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Abstract

Understanding how the genome is shaped by selective processes forms an integral part of modern biology. However, as
genomic datasets continue to grow larger it is becoming increasingly difficult to apply traditional statistics for detecting
signatures of selection to these cohorts. There is therefore a pressing need for the development of the next generation of
computational and analytical tools for detecting signatures of selection in large genomic datasets. Here, we present
hapbin, an efficient multithreaded implementation of extended haplotype homzygosity-based statistics for detecting
selection, which is up to 3,400 times faster than the current fastest implementations of these algorithms.
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As a selected allele is swept through a population the haplo-
type on which it resides will increase in frequency faster than
recombination can break it down. As a result alleles under
positive selection will be expected to reside upon unusually
long haplotypes given their frequency, and such extended
haplotype homozygosity (EHH) (Sabeti et al. 2002) forms
the basis of a number of the most popular tests of selection
including the integrated haplotype score (iHS) (Voight et al.
2006) and the cross-population EHH (XP-EHH) statistic
(Sabeti et al. 2007). These haplotype-based methods of de-
tecting selection have a number of advantages over other
tests; for example their ability to detect partial or incomplete
sweeps (Vitti et al. 2013), short-term balancing selection (Vitti
et al. 2013) and their comparative insensitivity to background
selection (reduced neutral variation as a result of purifying
selection at linked deleterious sites) that can otherwise con-
found studies of adaptive evolution (Enard et al. 2014).
However with sequencing costs falling faster than computa-
tional speeds are increasing (Check Hayden 2014), as genomic
datasets grow larger it is becoming increasingly difficult to
apply these statistics to contemporary cohorts.

Recently an improved implementation of these statis-
tics was made available within the selscan program
(Szpiech and Hernandez 2014), demonstrated to be two
times faster at calculating iHS than the next fastest algo-
rithm, rehh (Gautier and Vitalis 2012). However even with
this improved implementation of these statistics the cal-
culation of iHS across 100 whole human genomes, the
approximate average size of a 1000 genomes (1000
Genomes Project Consortium et al. 2010) population
cohort, is still expected to take over 2 months when run
on a single core on a standard desktop machine. For these
algorithms to be widely used, there is a requirement for

the development of new, faster, and more efficient, compu-
tational approaches to improve the speed at which EHH-
based selection scans can be carried out. As a result, allowing
for the analysis of whole-genome sequencing datasets of
ever increasing size to be processed in reasonable timeframes
and on non-specialist hardware.

Here, we introduce hapbin that utilizes a new computa-
tional approach (see Supplementary methods, Supplementary
Material online) to calculate the EHH, iHS, and XP-EHH sta-
tistics. We show that this implementation is up to 3,400 times
faster than even selscan, allowing iHS to be calculated across
100 fully sequenced human genomes in ~3 h, as opposed to
over 2 months, when run on a single core on a standard
desktop machine.

To assess the performance of hapbin, it was first bench-
marked alongside selscan on two different hardware architec-
tures. An Amazon c3.8xlarge EC2 Ubuntu instance (32 CPUs)
as well as on ARCHER; the UK National Supercomputer.
Importantly hapbin will equally run on a standard desktop
machine but the use of these resources allowed us to assess its
scalability while also enabling other users to repeat these
analyses. Performance was characterized using various subsets
of data from chromosome 22 of the 1000 genomes project
(1000 Genomes Project Consortium et al. 2010) cohort
(phase 1 version 3) and both programs were run with default
parameters (an EHH decay cutoff of 0.05 and minimum
minor allele frequency of 5%).

As shown in figures 1A–C, Supplementary figure S1 and
table S1, Supplementary Material online, hapbin is from 88 to
3,400 times quicker than selscan at calculating the iHS, de-
pending on the hardware used and the number of variants
and individuals in the input dataset. With an input cohort of
50 individuals hapbin processed all 489,301 genetic variants
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on chromosome 22 in 37 s when run across one core on
ARCHER. In comparison, selscan took 35 h. As shown in
figure 1D, this speedup comes with no loss of accuracy.

A further advantage of hapbin is that while selscan requires
a further program to produce standardized iHS from the
unstandardized values it outputs, hapbin produces both by
default. As a result all selscan timings presented here are the
times taken to calculate unstandardized iHS only, while those
for hapbin are for the calculation of both standardized and
unstandardized values. Hapbin’s relative speedup at calculat-
ing XP-EHH with respect to selscan are more modest than
those observed when calculating iHS but order of magnitude
speedups are still observed (Supplementary fig. S1,
Supplementary Material online).

The hapbin program can be downloaded from https://
github.com/evotools/hapbin (last accessed August 10,
2015). Hapbin can be applied to datasets from any meiotically
recombinant species and takes phased genotypes in IMPUTE
format (Howie et al. 2009), as produced by the popular phas-
ing algorithm SHAPEIT2 (O’Connell et al. 2014). To accom-
pany the program, we have also exploited the speed of hapbin
to calculate iHS genome-wide for all 26 populations in the
recently released, phased, 1000 genomes phase 3 cohort
(Delaneau et al. 2014). These can be downloaded from
http://dx.doi.org/10.7488/ds/214 (last accessed August 10,
2015) or viewed at the UCSC genome browser
(Supplementary figs. S2 and S3, Supplementary Material
online).

FIG. 1. Hapbin versus selscan comparisons. (A) Time taken by hapbin and selscan to calculate iHS across chromosome 22 across 48 cores (1 node) onz
ARCHER and on an Amazon c3.8xlarge instance. Subsets of individuals being randomly sampled from the 1000 genomes dataset. (B) Time taken by
hapbin and selscan to calculate iHS in the 1000 genomes GBR (Great Britain) population of 89 individuals on the Amazon c3.8xlarge instance. Runs of
contiguous SNPs by location were subsampled from all of those on chromosome 22. (C) Hapbin’s relative speedup versus selscan when run across
chromosome 22 with varying numbers of cores and individuals on ARCHER. (D) Comparison of unstandardized iHS values output by both selscan and
hapbin when run across 500 randomly selected individuals and all SNPs on chromosome 22.
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Supplementary Material
Supplementary methods, figures S1–S3, and table S1 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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