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Abstract
Background. Glioblastoma, the most common primary malignant brain tumor, is nearly universally fatal by 
5 years. Dendritic cell vaccines are promising but often limited clinically by antigen choice, dendritic cell potency, 
and/or manufacturing yield. We optimized vaccine manufacture, generating potent mature autologous dendritic 
cells pulsed with allogeneic glioblastoma lysates.
Methods. Platelet lysate-based supplement was used to establish human glioblastoma cell lines. Phenotype and 
genotype were assessed. An improved culture technique to generate mature dendritic cells from glioblastoma 
patients’ monocytes was developed. The ability of T cells stimulated with autologous dendritic cells pulsed with 
allogeneic glioblastoma cell lysate to kill HLA-A2-matched glioblastoma cells was assessed.
Results. Glioblastoma cell lines established with platelet lysate supplement grew faster and expressed more 
stem-like markers than lines grown in neural stem cell media or in the presence of serum. They expressed a va-
riety of glioma-associated antigens and had genomic abnormalities characteristic of glioblastoma stable up to 15 
doublings. Unlike standard culture techniques, our optimized technique produced high levels of mature dendritic 
cells from glioblastoma patients’ monocytes. Autologous T cells stimulated with mature dendritic cells pulsed with 
allogeneic glioblastoma cell line lysate briskly killed HLA-A2-matched glioblastoma cells.
Conclusions. Our glioblastoma culture method provides a renewable source for a broad spectrum glioblastoma 
neoantigens while our dendritic cell culture technique results in more mature dendritic cells in glioblastoma pa-
tients than standard techniques. This broadly applicable strategy could be easily integrated into patient care.

Key Points

• Current dendritic cell (DC) vaccine manufacture is not ideal due to the need for fresh 
tumor and reliance on immature DCs.

• Glioblastoma (GBM) cell lines with platelet lysate supplement provide a diverse 
renewable antigen source.

• Culture techniques must be optimized with GBM patients’ monocytes to generate mature 
DCs.

Novel strategy for manufacturing autologous dendritic 
cell/allogeneic tumor lysate vaccines for glioblastoma
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Glioblastoma (GBM) is the most common primary ma-
lignant brain tumor. Median overall survival (OS) with 
surgical resection, radiation, and temozolomide chemo-
therapy is 14.6 months.1 GBM vaccines have been prom-
ising in small clinical trials2–4 but have demonstrated less 
efficacy5 or been subject to large-scale dropout between 
screening and treatment due to a variety of reasons6,7 in 
larger, randomized studies. In part, this may reflect an-
tigen choice, vaccine potency, and/or manufacturing 
obstacles.

Many GBM vaccine strategies have focused on bulk 
antigens derived from patients’ tumors.2,4 While highly 
personalized and providing a large library of antigens, 
fresh tumor tissue is a limited resource that is not always 
accessible. Even when available, it can be challenging 
to generate enough vaccines to administer more than a 
few doses and antigen-specific response testing is not 
possible as every patient’s vaccine contains different 
antigens. Alternatively, some vaccines rely on specific 
antigen(s) known to be expressed by some GBMs.3,5,8,9 
This facilitates vaccine production and antigen-specific 
response testing. However, many peptide vaccines in 
this category are limited to specific human leukocyte 
antigen (HLA) haplotypes8,9 and targeting a handful of 
antigens provides an inherent pathway for treatment re-
sistance through immunoediting or loss of expression of 
these antigens by the tumor.3,5

Dendritic cell (DC) vaccines are an attractive platform 
for cancer immunotherapy.10 DCs are potent antigen-
presenting cells critical to initiating adaptive immune re-
sponses. They are generated from CD14+ monocytes in 
vitro through a series of culture steps to yield immature 
DCs followed by mature DCs. This last transition (accom-
panied by CD83 upregulation) is key as only mature DCs 
are fully immunostimulatory.11,12 Immature DCs may ac-
tually induce T-cell anergy following antigen presentation 
in the absence of appropriate co-stimulation.13 Most cul-
ture techniques generating DCs for cancer vaccine trials 
have been optimized using healthy donor monocytes.14,15 
Unfortunately, cancer patients (including GBM patients) 
have circulating monocyte populations that are enriched 
for immunosuppressive variants such as myeloid-derived 
suppressor cells.16,17 It is not clear that standard culture 

techniques generate similar mature DC yields from GBM 
patients’ monocytes.

To address these issues, we developed a novel autolo-
gous mature DC/allogeneic GBM lysate vaccine strategy.

