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In light of the limited number of targetable oncogenic drivers in breast cancer (BRCA), it is
important to identify effective and druggable gene targets for the treatment of this
devastating disease. Herein, the GSE102484 dataset containing expression profiling
data from 683 BRCA patients was re-analyzed using weighted gene co-expression
network analysis (WGCNA). The yellow module with the highest correlation to BRCA
progression was screened out, followed by functional enrichment analysis and
establishment of a protein–protein interaction (PPI) network. After further validation
through survival analysis and expression evaluation, CHEK1 and UBE2C were finally
identified as hub genes related to the progression of BRCA, especially the luminal A breast
cancer subtype. Notably, both hub genes were found to be dysregulated in multiple types
of immune cells and closely correlated with tumor infiltration, as revealed by Tumor Immune
Estimation Resource (TIMER) along with other bioinformatic tools. Construction of
transcription factors (TF)-hub gene network further confirmed the existence of 11 TFs
which could regulate both hub genes simultaneously. Our present study may facilitate the
invention of targeted therapeutic drugs and provide novel insights into the understanding
of the mechanism beneath the progression of BRCA.
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INTRODUCTION

As the most aggressive malignancy in females, breast cancer (BRCA) affects approximately one of
every nine women globally and is the leading cause of cancer-associated mortality worldwide (Bray
et al., 2018). Despite the huge advancements of BRCA screening and surgical techniques during
recent decades, over 20% of BRCA patients still develop recurrence and finally result in dismal
outcomes (Early Breast Cancer Trialists’ Collaborative Group, 2015; Waks and Winer, 2019).
Therefore, exploring novel biomarkers underneath BRCA progression and deciphering their
underlying mechanisms will facilitate the development of therapeutic drugs and promote
survival rate of BRCA patients.

As one of the most frequently applied bioinformatics algorithms to discover cancer-related
biomarkers and signaling pathways, the weighted gene co-expression network analysis (WGCNA)
approach provides a systematic strategy for in-depth mining of phenotypic features of interest
(Langfelder and Horvath, 2008). Compared with traditional analytical methods that mainly focus on
individual genes, WGCNA converts gene expression data into co-expression modules and highlights
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the correlation between a specific gene network and the
phenotype of cancer. In addition, WGCNA implements
methods for both weighted and unweighted correlation
networks and provides a more effective mean to explore the
hub genes that regulate critical biological processes (Barabási
et al., 2011). To date, WGCNA has been successfully applied for
identifying potential biomarkers with diagnostic and prognostic
values in a wide range of cancer types (Liu et al., 2021; Ma and Li,
2021; Yang et al., 2021).

Tumor Immune Estimation Resource (TIMER) is an in silico
deconvolution method to estimate tumor immune infiltration (Li
et al., 2017; Li et al., 2020). Through integration of six state-of-
the-art algorithms, this method can explore the associations
between immune infiltrates and genetic or clinical features
from expression profiles of tumor. Accumulating evidences
suggest that this emerging tool provides comprehensive
analysis for the identification of signatures in tumor-
infiltrating immune cells and prediction of tumor-immune
interactions (Chen et al., 2020; Kim et al., 2020; Zhang et al.,
2021).

In the present study, WGCNA was constructed by using the
GSE102484 dataset containing gene expression profiling data
from 683 BRCA patients. Specific module associated with
BRCA progression and metastasis was identified, followed by
hub gene prediction and functional analyses. Notably, TIMER
algorithm was further applied to unravel the relationship between
hub gene expression and tumor immunity. The regulatory
network of the identified hub genes was also explored.

MATERIALS AND METHODS

Data Collection
Human BRCA dataset GSE102484 with patient clinical
information was downloaded from GEO database (Cheng
et al., 2017). GSE102484 dataset was performed on platform
GPL570 Affymetrix Human Genome U133 Plus 2.0 Array (HG-
U133_Plus_2). GSE102484 includes 683 BRCA samples, which
were used to construct a co-expression network, followed by
distinguishment and extraction of the hub genes. R package was
used to annotate raw data, generate an expression matrix, and
match probes with official gene symbols. The median absolute
deviations (MADs) were ranked from largest to smallest, and the
expressions of the top 25% genes with the largest differences in
the samples were extracted for in-depth analysis.

