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Simple Summary: Animal models are widely used to study various aspects of human diseases and
disorders. Likewise, they are indispensable for preclinical testing of medicals and vaccines. Human
adenovirus infections are usually self-limiting, and can cause mild respiratory symptoms with
fever, eye infection or gastrointestinal symptoms, but occasional local outbreaks with severe disease
courses have been reported. In addition, adenovirus infections pose a serious risk for children and
patients with a weakened immune system. Human adenovirus research in animal models to study
adenovirus-induced disease and tumor development started in the 1950s. Various animal species
have been tested for their susceptibility to human adenovirus infection since then, and some have
been shown to mimic key characteristics of the infection in humans, including persistent infection.
Furthermore, some rodent species have been found to develop tumors upon human adenovirus
infection. Our review summarizes the current knowledge on animal models in human adenovirus
research, describing the pros and cons along with important findings and future perspectives.

Abstract: Human adenovirus (HAdV) infections cause a wide variety of clinical symptoms, ranging
from mild upper respiratory tract disease to lethal outcomes, particularly in immunocompromised
individuals. To date, neither widely available vaccines nor approved antiadenoviral compounds are
available to efficiently deal with HAdV infections. Thus, there is a need to thoroughly understand
HAdV-induced disease, and for the development and preclinical evaluation of HAdV therapeutics
and/or vaccines, and consequently for suitable standardizable in vitro systems and animal models.
Current animal models to study HAdV pathogenesis, persistence, and tumorigenesis include rodents
such as Syrian hamsters, mice, and cotton rats, as well as rabbits. In addition, a few recent studies on
other species, such as pigs and tree shrews, reported promising data. These models mimic (aspects
of) HAdV-induced pathological changes in humans and, although they are relevant, an ideal HAdV
animal model has yet to be developed. This review summarizes the available animal models of
HAdV infection with comprehensive descriptions of virus-induced pathogenesis in different animal
species. We also elaborate on rodent HAdV animal models and how they contributed to insights into
adenovirus-induced cell transformation and cancer.

Keywords: cotton rats; experimental infection; human adenovirus (HAdV); (humanized) mice;
in vivo model; pigs; susceptibility; Syrian hamsters; rabbits; tree shrews

1. Introduction

Animal models are of the utmost importance for basic and applied research to not
only expand and verify in vitro findings, but also to study diseases and therapies in physi-
ological settings. In infectious diseases research, they contributed to fundamental insights
into disease pathogenesis, and are essential to study mode-of-action and efficacies of anti-
infectives and prophylactic treatments [1]. An ideal animal model recapitulates a particular
disease or condition in a non-human organism in terms of key phenotypic, pathophysio-
logic, and histopathological characteristics, as well as response to treatment [2,3]. Animal
models have greatly improved our knowledge on the course of viral infections including
disease, associated pathology, persistence, and viral transformation in human adenovirus
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(HAdV) infections [4,5]. Moreover, preclinical evaluation of antiadenoviral treatment
options, adenovirus-based therapeutics, and vaccines rely on data from experiments in
relevant in vivo settings, as is happening currently with COVID-19 vaccines [6]. Here,
different HAdV types and simian adenoviruses serve as excellent vaccine vectors, and are
used to potentially fight off zoonotic diseases such as AIDS, malaria, and Ebola, besides
COVID-19 [7]. In vivo studies on adenoviral vectors in general and their use in vaccine-
and gene therapy approaches in particular have been extensively reviewed. The same
applies to oncolytic adenoviruses in animal models that are not part of this work, but
were reviewed by others recently [8–12]. This review outlines the current knowledge on
HAdV susceptibility of different animal models, highlighting key features, strengths, and
limitations. We set the focus on studies that predominantly report adenovirus pathogenesis
and adenovirus-induced cell transformation.

2. Main Text
2.1. Adenovirus Disease in Humans and the Importance of Animal Models in Adenovirus Research

HAdVs belong to the genus Mastadenovirus, in the virus family Adenoviridae. They
are grouped into different species (A to G), and subsequently classified in more than
100 different types, based on viral sequences and serological data [13]. HAdV infections of
humans are common, with high seroprevalences worldwide [14]. These non-enveloped,
double-stranded DNA viruses have genome sizes of approximately 24–48 kb, depending
on the type [15].

