1 domain of SNRNP200 is a major determinant of viral RNA
recognition
DExD/H-box helicases, such as RIG-I, are engaged in antiviral innate immunity because they
detect viral nucleic acids and prevent the recognition of self-RNA through ATP hydrolysis
(29). As the Sec63-1 containing S1087L mutation was reported to diminish binding to RNA
duplex and to reduce RNA-stimulated ATPase/helicase activity without any discernible effect

Fig 3. Transcriptional profiles of SNRNP200 KD cells reveal altered expression of genes induced by SeV infection and IFN-α
treatment. A) Summary diagram of the transcriptional analysis of shNT control cells to illustrate that out of the 525 SeV altered
transcripts and 957 IFN-α altered transcripts, 52 and 55 genes have a differential gene expression (p� 0.001) upon SeV infection or
IFN-α stimulation, respectively. (B) Differential gene expression of the 13 transcripts affected by SeV infection and IFN-α stimulation.
Expression Fold Change are shown for shSNRNP200 cells (200_NS), shSNRNP200 cells + SeV (200 SEV) and shSNRNP200 cells
+ IFN-α (200_IFNa) and for shNT control cells (NT_SEV, NT_IFNa). Numerical values are log2 fold change. (C) Differential gene
expression of the 39 transcripts affected by SeV infection. Expression Fold Change are shown for shSNRNP200 cells (200_NS),
shSNRNP200 cells + SeV (200 SEV) and shSNRNP200 cells + IFN-α (200_IFNa) and for shNT control cells (NT_SEV, NT_IFNa).
Numerical values are log2 fold change. Top 15 genes are displayed. Complete list and gene network are available in supporting
information (S1 Fig and S1 Table). (D) Differential gene expression of the 42 transcripts affected by IFN-α stimulation. Expression Fold
Change are shown for shSNRNP200 cells (200_NS), shSNRNP200 cells + SeV (200 SEV) and shSNRNP200 cells + IFN-α
(200_IFNa) and for shNT control cells (NT_SEV, NT_IFNa). Numerical values are log2 fold change. Top 15 genes are displayed.
Complete list and gene network are available in supporting information. (E) Interaction network of the 13 common genes shown in (a)
and affected by SNRNP200 silencing. The colors inside the dot represent their biological processes (see legend on left). Lines
represent physical interactions (protein-protein interactions), pathways (blue), and co-localization (purple) attributes. Shaded nodes
represent input data; Black nodes represent most likely first degree interactor. Higher magnification and input genes of this network
can be found in supporting documentation. The network on the right corner represents the connections to IRF3.

doi:10.1371/journal.ppat.1005772.g003
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on the folding of SNRNP200 (27), it was hypothesized that this natural loss-of-function muta-
tion abolishes the recognition of viral RNA for IFNB1 induction. To determine whether or not
the S1087L variant impaired the binding of the immunostimulatory RNA in SeV-infected cells,
the in vitro ability of exogenously expressed SNRNP200 to bind biotinylated polyinosinic-poly-
cytidylic acid (poly (I:C)) was measured using an RNA pull-down and western blot analysis of
bead-bound protein fractions (Fig 5). It was shown that FLAG-WT SNRNP200 binds poly (I:
C), which is used as a viral double-stranded RNA (dsRNA) surrogate, only in SeV-infected cell

Fig 4. SNRNP200, but not Sec63-containing S1087Lmutant, rescues SeV- and IFN-α-mediated induction of antiviral response in SNRNP200
KD cells. (A) Schematic representation of SNRNP200 protein, C-terminal truncation and clinically relevant mutants. (B) HEK 293T pIFNB1-Luc cells are
transduced with shSNRNP200 and transfected with RNAi-resistant SNRNP200WT and variants expression plasmids bearing the indicated mutation or
eYFP as a control. Following 24 hours of SeV infection, total luciferase levels are measured and compared with control shNT cells. (C) HEK 293T are
treated as indicated in B. IFN-β secretion levels are measured by ELISA and compared with shNT cells. (D) HEK 293T cells are transduced with
shSNRNP200 and transfected with RNAi-resistant SNRNP200WT and variants expression plasmids bearing the indicated mutation or eYFP as a
control. At 24 hours, cells are harvested and DDX58, IFIT1, IRF3 and IRF3pS386 levels are resolved by immunobloting analysis of cell lysates.

doi:10.1371/journal.ppat.1005772.g004
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Fig 5. SNRNP200, but not S1087Lmutant, binds viral RNA in vitro. (A) HEK 293T cells are transfected with FLAG-eYFP (control),
FLAG-SNRNP200 or FLAG-SNRNP200 S1087L mutant expression plasmids for 48 hours and infected with SeV for 16 hours. RNA pull-down
assays are performed with cell lysates using biotinylated poly (I:C). Cell lysates and bead-bound complexes are analyzed byWestern blotting
and compared to uninfected control cells. (B) HEK 293T cells are transfected with FLAG-Sec63-1 and FLAG-Sec63-2. RNA pull-down assays
are performed and analyzed as indicated in (A). (C) HEK 293T are treated as indicated in (B) and RNA pull-down assays are performed on cell
lysates using biotinylated HCV RNA and analyzed as indicated in (A). (D) HEK 293T cells are transfected with FLAG-SNRNP200 (top panel) or
FLAG-cGAS (bottom) expression plasmids for 48 hours. RNA pull-down assays are performed with cell lysates using biotinylated HCV RNA
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extracts (Fig 5A). Furthermore, a complete loss of poly (I:C) binding by the FLAG-SNRNP200
S1087L variant was observed. Interestingly, the FLAG-Sec63-1 domain, but not the FLAG--
Sec63-2, is sufficient to bind poly (I:C) (Fig 5B). These observations were confirmed with bioti-
nylated HCV genomic RNA. As expected, WT SNRNP200 and the Sec63-1 domain, but
neither the S1087L variant nor the Sec63-2 domain, were able to successfully pull-down HCV
RNA (Fig 5C). To provide insight into the interaction of SNRNP200 and immunostimulatory
RNA molecules, SNRNP200’s ability to bind a synthetic 5’-triphosphate (5’ppp) and a double-
stranded stretch of RNA using the full-length HCV genome, produced in vitro by transcription
with a T7 polymerase, was investigated (Fig 5D). A comparable binding of FLAG-WT
SNRNP200 to the untreated and to the calf-intestine alkaline phosphatase (CIAP)-treated
blunt-ended HCV RNA was observed. This comparable binding suggests that the 5’ppp moiety
is not essential for the recognition of viral dsRNA. FLAG-SNRNP200 does not bind dsDNA
molecules unlike the FLAG-cGAS control which does [30]. This is reflected by the lack of pull-
down by FLAG-SNRNP200 with biotinylated polydeoxyadenylic acid-polythymidylic acid
(poly (dA:dT)) and polydeoxyguanylic acid-polydeoxycytidylic acid (poly (dG:dC)) homopoly-
mer molecules (Fig 5D). To assess the requirement of a protein complex with DDX58, MAVS,
or TBK1 for binding HCV RNA, expressions of these proteins both individually and together
were silenced, and RNA pull-down assays were performed to detect SNRNP200 (Fig 5E). It
was determined that SNRNP200 binds HCV RNA regardless, ruling out a contribution of these
proteins in its ability to recognize viral RNA. Finally, FLAG-tagged WT SNRNP200 and
S1087L variant were immunoprecipitated upon SeV infection, and the co-purified RNA mole-
cules were analyzed using qRT-PCR in SNRNP200 KD and in control shNT cells (Fig 5F).
Increased amounts of actin mRNA for both immunoprecipitated proteins were found com-
pared to the eYFP control (normalized to RNA levels of cell lysates). A significant enrichment
of SeV RNA, which is more important in SNRNP200 KD cells than in shNT control cells that
express the endogenous untagged protein, was observed upon immunoprecipitation of
FLAG-WT SNRNP200, demonstrating a direct binding to viral genomes. The amount of SeV
RNA recovered with the WT was almost 10- to 20-fold higher than with the S1087L variant in
KD cells (and 3-fold in shNT cells), reflecting an altered RNA binding ability of the mutant.
Despite the weak binding of SeV RNA by S1087L which is possibly due to its N-terminal RecA
domains, the loss-of-function in IFNB1 induction reveals that this interaction is not biologi-
cally active. The data demonstrate that the Sec63-1 domain of SNRNP200 is a major determi-
nant of viral RNA recognition and consequently of SNRNP200’s ability to activate antiviral
innate immune responses.