Weighted Gene Co-Expression Network
Analysis
The R package “WGCNA” was utilized to perform weighted
gene co-expression network analysis on selected genes to find
out the expression patterns between different genes. Genes
with similar expression patterns were grouped into a specific
module and marked with a unique color. Then, the
correlation between these modules was calculated and a
heat map was depicted to show the independence between
each module. Next, the correlation analysis was conducted to

find modules related to the chosen clinical information.
Module with the most significant correlation to tumor
progression was selected for further analysis.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Enrichment
Analyses
To investigate the biological functions and signal pathways
involved in genes of the yellow module, the group of genes in
the yellow module were analyzed through the R package
“clusterProfiler” (Yu et al., 2012). Then, another R package
“ggplot2” was applied to screen out the top 10 significantly
representative terms of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analyses. Enriched GO terms and KEGG pathways were
identified based on the cut-off criterion of p < 0.05.

Protein–Protein Interaction of the Key
Module Genes
For the purpose of hub genes selection, genes of the yellow
module were uploaded to the STRING database to build a
protein-protein interaction (PPI) network (Szklarczyk et al.,
2019). The minimum interaction score > 0.4 was set up as the
threshold of the key genes in the PPI network. Then, a Cytoscape
plug-in cytohubba was used to extract the top 10% targets in the
yellow module based on the degree method (Shannon et al.,
2003).

Identification and Validation of Hub Genes
According to the results from the cytohubba analysis, the top
56 genes in the yellow module were selected as hub gene
candidates for further analysis. The GEPIA webserver (Tang
et al., 2017) (http://gepia.cancer-pku.cn/) was next used to
perform the overall survival and mRNA expression analyses of
the candidates. Hub gene candidates with the significant
results were selected for the next round of analysis.
Successively, the Kaplan–Meier plotter (http://kmplot.com/
analysis/) was used to draw the survival plots to verify the
outcomes so as to screen out the real hub genes. To be specific,
the PAM50 module was selected to classify the BCRA subtypes,
while the others were set as default. Subsequently, GEPIA 2021
(Li et al., 2021) (http://gepia2021.cancer-pku.cn/), a
standalone extension with multiple deconvolution-based
analysis for GEPIA, was used to visualize the gene
expression in each cell type selected with the interactive
boxplot and perform the cell type-level differential
expression analysis of the identified key targets comparing
with normal breast tissues. Therefore, we can determine the
transcription level of hub genes at certain types of cells in
BRCA tissues. p < 0.01 was considered to be statistically
significant. Moreover, TIMER2.0 (Li et al., 2020) (http://
timer.comp-genomics.org/), a comprehensive resource for
systematical analysis of immune infiltrates across diverse
cancer types, was used to present the co-expression analysis
of real hub genes in the BRCA subtype.
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Immune Infiltration Level Analysis
Based on the findings above, the immune association module
of TIMER2.0 was then applied to explore the correlations
between expression of hub genes and immune infiltration
level in luminal-A subtype of BRCA. Tumor purity was
used as a major confounding factor in this analysis. Since
the majority of immune cell types are negatively correlated
with tumor purity, we selected the “Purity Adjustment” option
which used the partial Spearman’s correlation to perform the
association analysis.

Immune Correlation and CARE Score Analyses
The crosstalk between tumor and immune system plays an
essential role in cancer initiation, progression and treatment.
Thus, TISIDB(Ru et al., 2019), an integrated repository portal
for tumor-immune system interactions, was used to explore
the relations between three types of immunomodulators
(immunoinhibitors, immunostimulators and MHC
molecules) or chemokines and expression of hub genes. The
Computational Analysis of REsistance (CARE) software (Jiang
et al., 2018) was further used to identify genome-scale
biomarkers of targeted therapy response using compound
screen data. It could search for CARE results on three
datasets of CCLE, CTRP, and CTRP. For each gene, the
CARE score indicates the association between its molecular
alteration and drug efficacy. A positive score indicates a higher

expression value (or presence of mutation) to be associated
with drug response, whereas a negative score indicates drug
resistance.

Construction of Transcription Factors-Hub Genes
Network
In order to identify the transcription factors (TFs) that
modulate hub gene expression and reveal their regulatory
relationships, a regulating network on account of hub genes
and TFs in BRCA was constructed with the help of Cytoscape
software. Then, the plugin iRegulon of Cytoscape was applied
to forecast TF regulation networks.