Clinical symptoms in infected individuals vary, and there are currently no widely
available vaccines nor approved specific antiadenoviral compounds available to prevent
and treat HAdV infections [16]. While immunocompetent individuals develop rather mild
symptoms, infections of pediatric or immunocompromised patients can cause severe and
sometimes lethal disease [17]. Furthermore, different HAdV types have different tissue
tropisms, and infections of the respiratory, gastrointestinal, and urinary tracts, as well as
the eyes, have been reported [17]. The tissue tropism largely correlates with clinical signs in
humans that range from respiratory disease, conjunctivitis, and gastroenteritis of different
severities. Moreover, some types are discussed to be risk factors for obesity, as extensively
reviewed elsewhere [18,19]. To understand HAdV pathogenesis and infection-related
consequences, researchers have been on a ~70 year-long quest for suitable animal models
that phenocopy HAdV infection of humans. These models included various rodents
including xenotransplanted and genetically engineered transgenic mice and hamsters, pigs,
non-human primates, and other species. All these models facilitate HAdV replication and
induction of HAdV disease signs to different extents, and are employed to recapitulate
aspects of the human disease. However, an ideal model that mimics the human disease
has not been established to date, partly due to the species-specific nature of adenoviruses.
The search remains ongoing as key findings from carefully designed and well-controlled
studies in animal models continue to be of great importance to biomedical research [20].

2.2. First Experimental HAdV Infections of Animals

The first experimental infections of animals with HAdVs date back to the 1950s and
1960s [21–36]. All of these studies confirmed findings by Rowe and colleagues, who did
not observe clinical disease symptoms in experimentally infected rabbits, mice, hamsters,
Guinea pigs, cats, ferrets, rats, and even non-human primates (Figure 1) [21]. Another
follow-up study also reported asymptomatic persistent infection of rabbits [22]. Interest-
ingly, they detected persistent HAdV-C5 in experimentally infected adult rabbits at 8 weeks
p.i. by virus re-isolation from spleen homogenates. Subsequent approaches evaluated
HAdV-induced tumors in rodents as described below [26,28–35], along with the suscepti-
bility of dogs and even pigs to different HAdV types using different infectious doses, but
none of these animals proved to be suitable to study HAdV infection [23–25].
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models was pioneered by Rowe et al. in 1955 at the NIH in Bethesda, MD (USA) [21]. That work laid 
the foundation for various follow-up studies and novel approaches to establish a suitable animal 
model to study HAdV infection, including HAdV-induced pathogenesis and cancer development in 
vivo. The most relevant models are Syrian hamsters [28], mice [32,33], cotton rats [37], New Zealand 
(NZ) rabbits [38], STAT2 knockout (KO) Syrian hamsters [39], humanized mice [40], and Chinese tree 
shrews [41] (sorted by publication date of the first report on the respective animal model). 

2.3. Syrian Hamsters 
(Golden) Syrian hamsters (Mesocricetus auratus) are medium-sized rodents that are 

frequently used as animal model in various fields of research. Moreover, a decent number 
of molecular tools and reagents are available to study host response to infection in this 
hamster species [42]. They are susceptible to a wide variety of DNA and RNA viruses [42], 
and are used as an adenovirus animal model since 1962 (Table 1) [26–29]. The Syrian ham-
ster model is the most commonly used HAdV animal model that has successfully been 
applied to studies on basic HAdV pathogenesis, and especially tumorigenesis, counter-
measure and (oncolytic) vector development [43]. The first records on the HAdV-suscep-
tibility of Syrian hamsters originate from the a study performed by Trentin and colleagues, 
who showed that HAdV-A12 induced sarcomas over a course of 33–90 days post-infection 
(Figure 1) [28]. These results were confirmed by three more publications in the same year 

Figure 1. Landmark publications on animal models in HAdV research. HAdV research in small
animal models was pioneered by Rowe et al. in 1955 at the NIH in Bethesda, MD (USA) [21].
That work laid the foundation for various follow-up studies and novel approaches to establish
a suitable animal model to study HAdV infection, including HAdV-induced pathogenesis and
cancer development in vivo. The most relevant models are Syrian hamsters [28], mice [32,33], cotton
rats [37], New Zealand (NZ) rabbits [38], STAT2 knockout (KO) Syrian hamsters [39], humanized
mice [40], and Chinese tree shrews [41] (sorted by publication date of the first report on the respective
animal model).