Sec63-1 domain of SNRNP200 interacts with TBK1
To better define a specific immunoregulatory role of SNRNP200, binding partners were identi-
fied by screening proteins of the antiviral signaling pathways upon immunoprecipitation of
FLAG-tagged SNRNP200. This method successfully allowed the detection of a constitutive
interaction between SNRNP200 and the ubiquitously expressed kinase TBK1. This interaction
was also detected when using the SNRNP200 S1087L mutant (Fig 6A). The ability of various

(5’ppp) that is either left untreated or treated with CIAP or heat inactivated (h/i) CIAP (control), and with biotinylated poly (dA:dT) and poly (dG:
dC) DNAmolecules. Pull-down complexes are resolved by immunobloting and compared to protein input and uncoated beads as negative
control. (E) Pull-down assays with biotinylated HCV RNA and transfected FLAG-SNRNP200 are performed with lysates of cells transduced with
shRNA targeting MAVS, RIG-I or TBK1, either alone or in combination. (F) HEK 293T cells are transduced with shNT or shSNRNP200 and
transfected with FLAG-eYFP, RNAi-resistant FLAG-SNRNP200WT or S1087L variant expression plasmids and both (comb) for 48 hours. At
16 hours post-infection with SeV, cell lysates are subjected to an anti-FLAG immunoprecipitation, and RNAmolecules are extracted from the
immune complexes and analyzed by qRT-PCR. SeV and actin RNA levels are determined and normalized to RNA levels of cell lysates.

doi:10.1371/journal.ppat.1005772.g005
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SNRNP200-truncated mutants (Fig 4A) to bind TBK1 (Fig 6B) was then assessed. A mutagene-
sis analysis showed that the Sec63-1 domain of SNRNP200 is required and sufficient for TBK1
interaction (Fig 6C), which is similar to the observation for RNA binding (Fig 5B and 5C).
Both Sec63 homology domains of SNRNP200 contain a helical bundle (HB) and immunoglob-
ulin-like (IG) sub-domains separated by a helix loop helix (HLH) motif. To more accurately

Fig 6. SNRNP200 Sec63-1 domain interacts with TBK1. (A) HEK 293T cells are transfected with FLAG-eYFP (control), FLAG-SNRNP200
or FLAG-SNRNP200 S1087L mutant expressing plasmids for 48 hours. Cell lysates are prepared following 16 hours of SeV infection and
subjected to immunoprecipitation with anti-FLAG antibodies. Cell lysates and immune complexes are resolved by immunobloting analysis
using anti-FLAG and anti-TBK1 antibodies. (B) Immunoprecipitation of FLAG-SNRNP200 C-terminal deletion mutants are performed and
analyzed as indicated in (A). C) Immunoprecipitation of FLAG-SNRNP200 Sec63-1, HB-HLH or HLH-IG subdomains of Sec63-1 and Sec63-2
are performed and analyzed as indicated in (A). (D) Reciprocal immunoprecipitation of FLAG-eYFP (control), FLAG-TBK1 or FLAG-TBK1
K38Amutant following ectopic expression of SNRNP200 are performed as indicated in (A) and analyzed as indicated in (A). Cell lysates and
immune complexes are resolved by immunobloting analysis using anti-FLAG and anti-SNRNP200 antibodies.

doi:10.1371/journal.ppat.1005772.g006
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map the TBK1 binding domain, the sub-domains of Sec63-1 were expressed separately. A weak
interaction with the HLH-IG sub-domain was observed, suggesting its contribution to the
binding of TBK1 (Fig 6C). It was also demonstrated that the C-terminal Sec63-2 domain could
not bind TBK1, which corroborates the detected interaction of the N-terminal truncated D1-3,
D1-4, and D1-5 mutants with TBK1 (Fig 6B and 6C). In reciprocal experiments, immunopre-
cipitation of FLAG-tagged TBK1 confirmed the interaction with ectopically expressed
SNRNP200 in uninfected and in SeV-infected cells (Fig 6D). In addition, the kinase-dead
TBK1 mutant (K38A) was still shown to interact with SNRNP200, demonstrating that this
interaction is not dependent on TBK1 activity (Fig 6D). Finally, the interaction was further
confirmed in A549 cells by the co-immunoprecipitation of endogenous SNRNP200 and TBK1
proteins (S12 Fig).

To further assess the interaction of SNRNP200 and TBK1, their intracellular localization
was investigated by examining confocal fluorescence microscope images of HEK 293T cells
and of HeLa cells in response to SeV infection (Fig 7 and S13 Fig). It was observed that
FLAG-SNRNP200 (HEK 293T cells) and endogenous SNRNP200 (Hela cells) are localized to
the nucleus and cytoplasm with a diffuse staining prior to stimulation. Upon viral infection, a
subcellular fraction of SNRNP200 relocalizes with TBK1 into perinuclear cytoplasmic speckles
(Fig 7A and S13B Fig). SNRNP200 and TBK1 colocalization can be easily observed in the 3D-
stack and lateral view of infected cells (Fig 7B and 7C). Unlike WT SNRNP200, the staining of
the FLAG-SNRNP200 S1087L mutant shows neither relocalization of the protein nor colocali-
zation with TBK1 into these cytoplasmic speckles upon infection (Fig 7A and S13A Fig), corre-
lating with its lack of RNA binding (Fig 5). Thus, the data suggest that viral RNA recognition
by the Sec63-1 domain is responsible for the relocalization of SNRNP200 to perinuclear cyto-
plasmic speckles, and that SNRNP200 possibly functions as a novel adaptor via its interaction
with TBK1 to promote IRF3 phosphorylation and antiviral innate responses.

SNRNP200 regulates innate immune responses of SeV-infected human
MDM
The regulation of antiviral responses by SNRNP200 was further investigated in immune cells
using primary cultures of purified human monocyte-derived macrophages (MDM). It was
found that SeV infection leads to an increase in the immunodetection of SNRNP200 without
affecting mRNA levels (Fig 8A), as observed in SeV-infected and in IFN-α-treated HEK 293T
cells (S14 Fig). More importantly, the silencing of SNRNP200 in MDM decreases the induction
of IFIH1 and IFIT1, and completely blocks IRF3 Ser386 phosphorylation within 3 hours post-
infection (Fig 8B). Kinetic studies on IFN-β production have further demonstrated a complete
blockage of its secretion at 3 hours post-infection (Fig 8C). In contrast to the unchanged TNFα
mRNA levels, a decrease in IFNB1 mRNA was observed, which correlates with the reduced
SNRNP200 mRNA at 1 hour post-infection in MDM (Fig 8D, 8E and 8F). Interestingly, the
duration of SNRNP200 gene silencing is not sufficient to affect the steady-state levels of IRF3
protein, though it completely inhibits its phosphorylation. In addition, SNRNP200 KD
increased SeV protein levels, as observed in HEK 293T cells (Figs 1C and 8B). These results
confirm a regulatory role of SNRNP200 in the IRF3-mediated antiviral response in human
macrophages.