Methods

Patient Samples

All blood and GBM tissue samples were obtained 
intraoperatively in adult recurrent or biopsy-proven GBM 
patients undergoing surgery for clinical indications. 
This was reviewed and approved by the Mayo Clinic 
Institutional Review Board (IRB#06-002617 and IBR#13-
000808). After written, informed consent, patients were 
tested for eligibility as a tissue donor including completion 
of a donor questionnaire and infectious disease blood tests 
to confirm eligibility as a cGMP tissue donor (cGMP; cur-
rent Good Manufacturing Practices; guidelines issued by 
the FDA required to allow tissues and cells to be used for 
clinical therapy). Patients with positive responses to this 
questionnaire were excluded. Healthy volunteer peripheral 
blood mononuclear cells were obtained from discarded 
anonymous leukoreduction system chambers processed in 
the Mayo Clinic Blood Bank.18

Establishing cGMP Human GBM Cell Lines

Patients underwent craniotomy and resection with a 
single surgeon (I.F.P.). After intraoperative patholog-
ical confirmation of malignant glioma, staff from the 
Mayo Immune Progenitor and Cell Therapy (IMPACT) 
Laboratory transported fresh, sterile GBM tissue from 
the OR to the laboratory for manufacturing. Tumor tissue 
was processed via a BD Medimachine and equivalent 
volumes of digested tumor placed into a culture into 1 
of 3 media. Mayo cGMP media (AIM-V; Thermo-Fisher; 
5% PLTMax; Mill Creek Life Sciences; 2 U/mL heparin; 
APP Pharmaceuticals; and Pen/Strep) contain cGMP-
compatible human platelet lysate (PLTMax) as a key 
supplement that contains a natural repair proteome 

Importance of the Study

Immunotherapy is revolutionizing cancer treat-
ment but results for glioblastoma (GBM) have 
lagged behind. Dendritic cell (DC) vaccines 
have been promising experimentally for nearly 
2 decades but have yet to be widely adopted. 
Most GBM DC vaccines use individual patients’ 
fresh tumor as an antigen source. This limited 
resource does not facilitate antigen-specific 
response testing. Furthermore, most GBM DC 
vaccines use culture techniques without matu-
ration steps or maturation steps optimized with 
healthy donor monocytes that are not effective 

for GBM patients due to enrichment with im-
munosuppressive cells. Only mature DCs are 
fully immunostimulatory while immature DCs 
induce T-cell anergy. We report important prog-
ress addressing these issues. A bank of clinical-
grade human GBM cell lines was established 
with novel technology as a renewable, diverse 
antigen source. Culture techniques were op-
timized to generate mature DCs from GBM 
patients’ monocytes. These manufacturing ad-
vances yield a potent and widely applicable 
GBM DC vaccine.
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supporting the growth of many cell types.19 Neural Stem 
Cell (NSC) media contains Neurobasal-A media with N2 
and B27 (void of vitamin A) supplements (Invitrogen), 
50 ng/mL recombinant EGF and FGF (R&D Systems), an-
tibiotic (Pen/Strep), and glutamine (Invitrogen). Standard 
fetal bovine serum (FBS)-based media are DMEM/F12 
(Invitrogen) supplemented with 10% FBS, penicillin/strep-
tomycin, and glutamine.

Growth and Expression Patterns of cGMP Human 
GBM Cell Lines

For those lines with sufficient growth in each condition to 
allow, cells were used to evaluate the CD133 expression 
by flow cytometry using standard staining and analysis 
methods. Immunofluorescence staining was performed 
for primitive (nestin, SOX2) and mature (GFAP, ephrin A2) 
glioneuronal markers. Western blot was performed for 
common GBM-associated antigens (EGFR, EGFR-VIII, Erb-
B2, gp100, MAGE-A3, IL13Rα2, and p53) selected based 
on predetermined criteria20 for evaluation in tumor im-
munotherapy studies. Cultured cells were lysed in buffer 
containing (in mmol/L) 50 NaCl, 50 NaF, 50 sodium pyro-
phosphate, 5 EDTA, 5 egtazic acid, and 2 Na3VO4 and 1% 
Triton X-100, 0.5  mmol/L phenylmethylsulfonyl fluoride, 
10  μg/mL leupeptin, and 10  mmol/L 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid, pH 7.4. Cell lysates were 
sonicated for 3  s prior to protein content analysis using 
the Bradford protein assay (Bio-Rad). Soluble protein ex-
tracts (20 μg) were loaded into 12.5% polyacrylamide gels 
and transferred onto polyvinylidene fluoride membranes. 
Membranes were incubated (1 h) in a blocking buffer fol-
lowed by incubation (1 h) with primary antibody. After 1 h 
incubation with secondary antibody, membranes were 
visualized by enhanced chemiluminescence (Pierce). The 
source and clones for all antibodies used in this manu-
script are detailed in Supplementary Table 1.