2.3. Syrian Hamsters

(Golden) Syrian hamsters (Mesocricetus auratus) are medium-sized rodents that are
frequently used as animal model in various fields of research. Moreover, a decent number of
molecular tools and reagents are available to study host response to infection in this hamster
species [42]. They are susceptible to a wide variety of DNA and RNA viruses [42], and
are used as an adenovirus animal model since 1962 (Table 1) [26–29]. The Syrian hamster
model is the most commonly used HAdV animal model that has successfully been applied
to studies on basic HAdV pathogenesis, and especially tumorigenesis, countermeasure
and (oncolytic) vector development [43]. The first records on the HAdV-susceptibility of
Syrian hamsters originate from the a study performed by Trentin and colleagues, who
showed that HAdV-A12 induced sarcomas over a course of 33–90 days post-infection



Biology 2021, 10, 1253 4 of 16

(Figure 1) [28]. These results were confirmed by three more publications in the same year
that additionally demonstrated tumor induction by HAdV-A18, as well as fatal infection of
newborn hamsters with high infectious doses of HAdV-C5 [26,27,29]. Subsequent studies
further corroborated these data, and also reported oncogenic properties of HAdV-B3 and
B7 [30,34,44–46]. Much is known about the mechanisms of adenoviral tumor induction
and cell transformation in vitro, but the subjects still are a matter of investigation. It is
discussed that some HAdVs (such as A12, A18, B3, and B7) lead to abortive infection, and
subsequently to cell transformation in hamsters, while other HAdVs replicate and cause
cell pathology in these animals. Nevertheless, adenoviral cell transformation in general
and HAdV-induced tumors in Syrian hamsters in particular represent an excellent system
for DNA virus tumorigenesis, and built the cornerstone for various following reports
on the development of adenoviral vectors that have been reviewed extensively [47–50].
Intriguingly, other hamster species have also been shown to be susceptible to HAdV-
induced tumors. A single 1974 study describes HAdV-A12-induced tumor development in
newborn Armenian (Cricetulus migratorius) and Chinese hamsters (Cricetulus griseus) [51].

Syrian hamsters that were used in HAdV-C5 and C6 pathogenesis studies were found
to have viral titers in blood and organ samples, and serologic as well as histologic evi-
dence of infection [52–57]. Besides HAdV-C5 and C6 replication in the lungs and other
organs, the virus especially targets the liver (hepatocytes, Kupffer cells) to cause inflam-
mation and hepatocellular necrosis, accompanied by elevated levels of liver enzymes.
Weight loss as a robust clinical sign of infection has only been observed in chemically
immunosuppressed Syrian hamsters that showed transiently reduced body weights upon
HAdV-C5 infection [55,56]. Interestingly, male Syrian hamsters seem to be more suscep-
tible than females, which has also been observed for other viral infections like COVID19
lately [57–59].

In recent studies, Radke and colleagues reported that HAdV-B14 and an emerging vari-
ant, B14p1, cause severe lung pathogenesis in intratracheally infected in Syrian hamsters
characterized by local infiltrations of inflammatory cells developing into bronchopneu-
monia. However, although the authors did not report clinically apparent disease signs,
these studies in conjunction with the studies that Tollefson and colleagues performed in
Syrian hamsters allowed for comparisons of the pathogenicity of the different HAdVs and
assessment of respective immune responses [55,56,60,61].

Toth and colleagues introduced the genetically modified Syrian hamster model in 2015
(Figure 1) [39]. These STAT2 knockout animals [62] show decreased interferon signaling,
which facilitates higher HAdV-C5 replication, more severe liver pathology, and increased
mortality when compared to wild type Syrian hamsters upon intravenous infection, and
thereby resemble HAdV infection of immunosuppressed humans. Moreover, the interferon
immune response was deregulated in infected STAT2 knockout hamsters [39]. Both wild
type and genetically modified hamsters have been proven useful for efficacy studies on
HAdV therapeutics and vaccines, as well as on vector development [43,53–55,63–73].

2.4. Cotton Rats

Cotton rats are small rodents that are susceptible to various human pathogens, and
especially to upper respiratory tract infections where mice and rats are typically rather
resistant [74,75]. The first report on hispid cotton rats (Sigmodon hispidus) as an HAdV
animal model dates back to 1984 when Pacini and colleagues used moderate HAdV-C5 titers
to infect one-month-old animals, and detected viral titers in the lungs and nasal mucosa and
seroconversion as soon as six days post-infection (Figure 1, Table 1) [37]. Histopathological
examinations of lung samples from infected cotton rats revealed transient peribronchial
immune cell infiltration and other subtle signs of pneumonia [37]. No clinical symptoms
were observed by Pacini and colleagues, but dose-dependent disease has been reported in
a follow-up study, in which high HAdV-C5 doses led to more severe lung damage, and
high-dose-infected animals died within the first week post-infection [76].
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Table 1. Wild type HAdV susceptibility and wild type HAdV-induced disease in different relevant animal models. The
corresponding references can be found in the respective paragraph text.