Impaired antiviral response of PBMCs from RP33 patients
RP is an inherited degenerative eye disease that causes severe vision impairment and blindness
due to mutations in several core spliceosomal proteins. The antiviral responses of peripheral
blood mononuclear cells (PBMCs) of RP33 patients that are genotyped for a particular
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Fig 7. Re-localization of SNRNP200 in perinuclear cytoplasmic speckles and colocalization with TBK1 in response to SeV infection. (A)
Confocal analysis of HEK 293T co-transfected with FLAG-SNRNP200 or FLAG-SNRNP200-S1087L and MYC-TBK1 using Hoechst, anti-FLAG and
anti-MYC antibodies without virus infection or following a 16-hour infection with SeV. Imaging was done using a 63x/1.40 Oil DIC objective. Intensity
analysis showed that 19/19 cells have cytoplasmic colocalization between SNRNP200 and TBK1 in SeV-infected cells. (B) Z-stack and lateral view of
SNRNP200 and TBK1 in SeV-infected HEK 293T cells treated as indicated in (A). (C) Z-stacks reconstitution of a complete cell with colocalization plot
and cut view, showing an exclusive cytoplasmic colocalization of SNRNP200 and TBK1.

doi:10.1371/journal.ppat.1005772.g007
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Fig 8. SNRNP200 KD restricts SeV-mediated antiviral response of humanMDM. (A) MDM are infected with SeV for 1, 3 or 5 hours.
SNRNP200 and IFIT1 protein levels are resolved by immunobloting of cell lysates. (B) MDM are transfected with a pool of siRNA targeting
SNRNP200 for 48 hours and infected with SeV. At 3 hours post-infection, cells are harvested and selected proteins (SNRNP200, IFIT1, IFIH1,
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monoallelic mutation in SNRNP200 were characterized: p.S1087L- c.3260C>T in the Sec63-1
domain and p.R681C c.2122G>A in the N-terminal helicase domain (see S1 Table for donor
information). Interestingly, all RP33 patients showed a complete blockage of IFN-β cytokine
production at 3 hours post-infection with a significant two-fold reduction in IFN-β secretion at
7 hours (Fig 9A and 9B). The decreased IFN-β production was corroborated by the reduction
of virus-induced IRF3-dependent IFNB1 and IFIT1 mRNA. On the other hand, NF-κB-depen-
dent TNF mRNA levels were not significantly affected (Fig 9C, 9D and 9E). The IRF3 mRNA
levels determined by qRT-PCR showed no difference between healthy donors (HD) and RP33
patients (Fig 9F). Finally, a cytokine 41-plex assay performed on supernatants of infected
PBMCs from HD and RP33 patients showed a significant decrease in IFN-α2, but showed sim-
ilar cytokine/chemokine levels of RANTES, IL6, CXCL10, and IL1B (S15 Fig). The defective
antiviral response of PBMCs from RP33 patients demonstrates that SNRNP200 plays a crucial
role in regulating the IRF3-dependent pathway of IFNB1 production and does so without alter-
ing the NF-κB-dependent inflammatory pathway.

Discussion
SNRNP200 RNA helicase is ubiquitously expressed in cells and is a core component of the spli-
ceosome. Its plays a key role in unwinding U4/U6 snRNA to form a highly structured RNA
interaction network among the U2, U6, and U5 snRNA and the pre-mRNA required for activa-
tion of the spliceosome [31,32]. Despite this critical function for pre-RNA splicing, to the
authors’ knowledge, no data has been found that suggests a role of SNRNP200 in host defense.
Furthermore, few studies have described a contribution of spliceosomal proteins for innate
immunity. Two spliceosomal proteins (SRSF1 and SF3A1) have been identified from the
genome-wide gene silencing screening (Fig 1A) that have previously been reported to be
involved in the generation of alternative splice variants of important innate immune regulators.
Depletion of SRSF1 in human A549 lung cancer cells reduces IFN-β through the expression of
alternative IRF3 spliced variants [10], while SF3A1 silencing leads to a decreased induction of
pro-inflammatory cytokines by promoting an alternative splice form of MyD88 [11]. Based on
this study, evidence of a novel role of the spliceosomal SNRNP200 RNA helicase in the regula-
tion of IRF3-mediated antiviral response upon the RNA virus infection in human cells is pre-
sented: 1. SNRNP200 KD cells infected with SeV and FLUA show higher virus titers and viral
proteins (Fig 1 and S2 Fig), suggesting that SNRNP200 is involved in host defense mechanisms;
2. SNRNP200 KD cells reduce virus-mediated IFN-β production (Figs 1B, 2E, 4C and 8C); 3.
Epistasis studies suggest a role for SNRNP200 within the antiviral response during IRF3 activa-
tion (Figs 1E, 1F, 2B, 2D and 2E); 4. SNRNP200 solely regulates the RLR pathway and does not
affect the TRIF or the cGAS/STING pathways when activating IFNs production (Fig 2B, 2D,
2E and S4 Fig); 5. SNRNP200 requires a competent Sec63-1 domain and functional ATPase/
helicase activity to promote IRF3-dependent IFNB1 activation (Fig 4); 6. The SNRNP200
Sec63-1 domain binds immunostimulatory RNA molecules (Fig 5); 7. SNRNP200 interacts
with endogenous TBK1 through its Sec63-1 domain (Fig 6); and 8. PBMCs of RP33 patients
(who have one allele carrying the dominant S1087L or R681C mutation) showed a reduction of

IRF3, IFR3-386, SeV and actin) are resolved by immunobloting of cells lysates and compared to control cells treated with scrambled siRNA. (C)
MDM are transfected with a pool of siRNA targeting SNRNP200 for 48 hours and infected with SeV for 1, 3 or 5 hours. Supernatants are harvested
and IFN-β secretion levels are measured by ELISA and compared to control cells treated with scrambled siRNA (siNT). (D-F) MDM are transfected
with a pool of siRNA targeting SNRNP200 (siSNRNP200) or scrambled siRNA (siNT) and infected with SeV for 1 hour. Cells are harvested and
relative gene expression of IFNB1 (D), TNFα (E) and SNRNP200 (F) are measured by qRT-PCR and compared with scrambled control cells.
mRNA RQ are normalized versus ACTIN andHPRT1mRNA. P values <0.0001 (****) are indicated. Data are pooled results from two experiments
of two biological replicates.

doi:10.1371/journal.ppat.1005772.g008
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Fig 9. PBMCs of RP33 patients bearingmonoallelic point mutation in SNRNP200 show hindered antiviral innate immune response. (A)
PBMCs of RP33 patients are infected for 3, 5 and 7 hours with SeV. Supernatants are harvested and IFN-β secretion levels are measured by ELISA
and compared to PBMCs of three healthy donors (HD). (B) Alternative representation of the 7-hours SeV infection of individual RP33 patients and HD
as in (A), where the horizontal bar represents the mean of each group. P value <0.01(**) is indicated. (C-F) PBMCs of RP33 patients are infected for
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IFN-β secretion when challenged with SeV (Fig 9). Thus, SNRNP200, the only Ski2-like RNA
helicase involved in pre-mRNA splicing, regulates IRF3-dependent IFNB1 production upon
RNA virus infection through the recognition of viral RNA promoting the phosphorylation of
IRF3 and possibly functions as an adaptor protein through its constitutive interaction with
TBK1. The results reveal a unique molecular mechanism regarding the way SNRNP200 regu-
lates the antiviral response. Mechanistically, it was found that, upon viral infection, SNRNP200
relocates to some undefined cytoplasmic structures were it is able to directly sense viral RNA.
This activation results in a striking virus-induced association of SNRNP200 and TBK1 into
larger order punctate perinuclear structures. This mobilization of SNRNP200 and TBK1 pro-
motes IRF3 phosphorylation that, in turn, translocate to the nucleus to transactivate the IFN-β
promoter and induce the production of ISGs to fully engage antiviral immunity (for a model,
see Fig 10).