RESULTS

Construction of the Co-Expression Network
and Identification of Modules
The general pipeline of the data analysis protocol was depicted
in Figure 1. In general, GEO dataset of GSE102484 containing
gene expression profiling data of 683 BRCA samples was
analyzed using the R package WGCNA. The
clinicopathological characteristics of tumor grade, T stage,
N stage and metastasis were denoted. Remarkably, an 18-
gene classifier, which could be applied to estimate the risks
of local/regional recurrence (LRR) and distant metastasis in

FIGURE 1 | Experimental design and workflow of our study.
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BRCA patients after mastectomy (Cheng et al., 2006; Cheng
et al., 2017), was also denoted. After screening by MADs
arranged from large to small, the expression of the top 25%
genes (5,044 genes) with the greatest differences in samples
were analyzed by WGCNA.

The DEGs with similar expression patterns were then
grouped into different modules by average linkage
clustering. As a result, nine modules were finally identified
by merging similar modules when the MedissThres was set at
0.25 (Figure 2A). By calculating the correlation between
eigengenes and the clinical traits, the yellow module was
found to be more related to BRCA progression and
metastasis as others. Scatter plot in Figure 2B further
showed a significantly positive correlation between
members of yellow module and gene significance for

BRCA stage. Therefore, the yellow module was selected as
the key module correlated with BRCA progression for follow-
up analyses.

Enrichment Analysis of the Yellow Module
We next performed the GO and KEGG pathway analyses for
the DEGs in the yellow module to illustrate their biological
functions. In terms of GO analysis, Biological Process (BP)
analysis led to the enrichment of these genes into the processes
of organelle fission and nuclear division; while outcomes of
Cellular Component (CC) and Molecular Function (MF)
analyses resulted in the enrichment of these genes towards
chromosomal region and ATPase activity (Figure 3A).
Furthermore, KEGG pathway analysis result indicated that
DEGs in the yellow module mainly exert their functions

FIGURE 2 | Identification of modules correlated with the clinical traits of BRCA. (A) Heatmap to show the correlation between modules and clinical features of
BRCA. p-values are shown in brackets. (B) Scatter plot analysis to show the association between Module membership in the yellow module and gene significance for
BRCA stage.
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through cell cycle and cellular senescence pathways
(Figure 3B).

PPI Network Construction and Hub Genes
Screening
With the assistance of STRING database and Cytoscape
software, a total of 664 DEGs in the yellow module were
mapped into the PPI network, including 559 nodes and
12,050 edges. Subsequently, the top 10% key targets
(56 genes) within PPI network were selected using
cytoHubba plug-in in Cytoscape software based on rank of
degree (Figure 4A). To shorten the scope and reconfirm our
observations, both survival and differential expression
analyses were conducted using the GEPIA web server. For

all 56 hub gene candidates, only CHEK1 and UBE2C were
found to be significantly correlated with BRCA patient
survival and differentially expressed between cancer and
normal specimens. To be specific, both genes were
positively associated with poor patient survival rate
(Figures 4B,C) and expressed higher in BRCA samples
(Figures 4D,E). In addition, results of UALCAN analysis
(Chandrashekar et al., 2022) suggested that elevated
CHEK1 or UBE2C expression could be observed in BRCA
tumors at the late stages (Figures 4F,G). To investigate the
relationship between expression of the two selected
candidates and BRCA subtypes, survival analysis was next
performed using the survival information of each BRCA
subtype in Kaplan–Meier plotter. As a result, elevated
expression of both genes was only observed to be

FIGURE 3 | Functional enrichment analysis of genes in the yellow module. (A) GO enrichment analysis of the genes in the yellow module. BP, biological process,
CC, cellular component, MF, molecular function. (B)KEGG pathway enrichment analysis of the genes in the yellowmodule. The sizes of the dots represent the number of
genes in each term.
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FIGURE 4 | Identification and validation of Hub genes in BRCA. (A) Identification of the top 10% key targets from PPI network in the yellow module. (B,C) Overall
survival of the two hub gene candidates in BRCA based on the Gene Expression Profiling Interactive Analysis (GEPIA) database. (D,E)Graphs showing the mRNA levels
of two hub gene candidates in BRCA tissues compared with normal controls fromGEPIA database. *p < 0.01was considered as statistically significant. (F,G) Expression
of CHEK1 and UBE2C in BRCA based on individual cancer stages. (H,I)Overall survival of the two hub genes in luminal-A subtype of BRCA based on KaplanMeier-
plotter. (J) Correlation Analysis of the two hub genes in luminal-A subtype of BRCA based on the TIMER2.0 database.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9442596

Yu et al. BRCA Biomarkers CHEK1 and UBE2C

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


significantly associated with poor outcome of patients
diagnosed with luminal-A type of BRCA (Figures 4H,I).
Interestingly, expressions of CHEK1 and UBE2C were
positively correlated with each other in luminal A breast
cancer subtype (Figure 4J), suggesting the existence of a
potential co-regulatory network for both genes.
Collectively, our data suggested that CHEK1 and UBE2C
could be served as hub genes associated with BRCA
progression, especially for the luminal-A subtype.