Species HAdV
Type(s) +

HAdV Dose
(Range) #

Infection
Route

Clinical Signs
Of A Systemic

Disease

Histopathological
Lesions

Induction Of
Neutralizing
Antibodies?

HAdV-
Induced
Tumors?

Cotton rat
(Sigmodon
hispidus)

C5, D8, D37
and E4 102–1010 i.m., i.n., i.o. No * Lung, airway

and eye damage Yes No

Guinea pig
(Cavia

porcellus)
C5 107–8 × 108 i.c., i.n. Not reported Lung and airway

damage Yes No

Humanized
mouse (Mus

musculus)
C2 1.4 × 104–1.4 × 108 i.v. Lethargy,

weight loss Liver damage Yes No

Mouse (Mus
musculus)

A12, C5, D37
and D64 105–1.4 × 1011

i.m., i.n.,
i.pe., i.pu.,
i.v., i.o., s.c.

No * Liver, eye and
lung damage Yes Yes

New Zealand
rabbit

(Oryctolagus
cuniculus)

C5 5.7 × 105–1.6 × 109 i.v., i.o. Eye pathology Lung and eye
damage Yes No

Pig (Sus scrofa) C5 1.6 × 103–1010 i.v., i.t. No Moderate lung
damage Not reported No

Rat (rattus
norvegicus)

A12, C5 and
D9 5 × 107–3 × 1011 i.o. i.pe., s.c. No Not reported Not reported Yes

Syrian hamster
(Mesocricetus

auratus)

A12, A18, B3,
B7, B14, C5

and C6
1.5 × 1010–2 × 1011 i.i., i.n., i.pu.,

i.t., s.c., i.v.

Weight loss
with some

HAdV types §

Liver, lung and
airway damage Yes Yes

Tree shrew
(Tupaia

belangeri
chinensis)

B55 5 × 105 i.n.

Weight loss
and body

temperature
increase

Lung damage Yes No

+ Without mutant HAdVs or engineered oncolytic HAdVs. # Not all references reported accurate TCID50 values; where appropriate,
PFU were converted to TCID50 (pfu [mL]/TCID50 [mL] = 0.7). * A lethal dose of 3.6 × 109 TCID50 has been reported for cotton rats [76],
and ~1.4 × 109 TCID50 for mice [77]. § Weight loss and lethal challenge have been reported in chemically immunosuppressed Syrian
hamsters [55,56]. i.c., intracardial; i.i., intraintestinal; i.m., intramuscular; i.n., intranasal; i.o., intraocular, i.pe., intraperitoneal; i.pu.,
intrapulmonal; i.t., intratracheal; i.v., intravenous; s.c., subcutaneous.

Cotton rats are also employed as animal models for the adenovirus-induced eye
disease adenoviral epidemic keratoconjunctivitis (EKC) [78–80]. EKC is highly contagious,
and characterized by eye inflammation and visual disturbances caused by corneal opacities;
EKC outbreaks occur regularly [81,82]. Ocular HAdV-C5 and D8-infection of cotton rats
show hallmarks of the human disease, including virus replication and development of the
aforementioned subepithelial corneal opacities [78–80].

This HAdV-animal model is susceptible to HAdV infection, and even resembles
human EKC. Consequently, cotton rats have been used in various approaches to test
therapeutic interventions and to study oncolytic adenoviruses [65,79,80,83–86].

2.5. New Zealand Rabbits

Rabbits have served as models of human infectious diseases and ophthalmology for
decades [87,88]. New Zealand (NZ) rabbits (Oryctolagus cuniculus) have been used as
an animal model species for investigating persistent [22,36] and ocular HAdV infection
(Table 1) [38,89–95]. Both papers reporting prolonged HAdV-C5 infections observed per-
sistence of the virus in spleens for months [22,36], as well as presence of anti-HAdV-C5
antibodies in rabbit sera for up to a year post-infection [36]. The initial study on HAdV-
C5-infected rabbits as a model for basic and preclinical research on EKC was published by
Gordon and colleagues in 1992 (Figure 1) [38]. Through intraocular infection of female NZ
rabbits, they demonstrated that several features of human adenoviral eye infection can be
reproduced in this animal model, such as acute conjunctivitis, iritis, and corneal edema,
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followed by infiltrating immune cells at around 14 days post-infection. In addition, infected
rabbits mounted a neutralizing antibody response, and confirmed previous findings that
rabbits respond to infection via the humoral immune response. This ocular model of
HAdV-C5 infection has been continuously used since then to assess efficacies topical use
of the broad spectrum antiviral cidofovir and other treatment options against adenoviral
eye infections [89–95]. It is very likely that NZ rabbits will serve in future studies that
investigate the pathology and countermeasures against adenovirus-induced human EKC.