The major mechanism by which SNRNP200 functions is as a spliceosomal helicase that
unwinds the U4/U6 snRNA, providing key remodeling activity for spliceosome catalytic activa-
tion, and thus it regulates the expression of a large and disparate group of genes associated with
the cell cycle [33]. Indeed, the transcriptional profiles of HEK 293T cells indicate a large group
of differentially expressed genes upon SNRNP200 silencing that are associated with the
immune system and the cell cycle, as shown by the Reactome Pathway Enrichment Analysis
(S8A Fig). Nevertheless, among the total SeV- and IFN-induced genes of control shNT cells,
silencing SNRNP200 KD affects specific SeV- and IFN-inducible genes as well as common
genes by more than 1,5 log2 fold induction (see Venn diagrams of S8 Fig). The analysis of the
gene network confirmed an enrichment for innate immunity gene function (Fig 3E) and
revealed that altered genes (52 for SeV, 55 for IFN, and of which 13 are common to both) are
highly connected to IRF3 and IFNB1 by a molecular signature, which indicates that
SNRNP200 silencing hinders IRF3-dependent gene induction. One possible mechanism is that
SNRNP200 affects the pathway at a transcriptional level, as first revealed by the observation
that SNRNP200 alters expression of the key transcription factor IRF3, which is essential for
IFNB1 transcription. The decrease of IRF3 mRNA and protein levels correlates with the
reduced SNRNP200 mRNA and protein levels as well as with the reduced expression of effector
genes upon infection in KD cells (S5 Fig); however, the experiments did not identify splicing
variants to explain the reduced IRF3 protein levels (S7 Fig), ruling out an alternative splicing
regulation of IRF3mRNA for SNRNP200 depleted cells. While the reduced expression of IRF3
and DDX58 proteins (S5A Fig) may contribute to the phenotype, considerable evidence sug-
gests that it is not the primary mechanism responsible for the decreased IFNB1 activation of
SNRNP200 KD cells. First, ectopic expression of IRF3 and/or DDX58 fails to restore the virus-
mediated IFNB1 production or IFIT1 expression in SNRNP200 KD cells, while expression of
the constitutively active IRF3 (5D) fully rescues the antiviral response (Figs 1F, 2B, 2D, 2E and
S6 Fig). Second, activation of the cGAS/STING pathway involved in the recognition of cyto-
solic DNA is not affected by SNRNP200 KD, despite the reduced IRF3 protein levels (Fig 2C)
which slightly restricts IFNB1 production when cGAS/STING activation and SeV infection are
combined (Fig 2D and 2E, see cGAS+STING versus cGAS+STING+IRF3). Indeed, the full acti-
vation of the cGAS/STING/TBK1/IRF3 pathway in SNRNP200 KD cells further supports a
specific role for SNRNP200 upon activation of the RLR/MAVS/TBK1/IRF3 pathway by RNA
virus infection. Finally, the silencing of SNRNP200 completely blocks IRF3 Ser386 phosphory-
lation in MDM, even when IRF3 protein levels are similar to control cells, resulting in the

1 hour with SeV. Cells are harvested and relative gene expression of IFIT1(C), IFNB1 (D), TNFα (E) and IRF3 (F) are measured by qRT-PCR and
compared with PBMCs of HD. mRNA RQ are normalized versus ACTIN andHPRT1mRNA. P values <0.0001 (****) are indicated.

doi:10.1371/journal.ppat.1005772.g009
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Fig 10. SNRNP200 regulates the antiviral response.Upon viral infection, SNRNP200 relocates to an undefined cytoplasmic structure
where it is able to directly sense viral RNA via its Sec63-1 domain. This activation by viral nucleic acids, through an undefined mechanism,
results in a virus-induced association of SNRNP200 with TBK1 into a larger order perinuclear structure. The mobilization of SNRNP200
with TBK1, downstream of DDX58/MAVS signaling, promotes IRF3 phosphorylation and IRF3’s subsequent translocation to the nucleus.
This nuclear translocation allows the transactivation of the IFN-β promoter and thus the production of type I IFNs and ultimately of ISGs.
This model demonstrates that SNRNP200 is dispensable to cGAS/STING cytosolic DNA sensing but required for RLR/MAVS/TBK1/IRF3
signaling, by a novel mechanism, to engage antiviral immunity against RNA viruses.

doi:10.1371/journal.ppat.1005772.g010
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blockage of IFN-β secretion at 3 hours post-infection (Fig 8C). On the other hand, gene profil-
ing data clearly illustrated that SNRNP200 affects the expression of a large group of genes asso-
ciated with the immune system and the cell cycle of unstimulated cells (S8A Fig). Furthermore,
it was observed that silencing SNRNP200 reduces type I IFN signaling downstream of STAT1
phosphorylation through a molecular mechanism that requires further investigation. Thus, it
cannot be ruled out that the perturbation of pre-mRNA processing leading to impaired expres-
sion of immune-related genes possibly contributes to the reduced antiviral response of
SNRNP200 KD cells via a global transcriptional regulatory role. Nonetheless, the abrogated
phosphorylation of IRF3 (Fig 2A and 2B for IRF3p386/IRF3 ratios and 8B) provides the first
mechanistic insight to explain the phenotype of SNRNP200 depleted cells. Based on these
results, a direct role of SNRNP200 was considered for the activation of IRF3 that leads to
IFNB1 production. To determine the regulatory function of SNRNP200 in IRF3 phosphoryla-
tion, its ability to interact with known members of the RLR signaling pathway was evaluated
and its interaction with TBK1 was carefully characterized. The TBK1 binding site to the Sec63-
1 domain (Fig 6C) was mapped, and a colocalization of SNRNP200 and TBK1 in cytoplasmic
speckles triggered by SeV infection was observed (Fig 7 and S12 Fig). This indicates the
involvement of a cytoplasmic SNRNP200-TBK1 protein complex in the modulation of IRF3
phosphorylation required for IRF3’s dimerization and nuclear translocation for IFNB1 tran-
scription and for ISGs production [34] in a mechanism similar to that described for DDX3
helicase [19].

The hypothesis that SNRNP200 directly functions as a sensor of viral RNA was tested using
RNA pull-down experiments. It was demonstrated that SNRNP200, and more specifically its
Sec63-1 domain, binds viral surrogate poly (I:C) and HCV genomic RNA (Fig 5B and 5C). The
RNA-binding ability of SNRNP200 mainly involves the recognition of dsRNA, as seen with
poly (I:C), while the presence of the 5’triphosphate moiety as well as the expression of DDX58,
MAVS, and TBK1 proteins are not required for binding dsRNA molecules (Fig 5D and 5E). As
expected, SNRNP200 RNA helicase does not bind dsDNA (Fig 5D), which supports the obser-
vation that SNRNP200 KD does not affect ISG56 promoter-driven activity upon activation by
the cGAS/STING pathway (S4B Fig). Surprisingly, in contrast to DDX58, which binds poly (I:
C) in the absence of viral infection (S16 Fig), the binding of SNRNP200 to dsRNA was only
observed following SeV infection. This observation cannot be explained, especially because
SNRNP200 binds SeV RNA with high affinity, as reflected by the significant enrichment of the
protein pull-down over cell lysates of SNRNP200 KD cells (with low SeV RNA levels detected
due to the rescue of antiviral response by WT expression) (Fig 5F). It was further demonstrated
that expression of the naturally occurring SNRNP200 S1087L variant located in the Sec63-1
domain, which is associated with RP33 [OMIM:610359], is unable to bind dsRNA and SeV
RNA (Fig 5A and 5F), does not relocalize with TBK1 upon SeV infection (Fig 7A), and cannot
restore the antiviral response in SNRNP200 KD cells (Fig 4D). Thus, the results suggest that a
pre-activation of SNRNP200 upon recognition of viral RNA allows its relocalization to peri-
nuclear cytoplasmic speckles with TBK1. Finally, the study of ATPase/helicase-deficient
SNRNP200 variants that affect the antiviral response and the discovery of a mutant (C502A)
that elicits an IFNB1 response independent of viral infection and fully rescues IFN-β in
SNRNP200 KD cells (Fig 4C and S11 Fig) further support the SNRNP200 ATPase/helicase
function in conferring specificity to viral RNA and preventing signaling through the recogni-
tion of self-RNA, as recently reported for the natural gain-of-function DDX58 and IFIH1
ATPase-deficient variants [29]. These data demonstrate a direct regulatory role of SNRNP200
via its Sec63-1 domain and its ATPase/helicase function in the recognition of viral RNA and in
the relocalization into cytoplasmic speckles with TBK1 to promote IRF3 activation and the
antiviral response.
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To ascertain the regulatory role of SNRNP200 in immune cells, depletion experiments were
carried out with purified MDM isolated from PBMCs of healthy donors. As observed with the
cell lines, SNRNP200 KD led to a hindered IFN-β production by blocking IRF3 phosphoryla-
tion without altering IRF3 expression in MDM (Fig 8B and 8C). There was also an increased
viral susceptibility, illustrating a relevant role of SNRNP200 in the antiviral response of human
macrophages. Furthermore, the loss-of-function mutations of the human SNRNP200 gene that
cause autosomal-dominant RP33 were exploited. RP is a rare inherited disease of retinal dys-
trophies with an incidence of one in 3,000–4,000, of which 1.6% bear mutations in the
SNRNP200 gene [35]. The investigated S1087L is a disease-associated mutation with complete
penetrance in the RP33-linked family [36–38]. With access to PBMCs of three RP33 patients
who had one allele carrying the dominant S1087L or R681C mutation, a decreased IRF3-de-
pendent antiviral response was confirmed, when challenged with SeV, by the specific reduction
of IFN-β and IFN-α2 cytokine secretion, without any effect on other tested cytokines (Fig 9
and S15 Fig). Thus, further evidence with human cells of patients with RP33 showed that
SNRNP200 positively regulates antiviral responses independently from its primary core func-
tion in pre-mRNA splicing.