Expression of Hub Genes in Different Cell
Populations of Breast Cancer
We next sought to investigate the expression of CHEK1 and
UBE2C in BRCA at cell type level with the help of GEPIA 2021 (Li
et al., 2021). By using the deconvolution tool of EPIC, we
observed significant upregulation of both hub genes in CD4+

T cells, CD8+ T cells and endothelial cells (Figure 5A). These
findings were further confirmed through the deconvolution tool
of CIBERSORT (Figure 5B). Meanwhile, downregulation of
Follicular Helper, Tregs and Gamma delta T cells were also
found in both hub genes (Figure 5B), indicating that
CHEK1 and UBE2C were coordinately expressed in various
cell populations of BRCA.

Immune Cell Infiltration Analysis of the Hub
Genes
To determine whether any correlation is existed between tumor
infiltration with immune cells and expression of hub genes
identified in this study, the tumor infiltration across multiple
immune BRCA cells was analyzed by TIMER along with other
tools. As presented in Figures 6A,B, strong positive correlation
was observed between expression of two hub genes and

FIGURE 5 | Expression analysis of the two hub genes at cell-type level in BRCA. (A) Expression of the two hub genes in various clusters of human immune cells
from BRCA by deconvolution tool EPIC. (B) Expression of the two hub genes in various clusters of human immune cells from BRCA by deconvolution tool CIBERSORT.
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FIGURE 6 |Correlation of the expression of two hub genes with immune infiltration level in BRCA based on TIMER. (A)Correlation of the expression of CHEK1 with
immune infiltration level in luminal-A subtype of BRCA. (B) Correlation of the expression of UBE2C with immune infiltration level in luminal-A subtype of BRCA.

FIGURE 7 | Relations between the expression of the two hub genes and chemokines of CCL7, CCL18, CXCL10. (A) Relations between expression of CHEK1 and
three chemokines in BRCA. (B) Relations between expression of UBE2C and three chemokines in BRCA.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9442598

Yu et al. BRCA Biomarkers CHEK1 and UBE2C

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


infiltrating levels of CD4+ T cells, while weak negative correlation
could be found between expression of two hub genes and
infiltrating levels of cancer associated fibroblast or endothelial
cells.

We then used TISIDB to detect the association between hub
genes and immune checkpoints. Intriguingly, both CHEK1 and
UBE2C were found to be positively correlated with the expression
of a series of immune checkpoints, including chemokines of
CCL7, CCL18 and CXCL10; immunoinhibitors of CTLA4,
IDO1 and LAG3; immunostimulators of PVR and ULBP1 and
MHC molecules of TAP1 and TAP2 (Figures 7, 8, 9A–G). To
gain more insights of these observations, the CARE approach was
next applied to evaluate how hub genes interact with other genes
to affect drug efficacy. As a result, CHEK1 showed significantly
positive CARE scores for multiple compounds screened in all

three cohorts (Figure 9H), suggesting that high expression of
CHEK1 is associated with better response to immunotherapy. In
sharp comparison, significantly negative CARE scores were
observed for UBE2C (Figure 9I), indicating that expression of
UBE2C may promote drug resistance towards many targeted
therapies.

The Transcriptional Regulatory Network of
Hub Genes and Transcription Factors
Finally, we sought to establish the transcriptional regulatory
network between two hub genes and TFs by the plugin
iRegulon of Cytoscape. As revealed in Figure 10, a total of
45 TFs were identified to be involved in the regulation of
CHEK1 and UBE2C. Notably, 11 of them were characterized

FIGURE 8 | Relations between the expression of CHEK1 and immune checkpoints in BRCA. (A–C) Relations between three immunoinhibitors (CTLA4, IDO1,
LAG3) and expression of CHEK1. (D,E) Relations between two immunostimulators (PVR and ULBP1) and expression of CHEK1. (F,G) Relations between two MHC
molecules (MHC_TAP1 and MHC_TAP2) and expression of CHEK1.
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FIGURE 9 | Relations between the expression of UBE2C and immune checkpoints in BRCA. (A–C) Relations between three immunoinhibitors (CTLA4, IDO1,
LAG3) and expression of UBE2C. (D,E) Relations between two immunostimulators (PVR and ULBP1) and expression of UBE2C. (F,G) Relations between two MHC
molecules (MHC_TAP1 and MHC_TAP2) and expression of UBE2C. (H,I) The CARE score of CHEK1 (H) and UBE2C (I) on CCLE, CGP, CTRP dataset.