2.6. Rats

Rats (Rattus norvegicus) are commonly used as laboratory animal models that mimic
aspects of human diseases or the human organism, especially in oncology, pharmacology,
and toxicology research [96,97]. As described for other rodents above, rats also develop
tumors upon HAdV infection. That was first described by Huebner and colleagues in
1963, who showed that HAdV-A12 infections induce peritoneal tumors in rats with 30%
efficiency [98]. Interestingly, HAdV-A12-induced sarcomas and even retinoblastomas have
been observed by other groups [32,99–101]. In contrast, HAdV-D9 has been shown to cause
tumors in rats more efficiently, as investigated in a series of papers by Javier and colleagues.
First, they showed that subcutaneous HAdV-D9 inoculation of newborn female rats led
to mammary tumors during weeks to several months post-infection that exhibited three
distinct phenotypes: fibroadenoma, phylloide-like tumors, and solid sarcomas. HAdV-
D9-induced tumors developed, dependent on estrogen, as ovariectomized rats did not
develop tumors upon infection whereas treatment with a synthetic estrogen promoted
tumor formation [102]. With that, they confirmed earlier studies on HAdV-D9-related
tumorigenesis [103,104]. Further analyses revealed that HAdV-D9 persisted via genomic
integration in tumor cells [102]. In subsequent studies, Javier and colleagues could pinpoint
the HAdV-D9 E4 ORF1 gene as the major oncogene that drives mammary tumor formation
in infected rats [105–107]. The rat model for HAdV-infection has been used in one more
study that aimed to assess the effects of HAdV-C5 major capsid protein modifications on
tissue distribution within infected animals [108]. Male animals that were infected with
the HAdV-C5 wild type control exhibited a hepatotropic virus dissemination with no
clinical signs of an HAdV-C5-induced disease over a course of five days post-infection.
Interestingly though, the study demonstrated certain penton and fiber mutations lead to
viruses that are detargeted from rat livers [108].

These data indicate that rats are a good model to study HAdV-induced tumors,
and possibly also adenoviral vector development, but are not suitable for pathogenesis
assessment and preclinical evaluation of HAdV-vaccines and antivirals.

2.7. Mice

Non-transgenic immunocompetent laboratory mice (Mus musculus) were introduced
to HAdV research in 1964, when two American laboratories concurrently showed that
HAdV-A12 can induce tumors in newborn mice, comparable to those in Syrian hamsters
(Figure 1) [32,33]. However, HAdV tumor induction has not been followed up upon
in mice.

Comparable to the infection of Syrian hamsters, the primary target organ for HAdV
replication is the mouse liver, leading to hepatocellular necrosis, and even fatal hepatitis,
in HAdV-C5-infected mice, depending on the infectious dose [53,77,109,110]

Other studies reported no or only subtle viral replication, which is partly explained
by the absence of the entry receptor CD46 that is used by some HAdVs [14,111–113]. This
poses a major drawback, and prompted HAdV researchers to assess alternative models
such as HAdV infection of transgenic mice [54,114–116] or ocular HAdV infection [117,118].

Mice are the most used animal model, with a vast variety of tools and reagents
available to study nearly all aspects of host responses to infection. Thus, several studies
have investigated antiviral therapies and oncolytic adenoviruses in mice [53,54,119–126],
and this model will likely remain important for HAdV research.
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As additional mouse models, humanized mice are routinely used to study human
infectious diseases [127–129]. These models are generated e.g., by engraftment with func-
tional human cells or tissues. To establish an HAdV small animal model that reproduces
acute and chronic infection, Rodriguez and colleagues recently presented a humanized
mouse model (Figure 1) [40]. These JAX NSG-A2 mice received HLA-A2-matching CD34+
human hematopoietic stem and progenitor cells (HSPCs), and were HAdV-C2-infected
intravenously nine weeks post-transplantation. Successful infection was confirmed by
the detection of adenoviral RNA in blood samples, and systemic infection was excluded
for most animals, although low levels of viral mRNA could be detected in bone marrow
and inguinal lymph node samples. Aside from asymptomatic infections, which are most
probably due to the differing degrees of “humanization”, they observed acute infection pre-
sented as lethargy, weight loss, and even death in roughly one third of all infected NSG-A2
mice. Recorded histopathological lesions in livers of infected mice included intracytoplas-
mic vacuoles in hepatocytes, an increase in cell proliferation, an influx of monocytes and
macrophages, and signs of fibrosis [40]. HAdV-C2 persisted in asymptomatic mice, and
these mice mounted an HAdV-specific adaptive immune response.