The recent resolution of the SNRNP200 structure (amino acids 395 to 2129) provides the
spatial relation between duplicated N-terminal and C-terminal cassettes that both contain a
RecA1-RecA2 DEAD-box helicase domain and a Sec63 homology domain [27]. Both cassettes
are required for optimal helicase activity and splicing function, but only the N-terminal cassette
is reported to be catalytically active [27]. The 3D structure of the Sec63-1 homology region
resembles the structure of isolated C-terminal Sec63 units in yeast and in human enzymes
[25,39]. The 3D structure showed that the serine 1087 is located on a long scaffolding helix
(referred as a ratchet-helix), within the HB domain. The HB domain forms the top, while the
RecA domains form the bottom, of a central tunnel that act as a strand separation device for
RNA. The testing of a leucine at position 1087 exhibited decreased RNA binding and reduced
ATPase and helicase activities compared to the WT [27]. This mutation is believed to decrease
spliceosome activation and to explain its linkage to RP33 [25]. In this study, the S1087L mutant
completely abolished the recognition of poly (I:C) and of viral RNA molecules and was
completely unable to relocalize into TBK1-containing cytoplasmic speckles, which could
explain the hindered antiviral response. Further proteomic studies should provide a more com-
prehensive explanation for this mechanism along with the identification of interaction partners
that mediate the cytoplasmic relocalization of a SNRNP200-TBK1 complex upon infection.
Structurally, SNRNP200 also decisively differs from other spliceosomal helicases, as it belongs
to the Ski2-like subfamily, which is a small family within the superfamily 2 helicases (founder
member: yeast Ski2) involved in a variety of RNA processing and degradation events [40]. In
addition to SNRNP200, which exhibits the ATP-dependent unwinding activity of U4/U6 RNA
duplexes during pre-mRNA splicing [22,41,42], other helicases, such as SKIV2L and DDX60,
promote exosome-mediated RNA decay [16,43]. SKIV2L is involved in the elimination of
incompletely spliced RNA transcripts upon stress responses, which triggers a sterile RNA-acti-
vated antiviral innate response due to its inhibition [43]. Indeed, SKIV2L-deficient patients
exhibit a constitutive type I IFN signature in their peripheral blood that results in a human
auto-immune disorder. Moreover, the yeast Ski2 and Ski2-like helicase 1 (Slh1) have been
implicated in antiviral defense by blocking the translation of RNA lacking a 3' poly(A) struc-
ture [44,45]. Further studies are required to assess the potential role of SNRNP200 for the rec-
ognition of host RNA molecules upon stress responses.

Finally, to the authors’ knowledge, there has been no association between RP33 pathology
and immune disorders. The findings in the PBMC of patients with a monoallelic point muta-
tion in SNRNP200 established a deregulation of innate immunity, which may affect cell
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viability in different retinal disorders, as these cells and neural cells are usually non-prolifer-
ative and long-lived. Although RP33 is a rare event, it may be clinically relevant in identifying
the mechanism of disease onset at a molecular level in relation to a deregulation of the innate
response and the control of cell viability. Indeed, mutation E50K of optineurin, a critical regu-
lator of antiviral signaling [46], promotes interaction with TBK1 and is associated with familial
primary open-angle glaucoma [47]. The dysfunction of optineurin and TBK1 in retinal cells is
assumed to play a significant role in glaucomatous and other retinal diseases by affecting the
autophagy process and survival [48,49].

In summary, it has been demonstrated that upon virus infection, the SNRNP200 RNA heli-
case in combination with TBK1 via its Sec63-1 domain recognizes viral RNA, relocalizes into
TBK1-containing cytoplasmic structures, and positively regulates IRF3 phosphorylation to
promote the antiviral response. The regulatory role of SNRNP200 is confirmed in the MDM
and PBMCs of RP33 patients due to the impaired production of IFN-β upon viral infection.
The data revealed a crucial immunoregulatory role for the SNRNP200 helicase as well as for
the Sec63-1 domain within SNRNP200, which acts as an RNA sensor and as an adaptor for
TBK1 to promote the IRF3-mediated antiviral innate immune response. Taken together, the
data illustrate a novel function for SNRNP200 that is clearly distinguishable from its function
in spliceosome activation and in pre-mRNA splicing. Through the development of immuno-
modulatory molecules, exploiting the function of human encoded regulators of the antiviral
response presents an alternative strategy in treating a broad range of viral infections.

Materials and Methods

Ethics statement
This study was approved by Institutional Review Board (IRB) of the participating institution
(McGill Children’s Hospital, McGill University Health Centre and Centre Hospitalier Univer-
sitaire de l’Université de Montréal (CHUM)) and written informed consent was obtained from
all participants before participation.

Expression vectors
SF3A1, NHP2L1 and PHF5A cDNAs were purchased from GE Dharmacon/Open Biosystems.
Following PCR-amplification, PCR products were cloned into pcDNA3.1-Hygro-MCS using
EcoRV/HindIII[6]. SNRNP200 was subcloned from the pBluescriptSK-hBrr2 obtained from R.
Lührmann [50] into pcDNA3.1-Hygro(+) (Life Technologies) using NotI and XhoI restriction
sites. SNRNP200 deletion mutants and S1087L point mutation were generated by PCR. All
constructs were verified by Sanger sequencing and subsequent western blot analysis. If neces-
sary, validated constructs where subcloned into pcDNA3.1-MCS-FLAG. pIFNB1-LUC and
p2xNF-κB-LUC luciferase reporter constructs were previously described [51–53]. Generation
of stable HEK 293T cells harboring the pIFNB1-LUC and pEF1α-LUC promoters was previ-
ously described [8].

Cells lines and culture
Human embryonic kidney HEK 293T (ATCC), human epithelial adenocarcinoma HELA
(ATCC) and human hepatoma cell lines Huh7 / Huh7.5 (ATCC) were cultured in Dulbecco's
modified Eagle's medium (DMEM,Wisent). Human lung adenocarcinoma epithelial A549
(ATCC) were cultured in Ham’s F-12 medium (Life Technologies). Both media were supple-
mented with 10% fetal bovine serum, 100 units/ml penicillin, 100 μg/ml streptomycin and 2
mM glutamine (all fromWisent) at 37°C in an atmosphere of 5% CO2. Transient transfections
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were performed with lipofectamine 2000 (Life Technologies) according to manufacturer’s pro-
tocol. Peripheral blood mononuclear cells (PBMCs) were isolated from fresh heparinized
peripheral blood samples by Ficoll-Histopaque gradient centrifugation (Sigma-Aldrich).
Unfrozen PBMCs were washed twice in 10 ml of sterile RPMI 1640 and re-suspended in RPMI
1640 supplemented with 10% FBS. PBMCs were counted using a haemocytometer and counts
were adjusted using trypan blue exclusion to plate 1x106 PBMCs in 100 μl RPMI 1640 supple-
mented with 10% FBS in 96-well plate. For monocyte-derived macrophage (MDM), PBMCs
were harvested has described above and monocyte were isolated using MACS Monocyte Isola-
tion Kit II human (Miltenyi Biotec) as per manufacturer’s protocol before differentiation into
MDM for five days in the presence of 10 ng/mL granulocyte-monocyte colony stimulating fac-
tor (M-CSF, R&D).

shRNA and siRNA gene silencing
shRNAs fromMISSION TRC shRNA lentiviral library (Sigma-Aldrich) were used as followed:
shRNA targeting SNRNP200 (TRCN0000051831), SF3A1 (TRCN0000006597), PHF5A (TRCN
0000074878), NHP2L1 (TRCN0000074799), or shRNA non-target (NT). shRNA were trans-
fected in combination with a standard packaging mix (1.5 μg pMDLg/pRRE, 1.5 μg pRSV-REV
and 3 μg pVSVg) as previously described[54]. siRNAON-TARGETplus SMARTpool, Human
SNRNP200 and siRNA non-targeting #1 Human, ON-TARGETplus (GE Healthcare, Dharma-
con), Santa Cruz HELIC2 siRNA (h) (sc-75243) were transfected with lipofectamine RNAi Max
(Life Technologies) for 48 hours according to manufacturer’s protocol.