FIGURE 10 | The transcriptional regulatory network of TFs and the two hub genes. TFs: transcription factors. Green hexagon nodes represented TFs, pink circular
nodes represented TFs regulated hub genes, and light blue diamond node represented the BRCA. Their interactions were represented by arrows. The number of arrows
in the networks demonstrated the contribution of one TF to the hub genes. The higher the degree the more central the nodes were within the network.
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as the upstream regulators of both hub genes. Future studies
focusing on these TFs may shed light on the understanding of the
co-activated expression pattern of CHEK1 and UBE2C during the
progression of BRCA.

DISCUSSION

It is generally accepted that effective driver genes could play
essential roles during the tumorigenesis and development of
cancer (Dawson et al., 2013; Martínez-Jiménez et al., 2020).
However, till now, only a limited number of gene drivers,
such as ER (Jensen and DeSombre, 1973), HER2(Slamon
et al., 1987) and EZH2 (Adibfar et al., 2021; Yi et al., 2021;
Yi et al., 2022), have been fully validated as targetable
oncogenic drivers of BRCA. In the current study,
CHEK1 and UBE2C were newly identified as hub genes
and potential therapeutic targets of BRCA with the help of
WCGNA, TIMER and other powerful bioinformatic tools.

As a conserved serine/threonine kinase and component of
several cell cycle checkpoints, cell cycle checkpoint kinase 1
(CHEK1) is required for replication fork stabilization and
DNA damage response (Dai and Grant, 2010; Blasius et al.,
2011). Genomic instability induced by impairment of cell cycle
checkpoints is widely recognized as a hallmark of cancer. Thus,
CHEK1 could be considered as an attractive target for cancer-
specific therapy (Rundle et al. et al., 2017). Currently, multiple
CHEK1 inhibitors have been commercially developed and
showed promising results in pre-clinical studies for cancer
types like lymphoma (Walton et al., 2016) and neuroblastoma
(Walton et al., 2012). Based on our findings in the current study, it
is anticipated that targeted therapy using CHEK1 inhibitors may
also lead to optimal outcomes for BRCA patients.

Similar to CHEK1, Ubiquitin-conjugating enzyme 2C
(UBE2C) also participates in cell cycle progression and
checkpoint control by targeting abnormal or short-lived
proteins for degradation (Hao et al., 2012). Overexpression
of UBE2C has been reported in various human tumors, which
leads to chromosomes mis-segregation and uncontrolled cell
cycle process in cancer (Chen et al., 2010; van Ree et al., 2010;
Zhao et al., 2013). In terms of BRCA, tumor suppressor
BRCA1 was identified as a negative regulator of UBE2C
which could thereby promote the sensitivity of BRCA cells
to doxorubicin (Qin et al., 2017). In addition, microRNA-
196a has been validated to upregulate UBE2C post-
transcriptionally and thus promotes cell proliferation in

BRCA (Han et al., 2015). In accordance with the previous
studies, our data reconfirm the significance of UBE2C during
carcinogenesis of BRCA and further prove that UBE2C might
regulate the development of BRCA by affecting the T cell
functions. However, further experiments are needed to unveil
the underlying mechanism by which these two hub genes
modulate tumor infiltration.

Through regulatory network analysis, we identified 11 TFs
(SIN3A, E2F4, TBP, TFDP1, HOXA5, HOXA10, NFYA, MYBL2,
AEBP2, PAX4 and NFYB) that could target both CHEK1 and
UBE2C in BRCA. Interestingly, most of them exhibited an
elevated expression pattern in BRCA based on The Cancer
Genome Atlas (TCGA) database (Hutter and Zenklusen,
2018). Thus, it is not surprising that upregulation of these TFs
may lead to the co-activation of CHEK1 and UBE2C, which
subsequently facilitates the progression of BRCA.

In summary, through integrated bioinformatics analysis,
our present study identified CHEK1 and UBE2C as potential
prognostic and therapeutic targets in BRCA. Moreover, both
candidates may be served as effective biomarkers to evaluate
the immune status of BRCA patients and predict the
effectiveness of immunotherapy before treatment.
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