The humanized mouse model of HAdV infection requires further evaluation, and
could be a valuable alternative animal model to study HAdV persistence and reactivation.

2.8. Non-Human Primates

Due to a close phylogenetic relationship to humans, non-human primates are often
used as models to understand infectious diseases of humans, as well as zoonotic and
anthroponotic infections [130]. HAdV infection has been evaluated in non-human primate
species with differing susceptibilities. First, experimental studies of various HAdV types
from different species in intranasally, intracerebrally, and subcutaneously infected non-
human primates were performed by Rowe et al., and failed to detect any symptoms of
an HAdV-induced disease [21]. However, efficacy studies of adenovirus-based vaccines
and gene delivery vectors provide evidence that non-human primates are susceptible to
HAdV infection with no clinical signs of HAdV-induced respiratory disease reported to
date [131–136]. Moreover, a single study described HAdV-A12-induced eye tumors in
3 out of 21 baboons (Papio spp.) 1 to 3 years post-infection when the virus was injected
intraocularly [137].

Most recent data come from HAdV-B55 infection in tree shrews (Tupaia belangeri
chinensis), squirrel-sized Asian non-human primates (Figure 1) [138]. Li and colleagues in-
fected Chinese tree shrews intranasally, and showed that they were permissive to infection
as evidenced by viral replication in the upper and lower airways and the lungs, resulting
in severe pneumonia (Table 1). They additionally demonstrated that tree shrews reacted
to HAdV-B55 infection with rapid seroconversion, elevated body temperatures, and up-
regulation of pro-inflammatory cytokines in PBMCs [41]. The tree shrew therefore poses a
promising model for HAdV-induced clinical disease and research on the zoonotic potential
of HAdVs that should be followed up upon, especially using other HAdVs for infection.

2.9. Pigs

Pigs (Sus scrofa) have long been excellent models for research on diseases affecting hu-
mans [139]. Many characteristics of pig anatomy and physiology resemble the situation in
humans, which is why there are several advantages of the porcine model over rodents and
other small animal models [140]. Their application as an animal model in HAdV research,
however, has been infrequent, and can be attributed to practical reasons such as required
space, costs, expense, and handling. The 1962 Betts and Jennings papers were the first
to report intratracheal HAdV infection of pigs causing bronchopneumonia, accompanied
by focal alveolar necrosis and lymphoid hyperplasia [24,25]. Conversely, no clinical signs
were observed (Table 1) [24,25]. These initial investigations were followed up by two more
recent publications, confirming the HAdV susceptibility of pigs. Intravenous HAdV-C5
injection of pigs resulted in moderate lung pathology, and viral DNA could be detected in
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lung, liver, kidney, and blood samples at early time points post-infection, suggesting virus
replication [110]. No obvious abnormalities were detected upon histopathological exami-
nations of liver and kidneys tissues, and clinical disease signs were absent [110]. Work by
Koodie and colleagues demonstrated active replication of an HAdV-C5/B3 chimera in the
lungs and spleen of intravenously infected immunocompetent pigs [141].

Collectively, these results suggest that pigs could be used as an HAdV animal model to
study the disease and for countermeasure development. Future directions should include
more thorough characterization of HAdV-induced pathology and immune responses
in pigs.

2.10. Guinea Pigs

Guinea pigs (Cavia porcellus) are important models in human bacterial infections [142].
In addition, they are susceptible to human pathogenic viruses, such as influenza A and
Zika [143,144]. An early study from 1974 describes persistent HAdV-C5 infection of guinea
pigs (Table 1) [145]. After intracardial HAdV-C5 infection of male guinea pigs, Faucon and
colleagues could re-isolate virus from different tissues, from blood and from spleens for
long periods of times post-infection, indicating persistent infection [145]. No clinical signs
or seroconversion of animals were reported in that study. A follow-up study that aimed at
establishing guinea pigs as an HAdV infection model used the same virus (HAdV-C5), but
at a lower infectious dose, and female guinea pigs that were infected intranasally. These
animals had high viral titers and detectable viral gene expression in lung tissues early
in infection, and exhibited considerable lung damage as observed by immunopathologic
examination of the lungs at different time points post-infection. Moreover, the animals
seroconverted to HAdV-C5 from three weeks post-infection on and persistent infections
as shown by Faucon and colleagues could not be detected [146]. Notably, HAdV-induced
tumor development has either not been investigated or was not reported in guinea pigs,
even though they belong to the order Rodentia. These unresolved and even contradicting
results combined with a lack of reagent availability explain why more research is needed
to establish guinea pigs as an HAdV animal model. Nevertheless, guinea pigs have served
in preclinical trials of HAdV-C5-based vector vaccines [147].