Firefly luminescence assay
For assays in 96-well plates, cells were seeded in white 96-well plates at a density of 5,000 HEK
293T pIFNB1_LUC and 1,250 293T pEF1α-LUC in 100 μl of complete phenol-red free DMEM
containing 4 μg/ml polybrene. Infection with lentivirus encoding shRNA were carried out
immediately after cell seeding at a MOI of 10 (except when specified otherwise) and incubated
for three days at 37°C in an atmosphere of 5% CO2. Cells were infected with 100 HAU/ml of
SeV (Cantell Strain, Charles River Labs) for 16 hours before cell lysis and firefly luminescence
reading in a 100 mM Tris acetate, 20 mMMg acetate, 2 mM EGTA, 3.6 mM ATP, 1% Brij 58,
0.7% β-mercaptoethanol and 45 μg/ml luciferine pH 7.9 buffer. All infections were performed
in an enclosed in a class II cabinet.

Assays used in western blot or qRT-PCR experiments where scaled up accordingly and car-
ried out with the maternal HEK 293T or appropriate cell line.

Influenza A/Gaussia luminescence assay
For influenza infection, 3x105 HEK 293T pIFNB1_LUC cells were seeded in 6-well plates. The
next day, cells were transfected with an influenza vRNA reporter plasmid [55] and infected
with 0.1 ul of purified influenza virus (A/PR/8/34, from Charles River). Five days later, 20 ul of
cell supernatant was used to quantify the Gaussia luciferase using a Gaussia Luciferase Assay
HTS (Nanolight Technology). Cell lysates were used to quantify the IFNB1 induction accord-
ing to the Firefly luminescence assay described above.

HCV/Renilla luminescence assay
J6/JFH(p7-Rluc2a) virus production was conducted as previously described [56]. Briefly, HCV
DNA template used for in vitro transcription was linearized using XbaI and subsequently tran-
scribed using TranscriptAid T7 High Yield Transcription Kit according to manufacturer
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protocol (Life Technologies). The resulting HCV RNA was then electroporated into Huh7.5
and virus-containing culture medium was collected, filtered (0.45 μm) and kept at -80°C. For
infection, 100μl of virus was added to 5,000 Huh7 cells that had been plated in 96-well white
opaque plates one day before. Culture medium was replaced six hours later and Huh7 cells
were transfected with pIFNB1-LUC (50 ng/well) the next day. Three days later Huh7 cells were
washed twice with PBS, before Rluc and Fluc quantification using the Dual-Luciferase Reporter
Assay System (Promega) according to the manufacturer protocol.

Western immunoblot analysis
Cells were washed twice with ice-cold phosphate-buffered saline (PBS; Wisent), harvested and
lysed in 10mM Tris-HCl, 100mM NaCl, 0.5% Triton X-100, pH7.6 with EDTA-free Protease
Inhibitor Cocktail (Roche). Cell lysates were clarified by centrifugation at 13,000 g for 20 min
at 4°C and subjected to sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE). Western blot
analysis was performed using mouse anti-PHF5A (Abnova), anti-IRF3 (Santa Cruz), anti-
TRAF3 (Santa Cruz), anti-RIG-I (Alexis Biochemicals), anti-ACTIN (Chemicon Interna-
tional), anti-TBK1 (Imgenex and Santa Cruz), anti-IKBKE (Santa Cruz), anti-TUBULIN
(ICN), anti-GAPDH (RDI) and rabbit anti-SNRNP200 (Sigma-Aldrich), anti-SF3A1 (Santa
Cruz), anti-RELA (Santa Cruz), anti-NHP2L1 (Abcam), anti-DDX3X (Bethyl), anti-DDX60
(Abcam), TRIF (Cell Signaling), anti-ISG56 (Novus Biologicals), anti-MDA5 (Alexis Biochem-
icals), anti-MAVS (Alexis Biochemicals), anti-IKBKE (eBioscience), STAT1 (ABCAM),
STAT1 tyr701 (ABCAM), IFNAR1 (Santa Cruz) and anti-IRF3-P-ser386 (Abcam). HRP-con-
jugated secondary antibodies were from Bio-Rad. The chemiluminescence reaction was per-
formed using the Western Lighting Chemiluminescence Reagent Plus (PerkinElmer).

Co-immunoprecipitation
For co-immunoprecipitation, FLAG-tagged protein expressing cells were harvested and lysed
as described above. Resulting cell extracts were adjusted to 1 mg/ml and subjected to IP as fol-
lows: preclearing of the lysates was done by incubating lysates with 40 μl of a 50:50 slurry of
immunoglobulin G-Sepharose (GE Healthcare) prepared in the lysis buffer with IgG beads for
1 hour. Pre-cleared lysate were immunoprecipitated by adding 20 μl of M2 anti-FLAG affinity
gel (Sigma-Aldrich) prepared in TBS buffer (50 mM Tris-HCl, 150 mMNaCl, pH 7.4) over-
night as described by the manufacturer. Immunoprecipitates were washed five times in lysis
buffer. For interaction analysis, elution was performed using 250 ng/μl purified FLAG peptide
for 45 min at 4°C (Sigma-Aldrich). Eluates were analyzed by western immunoblotting.

Microarray analysis
The microarray studies were performed with HEK 293T cells transduced with lentiviral-
expressing shNT (control) or shSNRNP200 RNA targeting SNRNP200 gene for three days fol-
lowing 16 hours infection with SeV (100 U/ml) or 16 hours of treatment with a mixture of
IFN-α from human leukocytes (400 U/ml; Sigma-Aldrich). A total of 10 μg of RNA was reverse
transcribed using oligo(dT) 16–18 primers and SuperScript II Reverse Transcriptase (Life
Technologies) according to the manufacturer's instructions. Following purification using QIA-
quick PCR Purification kit (Qiagen), up to 1 μg of purified cDNA was mixed with 5'-Cy3
labeled random nonamers (Trilink Biotechnology) and heated at 95°C for 10 minutes and
transferred on ice for 10 minutes. Samples were mixed with 1 mM dNTP and 2 μl of 3’-5’ exo-
Klenow fragment (New England Biolabs) and incubated at 37°C for 2 hours. The labeling reac-
tion was stopped using 50 μM EDTA and the DNA precipitated using 0.5 M NaCl and 1 vol-
ume isopropanol, washed with 80% ethanol and resuspended in water. Hybridizations were

SNRNP200 Regulates Antiviral Immunity

PLOS Pathogens | DOI:10.1371/journal.ppat.1005772 July 25, 2016 26 / 35



carried out using the Human GE 4x44K v2 Microarrays (Agilent Technologies) containing
probes targeting 27,958 Entrez Gene RNAs. Arrays were scanned at 5 μm resolution using a
GenePix4000B scanner (Molecular Devices). Data from scanned images were extracted using
GenePix 6.1 (Axon) and processed and normalized using ArrayPipe (v2.0). Processed data was
used as input for linear modeling using Bioconductor's limma package, which estimates the
fold-change between predefined groups by fitting a linear model and using an empirical Bayes
method to moderate standard errors of the estimated log-fold changes in expression values
from each probe set. P values from the resulting comparison are adjusted for multiple testing
according to the method of Benjamini and Hochberg. Subsequently, gene enrichment analysis
are conducted using DAVID [57,58], STRING [59,60] and Gene networks were constructed
using GENEMANIA [60].

Biotin-RNA/Biotin-DNA pull-down
RNA pull-down assay was performed using Dynabeads M270 Streptavidin (Life Technologies).
Dynabeads were incubated with biotin-labeled RNA (poly I:C (InvivoGen) and full-length Jc1
HCV) for 1 hours according to manufacturer’s protocol. Biotin-HCV RNA was obtained by
subjecting linearized HCV DNA to T7 reverse transcription (TranscriptAid T7 High Yield,
Life Technologies) and biotin-dUTP (Enzo Life Sciences). Saturated beads were added to
whole 100 μg cell lysate and incubated, in a cold room, on a rotating wheel. Beads were washed
three times and RNA-bound proteins were eluted after boiling in 0.1% SDS and analyzed by
western blot. Poly (dA:dT) and Poly(dG:dC) were purchased from Sigma and labeled using
Label IT Nucleic Acid Labeling Kit (Mirus Bio) and biotin-DNA pull-down assays were per-
formed as described above.

RNA extraction and qRT-PCR assays
Total cellular RNA was extracted with the RNeasy Mini kit (Qiagen). Reverse transcription was
performed on 1 μg total cellular RNA using the High Capacity cDNA Reverse Transcription
kit (Applied Biosystems). In order to amplify only the cDNA, primers were located in the splic-
ing junction between two exons. PCR reactions were performed using 1.5 μl of cDNA samples
(15 ng), 5 μl of the Fast TaqMan PCR Master Mix (Applied Biosystems), 10 pmol of each
primer (IDT) and 5 pmol of the UPL probe (Roche) in a total volume of 10 μl. The ABI PRISM
7900HT Sequence Detection System (Applied Biosystems) was used to detect the amplification
level and was programmed to an initial step of 3 minutes at 95°C, followed by 40 cycles of 5 sec-
onds at 95°C, 30 seconds at 60°C and 1 second at 72°C. All reactions were run in duplicate on
biological duplicate and the average values were used for quantification. ACTIN (β-actin) or
GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) and HPRT1 (hypoxanthine phosphori-
bosyltransferase 1) were used as endogenous controls. The relative quantification (RQ) of tar-
get genes was determined by using the ΔΔCt method with the Sequence Detection System
(SDS) 2.2.2 software (Applied Biosystems).

Virus plaque assays
Plaque assays were conducted in VERO cells and MDCK.2 cells (ATCC) using a method
described elsewhere [61]. Briefly, supernatants were harvested from infected cells and used to
inoculate in serial dilutions VERO (SeV) and MDCK.2 cells (FLUA) for 45 minutes and 1
hour, respectively. After infection, cells were wash with PBS and an overlay of 0,6% agarose
was superimposed to 2X DMEMmedium. At 72 hours post-infection, cells were colored with
crystal violet, washed with PBS and colonies (lysed cells) were counted to compute viral titers.
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ELISA assays
ELISA assays were carried out with 50 μl of cell culture supernatants using the VeriKine
Human Interferon Beta Elisa Kit (PBL Assay Science) according to the manufacturer’s proto-
col. Samples were run as technical duplicates on biological triplicates.

Immunofluorescence analysis
HEK 293T were seeded in cover slip-containing 24-well plates and co-transfected with
FLAG-SNRNP200 WT or S1087L mutant and MYC-TBK1 24 hours later. The following day,
cells were infected or not with SeV for 16 hours before being washed twice with PBS, fixed with
4% paraformaldehyde-containing PBS during 20 minutes at room temperature and then per-
meabilized in 0.2% Triton X-100/PBS during 15 minutes. Blocking was made in PBS with 10%
normal goat serum, 5% bovine serum albumin (BSA) and 0.02% sodium azide during 45 min-
utes at room temperature. Following three rapid washes, cells were labelled with rabbit anti-
FLAG (Sigma-Aldrich) and mouse anti-MYC (Santa Cruz) primary antibodies diluted in 5%
BSA/0.02% sodium azide/PBS for 2 hours. Slides were washed three times in PBS and then
labeled with anti-rabbit or anti-mouse AlexaFluor 488, 594 or 647 secondary antibodies (Life
Technologies) diluted in 5% BSA/0.02% sodium azide/PBS for 1 hour. Cells were extensively
washed and incubated with Prolong Gold with DAPI (Life Technologies). Alternatively, nuclei
were labeled with Syox Green (Life Technologies). Labelled cells were then examined by laser
scanning microscopy using a TCS SP5 (Leica).

Supporting Information
S1 Fig. Screening of a subgroup of spliceosome members identified SNRNP200 as the only
helicase required for the antiviral response of SeV infection. (A) HEK 293T pIFNB1-Luc
cells are transduced with lentivirus-expressing shRNA targeting a subset of RNA helicases
implicated in splicing for three days and stimulated with SeV for 16 hours. (B) HEK 293T are
transduced with lentivirus-expressing shRNA targeting for 3 days or transfected for 48 hours
with SNRNP200, SFRS1, SNRNP35, SF3A1, PHF5A and NHP2L1 expression plasmids. Protein
KD and overexpression (OE) efficiencies of the various spliceosome proteins as well as IRF3,
DDX58, IFIT1 and ACTIN protein levels are resolved by immunobloting of cell lysates and
compared to shNT control cells. (C) HEK 293T are treated as indicated in (B) and infected
with SeV for 16 hours.
(TIF)

S2 Fig. SNRNP200 KD enhances viral replication and restricts antiviral response. (A)
FLUA-Gaussia activity and IFNB1 promoter-driven luciferase activity of HEK 293T cells
infected with FLUA for 24 hours and transduced with shNT or shSNRNP200 for three days.
(B) HEK 293T cells are infected with FLUA for 24 and 48 hours and viral titers are determined
by harvesting supernatants and subsequently infecting MDCK.2 cells using virus plaque assays.
(C) HCV J6/JC1(2a)-Renilla luciferase activity and IFNB1 promoter-driven firefly luciferase
activity of Huh7 cells transduced with shNT or shSNRNP200 for 4 days and infected with
HCV for the three last days. P values<0.01 (��) or<0.001 (���) or<0.0001 (����) are indi-
cated.
(TIF)

S3 Fig. Silencing of SNRNP200 in A549 cells specifically inhibits activation of the RLR-
dependent IFNB1 production and IFN-α signaling pathways, but does not affect activation
of the canonical NF-κΒ pathway. (A) A549 cells treated with lentiviral-expressing shRNA tar-
geting SNRNP200 or DDX58 at a multiplicity of infection (MOI) of 10 for three days. Relative
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IFN-β promoter activity are reported as percentage of the control shNT following infection
with SeV for 8 hours or transfection of poly I:C, MAVS or IRF3(5D) for 16 hours. Inhibition
profile of shSNRNP200maps its site of action between MAVS and IRF3(5D) of the RLR signal-
ing pathway. (B) Time course SeV infection (4, 8, 24 hours) in cells treated as indicated in (A).
(C) qRT-PCR quantification of IFIT1, IFIT2, DDX58, IFIH1, TNF, NFKBIA and TNFAIP3
mRNA fold induction in A549 cells transduced with lentiviral-expressing shNT (black bars) or
shSNRNP200 (grey bars) for four days and treated with SeV or IFN-α for four hours. mRNA
RQ were normalized versus GAPDH and HPRT1mRNA. P values<0.05 (�) are indicated.
(TIF)

S4 Fig. SNRNP200 KD specifically inhibits activation of the RLR-dependent pathway, but
does not affect activation of the canonical NF-κΒ pathway. (A) Relative NF-kB promoter-
driven luciferase activity reported as percentage of the control shNT after transfection of HEK
293T cells with poly (I:C)/RIG-I, MAVS, TBK1 and p65 for 16 hours. (B) Relative ISG56 pro-
moter-driven luciferase activity reported as percentage of the control shNT after SeV infection,
transfection with TBK1, cGAS-STING and TRIF for 16 hours or IFN-α treatment.
(TIF)

S5 Fig. SNRNP200 KD restricts SeV- and IFN-α-mediated induction of antiviral response and
affects IRF3 expression (A) HEK 293T cells are transduced with shSNRNP200 for three days
and then either unstimulated (NS), infected with SeV or stimulated with IFN-α for 16 hours.
Cells are harvested and selected proteins including known members of the RLR signaling path-
way (SNRNP200, IRF3, DDX58, IFIH1, IFIT1, IRF7, MAVS, TBK1, IKBKE, RELA, TRAF3,
ACTIN, TUBULIN, GAPDH) are resolved by immunobloting of cell lysates and compared to
shNT cells. (B) HEK 293T cells are treated as indicated in (A) and relative gene expression was
measured by qRTPCR for SNRNP200, DDX58, IRF3, IFIH1, IFIT1 and IFNB1 and compared
to control shNT cells. Average mRNA RQ normalized versus ACTIN andHPRT1mRNA. P
values<0.05 (�),<0.01(��) and<0.001 (���) are indicated.
(TIF)