3. Conclusions and Perspectives

Basic and applied research on the various facets of HAdV infection including work in
preclinical models will remain important for the next decades. Basic research will further
reveal mechanisms and nuances of viral pathogenesis, persistence, and cell transformation.
Applied research includes important research areas such as the testing of therapeutics and
the evaluation of vector attenuation and immunogenicity, as well as (protective) efficacy
of adenoviral vaccine and gene therapy vectors. Thus, the quest for an ideal small animal
model that resembles key characteristics of HAdV infections will continue as, thus far,
no HAdV animal model can replicate the most important aspects of HAdV infection of
humans, and most available models are far from ideal (Table 2).

The Syrian hamster and cotton rat models are undoubtedly the most relevant and
most utilized models to date, although they have their limitations as outlined above and
summarized in Table 2. Novel approaches like the tree shrew model or infection of pigs
must prove their worth.



Biology 2021, 10, 1253 9 of 16

Table 2. Available HAdV animal models—their strengths and limitations.

Model Animal Strengths Limitations

Cotton rat

� HAdV replicates in the upper respiratory
tract and the lungs and causes pneumonia

� resembles human EKC
� used in many studies→ good comparability

between studies

� difficult animal handling
� subtle systemic disease signs, dependent on

the infectious dose

Guinea pig

� HAdV replicates in the lungs and causes
pneumonia

� persistent HAdV infection (?)

� few studies available→ limited
comparability between studies

Humanized mouse

� persistent HAdV infection
� robust clinical readouts like weight loss and

lethargy

� high expenses
� laborious to generate
� few studies available→ limited

comparability between studies

Immunosuppressed
hamster

� resembles HAdV infection of
immunosuppressed humans

� weight loss as a robust clinical readout
� chemical immunosuppression required

Mouse

� countless molecular and genetic tools
available

� HAdV-induced tumors

� mostly non-permissive
� subtle clinical disease signs

New Zealand rabbit

� resembles human EKC, used in many studies
→ good comparability between studies

� persistent HAdV infection

� higher maintenance costs compared to mice
and rats

� no systemic infection

Pig
� HAdV replicates in the lungs and causes

pneumonia

� animal size and handling
� no signs of a clinical disease
� few studies available→ limited

comparability between studies

Rat � HAdV-induced tumors
� non-permissive
� no signs of a clinical disease

STAT2 KO
hamster

� increased HAdV replication compared to
wild type hamsters

� resembles aspects of HAdV infection of
immunosuppressed humans

� limited availability
� animals are immunosuppressed

Syrian hamster

� most established HAdV animal model
� used in many efficacy studies on HAdV

therapeutics→ good comparability between
studies

� various molecular tools available
� virus replication in various organs
� HAdV-induced tumors

� no signs of a clinical disease
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Table 2. Cont.

Model Animal Strengths Limitations

Tree shrew

� resembles human HAdV-induced
pneumonia

� robust clinical readouts light weight loss and
fever

� suitable for studies that assess zoonotic
potential of HAdVs (?)

� limited availability
� few studies available→ limited

comparability between studies

EKC, (adenoviral) epidemic keratoconjunctivitis; KO, knockout.

The availability of various tools including suitable animal models to study HAdVs is
particularly important as the adenoviruses are diversifying, and more and more cases of inter-
species transmission pose the risk of zoonotic and anthroponotic spillover events [148–156].
Interesting and germane research questions that could be addressed using wild type and
chimeric viruses in in vitro and in vivo studies include, but are certainly not limited to:
What defines the host range of adenoviruses? How do recombination events facilitate
spillover infections? How can we improve outbreak preparedness? How likely are cross-
species transmission events from non-human primates to humans (or vice versa)? Notably,
the non-human primate isolates belong to the genus Mastadenovirus in the same way as
all HAdVs, and the adenovirus-induced disease in non-human primates is comparable
to that in humans [157]. Similar to in humans, disease signs include mild to moderate
respiratory and/or enteric symptoms, and even eye infections have been reported [157].
The field is beginning to understand aspects of host-range determinants, and both host and
particularly viral factors seem to play important roles in this process [156,158]. The aden-
oviral DNA binding protein (DBP) is such a host range determinant, and future work will
further unravel its role in HAdV cross-species transmission and adaptation of the virus to
new hosts [158,159]. For all that, well-coordinated interdisciplinary research and a toolbox
that includes appropriate HAdV animal models are crucial to thoroughly understand the
HAdV-induced disease and its zoonotic potential.