S6 Fig. Ectopic expression of IRF3 and DDX58 or both does not rescue antiviral response
of SNRNP200 KD cells. (A) HEK 293T cells are transduced with shSNRNP200 for three days
and transfected with DDX58 expression plasmid for the last 48 hours. Subsequently, cells are
either untreated (NS), infected with SeV or stimulated with intracellular poly (I:C) for 16
hours. Cells are harvested and selected proteins (SNRNP200, DDX58, IRF3, IFIT1 and
ACTIN) are resolved by immunobloting of cell lysates and compared to control shNT cells. (B)
HEK 293T cells are transduced with shSNRNP200 for three days and transfected with DDX58
or IRF3 expression plasmids alone or in combination for the last 48 hours. Selected proteins
are resolved as indicated in (A). (C) As a control experiment, unstimulated HEK 293T cells are
transduced with shNT and transfected with SNRNP200 WT or S1087L variant expression plas-
mids for 48 hours. Cells are harvested and SNRNP200, DDX58, IFIT1, IRF3 and IRF3pS386
expression are resolved by immunobloting of cell lysates and compared to cells transfected
with an empty expression plasmid (vector).
(TIF)

S7 Fig. SNRNP200 KD does not induce IRF3mRNA alternative splicing. (A) Schematic
representation of IRF3 genomic organization and theoretical PCR products for the PCR exon
spanning or junction strategies. Exons 1–7 are represented by black boxes and primers used for
the PCR analysis are represented by arrows. (B) DNA electrophoresis of PCR products
described in (A) after mRNA extraction and subjected to RT of HEK 293T cells transduced
with shNT or shSNRNP200 for four days. Two independent experiments are presented. (C)
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qRT-PCR of IRF3 exon junctions described in (A) for exon 2–3 and exon 3–4 (left) and treated
as indicated in (B). qRT-PCR of SNRNP200 and IRF3 following SNRNP200 KD (right). P val-
ues<0.05 (�) are indicated.
(TIF)

S8 Fig. SNRNP200 silencing leads to an impaired induction of innate immunity genes.
HEK 293T cells are transduced with shNT or shSNRNP200 for three days and either unstimu-
lated (NS) infected with SeV or treated with IFN-α for 16 hours. Relative gene expression was
measured by microarray and compared to control shNT cells. (A) Left—Volcano plot showing
the effect of SNRNP200 silencing on gene expression level of untreated cells (SNRNP200_NS).
Only genes> 1,5 log2 fold induction change are displayed. Right—Reactome Pathway Enrich-
ment of up- or down-regulated genes upon SNRNP200 silencing. (B) Left—Venn diagram of
the number of altered genes (> 1,5 log2 fold) of shSNRNP200 unstimulated cells
(SNRNP200_NS) or infected with SeV (SNRNP200_SEV) and compared to control shNT cells
infected with SeV (NT_SEV). Right—Volcano plot of the gene expression in shNT cells and
shSNRNP200 following SeV infection. Table shows the gene ontology enrichment of the gene
list used. (C) Left–Venn diagram of the number of altered genes (> 1,5 log2 fold) of
shSNRNP200 unstimulated cells (SNRNP200_NS) or treated with IFN-α (SNRNP200_IFN-α)
and compared to control shNT cells treated with IFN-α (NT_IFN-α). Right—Volcano plot of
the gene expression in shNT cells and shSNRNP200 following IFN-α stimulation. Table shows
the gene ontology enrichment of the gene list used.
(TIF)

S9 Fig. The full-length protein sequence of SNRNP200 is required to rescue SeV-mediated
induction of antiviral response in SNRNP200 KD cells. (A) HEK 293T pIFNB1-Luc cells are
transduced with shSNRNP200 for three days and transfected with RNAi resistant expression
plasmids for SNRNP200 WT, S1087L or C-terminal truncated mutants for the last 48 hours.
Subsequently, cells are untreated (left panel) or infected with SeV for 16 hours (right panel).
IFNB1 promoter-driven luciferase activities are measured and compared with control shNT
cells. (B) HEK 293T cells are treated as indicated in (A). Cells are harvested and DDX58, IFIT1
and ACTIN proteins are resolved by immunobloting of cell lysates.
(TIF)

S10 Fig. Ectopic expression of SNRNP200, but not Sec63-containing S1087L mutant, res-
cues SeV-mediated induction of IFNB1mRNA in SNRNP200 KD cells. (A) qRT-PCR quan-
tification of SNRNP200 and IFNB1mRNA levels of HEK 293T cells transduced with
shSNRNP200 for three days and transfected with eYFP or RNAi resistant SNRNP200 WT or
SNRNP200 S1087L expression plasmids for 48 hours and subjected to SeV infection for 16
hours.
(TIF)

S11 Fig. SNRNP200 C502A variant elicits an IFNB1 response independently of viral infec-
tion.HEK 293T pIFNB1-Luc cells are transduced with shSNRNP200 for three days and trans-
fected with RNAi resistant SNRNP200 WT or variants expression plasmids bearing the
indicated mutation for 48 hours. IFNB1 promoter-driven luciferase activities are measured and
compared with control shNT cells.
(TIF)

S12 Fig. Constitutive interaction of TBK1 and SNRNP200 endogenous proteins in A549
cells. (A) A549 cells are untreated or infected with SeV for 16 hours. Cell lysates are subjected
to immunoprecipitation using anti-TBK1 or control IgG antibodies followed by incubation
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with protein G sepharose beads. TBK1 and SNRNP200 are resolved by immunoblotting of
immune complexes (up) and cell lysates (down). Results are compared to untreated cells.
TBK1 protein is indicated with an asterix.
(TIF)

S13 Fig. Relocalization of SNRNP200 into cytoplasmic speckles and co-staining with TBK1
is dependent on SeV infection in Hela cells. (A) Hela cells are stained with anti-TBK1 and
anti-SNRNP200 antibodies and analyzed by confocal microscopy. Nuclei are stained with
Sytox Green. A merge for both protein is shown (Merge G/R) and at higher magnification
(down panel). SNRNP200 staining is green and TBK1 is red. White arrows indicate TBK1
stained as red dots. Imaging was done using a 63x/1.40 Oil DIC objective. (B) Hela cells are
infected with SeV for 16 hours and analyzed as indicated in (B). White arrows indicate
SNRNP200-TBK1 complex stained as yellow dots. Imaging was done using a 63x/1.40 Oil DIC
objective.
(TIF)

S14 Fig. SNRNP200 protein accumulation in HEK 293T following SeV infection or IFN-α
treatment does not result from an increase in mRNA levels. (A) Immunoblot analysis of
HEK 293T cells infected with SeV or treated with IFN-α for the indicated times. (B) qRT-PCR
quantification of SNRNP200mRNA levels of HEK 293T cells treated as indicated in (A).
(TIF)

S15 Fig. PBMCs from RP33 patients bearing monoallelic point mutation in SNRNP200
show hindered IFN-α2 secretion. (A) PBMCs of RP33 patients (RP33) or healthy donors
(HD) are infected with SeV for 16 hours. Supernatants are then harvested and cytokine levels
are measured by multiplex-ELISA. In total 42 cytokines are analyzed and representative results
for IFN-α2, RANTES, IL6, CXCL10 and IL1B are shown.
(TIF)

S16 Fig. DDX58 binds biotinylated poly (I:C) in vitro. (A) HEK 293T cells are transfected
with FLAG-DDX58 expression plasmid for 48 hours and infected with SeV for 16 hours. RNA
pull-down assays are performed on cell lysates using biotinylated poly (I:C). Cell lysates and
bead-bound complexes are analyzed by Western blotting and compared to uninfected control
cells.
(TIF)

S1 Table. Description of the RP33 patients (Age, Sex, Ethnicity and Retinitis Pigmentosa
associated polymorphism) who volunteered PBMCs used in the experiments presented in
Fig 9.Mean ages of patients and healthy donors were matched (43.3 vs. 43.0).
(TIF)

S2 Table. Excel workbook describing the transcriptional profiling analysis of SNRNP200
KD cells as presented in Fig 3. The workbook contains the raw data (expression fold change,
gene list, Genemania network and function enrichment analysis) of the common gene subset
from Fig 3B, of the SeV-specific gene subset from Fig 3C and of the IFNα-specific gene subset
from Fig 3D.
(XLSX)
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