Author Contributions: All authors contributed significantly to the manuscript as follows. Conceptu-
alization, L.D.B., W.-H.I. and T.D.; writing—original draft preparation, L.D.B.; writing—review and
editing, L.D.B., W.-H.I. and T.D.; visualization, L.D.B.; funding acquisition, T.D. All authors have
read and agreed to the published version of the manuscript.

Funding: The Leibniz Institute for Experimental Virology (HPI) is supported by the German Federal
Ministry of Health and the Freie und Hansestadt Hamburg.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Colby, L.A.; Quenee, L.E.; Zitzow, L.A. Considerations for Infectious Disease Research Studies Using Animals. Comp. Med. 2017,

67, 222–231. [PubMed]
2. Prabhakar, S. Translational research challenges: Finding the right animal models. J. Investig. Med. 2012, 60, 1141–1146. [CrossRef]

[PubMed]
3. Mergenthaler, P.; Meisel, A. Animal Models: Value and Translational Potency. In Principles of Translational Science in Medicine,

2nd ed.; Wehling, M., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 83–90. [CrossRef]
4. Ruiz, S.I.; Zumbrun, E.E.; Nalca, A. Animal Models of Human Viral Diseases. In Animal Models for the Study of Human Disease,

2nd ed.; Conn, P.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 853–901. [CrossRef]
5. Tessier, T.M.; Dodge, M.J.; MacNeil, K.M.; Evans, A.M.; Prusinkiewicz, M.A.; Mymryk, J.S. Almost famous: Human adenoviruses

(and what they have taught us about cancer). Tumour Virus Res. 2021, 12, 200225. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/28662751
http://doi.org/10.2310/JIM.0b013e318271fb3b
http://www.ncbi.nlm.nih.gov/pubmed/23072902
http://doi.org/10.1016/b978-0-12-800687-0.00007-4
http://doi.org/10.1016/b978-0-12-809468-6.00033-4
http://doi.org/10.1016/j.tvr.2021.200225
http://www.ncbi.nlm.nih.gov/pubmed/34500123


Biology 2021, 10, 1253 11 of 16

6. Mendonca, S.A.; Lorincz, R.; Boucher, P.; Curiel, D.T. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. NPJ
Vaccines 2021, 6, 97. [CrossRef] [PubMed]

7. Vrba, S.M.; Kirk, N.M.; Brisse, M.E.; Liang, Y.; Ly, H. Development and Applications of Viral Vectored Vaccines to Combat
Zoonotic and Emerging Public Health Threats. Vaccines 2020, 8, 680. [CrossRef] [PubMed]

8. Wold, W.S.; Toth, K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene Ther. 2013, 13, 421–433.
[CrossRef] [PubMed]

9. Crystal, R.G. Adenovirus: The first effective in vivo gene delivery vector. Hum. Gene Ther. 2014, 25, 3–11. [CrossRef]
10. Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S.; Zhao, C.; Zheng, Z.; Shu, Y.; Wu, X.; et al. Adenovirus-Mediated

Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis.
2017, 4, 43–63. [CrossRef]

11. Goswami, R.; Subramanian, G.; Silayeva, L.; Newkirk, I.; Doctor, D.; Chawla, K.; Chattopadhyay, S.; Chandra, D.; Chilukuri, N.;
Betapudi, V. Gene Therapy Leaves a Vicious Cycle. Front. Oncol. 2019, 9, 297. [CrossRef] [PubMed]

12. McKenna, M.K.; Rosewell-Shaw, A.; Suzuki, M. Modeling the Efficacy of Oncolytic Adenoviruses In Vitro and In Vivo: Current
and Future Perspectives. Cancers 2020, 12, 619. [CrossRef] [PubMed]

13. Seto, D.; Chodosh, J.; Brister, J.R.; Jones, M.S. Members of the Adenovirus Research Community, Using the whole-genome
sequence to characterize and name human adenoviruses. J. Virol. 2011, 85, 5701–5702. [CrossRef]

14. Mennechet, F.J.D.; Paris, O.; Ouoba, A.R.; Salazar Arenas, S.; Sirima, S.B.; Takoudjou Dzomo, G.R.; Diarra, A.; Traore, I.T.; Kania,
D.; Eichholz, K.; et al. A review of 65 years of human adenovirus seroprevalence. Expert Rev. Vaccines 2019, 18, 597–613. [CrossRef]
[PubMed]
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