Genomic Abnormalities and Stability in cGMP 
Human GBM Cell Lines

Mate-pair sequencing (MPseq) provides a whole-genome-
based structural variance analysis within a genome util-
izing a specialized library preparation designed to tile 
the genome with large 2–5 kb genomic fragments.21–23 In 
addition to copy number variation (CNV), MPseq defines 
breakpoints of discordant genomic junctions from re-
arrangements that frequently drive tumor phenotypes with 
specialized bioinformatics that reduces false positives. 
MPseq enables accurate genome profiling to determine 
whole and partial chromosome gains/losses, loss of het-
erozygosity, single and biallelic gene losses, and precise 
structures of recombinant DNA junctions and the impact on 
genes, including fusions, truncations, or promoter losses.

One microgram of DNA was applied to MPseq library 
preparation using the Nextera Mate-Pair Kit (Illumina) fol-
lowing the manufacturer’s instructions. Libraries were 
sequenced on the Illumina HiSeq4000 platform at a depth 
of 4 libraries per lane. For MPseq data, the BIMA (binary 
indexing mapping algorithm), developed by the Biomarker 
Discovery Lab at Mayo Clinic, simultaneously maps both 

reads in a fragment to the GRCh38 reference genome.24 
Structural variants were detected using SVAtools, a suite 
of algorithms also developed by the Biomarker Discovery 
Lab at Mayo Clinic.21 SVAtools specifically detects dis-
cordant fragments supporting a common junction (sup-
porting fragments) with powerful masks and filters to 
remove false-positive junctions. CNV detection is per-
formed using the read count of concordant fragments 
within non-overlapping bins.23 This algorithm uses both 
a sliding window statistical method to determine likely 
copy number edges from read depth and breakpoint loca-
tions determined in the junction detection stage to more 
accurately place these edges. Once the genome was seg-
mented into likely copy number regions, the normalized 
read depth for a region was calculated as 2 times the read 
depth within a region divided by the expected read depth 
for normal diploid level for the sample. Chromosomal copy 
levels and discordant mapping junctions are visualized on 
interactive software for genome plots.22 Z-scores were 
calculated from supporting read numbers normalized for 
overall total fragments yielded from the MPseq. Average 
and standard deviation for supporting read levels were de-
tected for each junction. Z-score was calculated using the 
formula: [(normalized supporting read value – mean sup-
porting read value)/standard deviation of mean].

Generating Mature DC

All DC culture starts with either whole blood or fluid bed 
cell collection. Mononuclear cells were isolated by den-
sity centrifugation and CD14+ cells were collected by 
immunomagnetic selection (Miltenyi Biotec). GM-CSF 
was either pharmaceutical grade (Leukine; Partner 
Therapeutics) or R&D Systems. All other cytokines were 
from R&D Systems. Chemicals were from Sigma. Viable 
cells were plated on one of the following conditions:
M1: RPMI1640 + 10% human AB serum (HABS), GM-CSF 
(1000 IU/mL), IL-4 (500 IU/mL) for 7 days.
M2: RPMI1640 + 2% HABS, GM-CSF (1000 IU/mL), IL-4 (500 
IU/mL) for 24  h, then the same plus TNF-a (1100 IU/mL), 
PGE2 (1  µg/mL), IL-1b (10  ng/mL), and IL-6 (10  ng/mL) for 
24 h.
M3: X-Vivo 15 + 1% HABS, GM-CSF (1000 IU/mL), IL-4 (500 
IU/mL) for 3 days, then the same plus TNF-a (1100 IU/mL) 
and PGE2 (1 µg/mL) for 2 days.
M4: Sigma Stemline DC media + GM-CSF (1000 IU/mL), IL-4 
(500 IU/mL) for 3 days, then the same plus TNF-a (1100 IU/
mL) and PGE2 (1 µg/mL) for 2 days.
M5: DC-OPT1: Sigma Stemline DC media + GM-CSF (1000 
IU/mL), IL-4 (500 IU/mL) for 3 days then the same plus TNF-a 
(1100 IU/mL), PGE2 (1 µg/mL), and poly I:C for 2 days.
M6: Proprietary
M7: Proprietary

Cells were collected and surface marker expression 
(CD83, CD80, CD86, HLA-DR, and CCR7) was determined 
by flow cytometry.

Generating Antigen-Primed DCs

Tumor lysate (TL) was prepared from 2 cGMP human 
GBM cell lines by sonication and 5 freeze/thaw cycles. DCs 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa105#supplementary-data
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generated using method M7 (optimized for generating 
mature CD83 + DCs from GBM patients’ monocytes) were 
pulsed with 0.1 mg/mL of TL (approximately 15 mg) and in-
cubated for 18 ± 6 h.

In vitro stimulation of T cells with autologous DC or 
DC-TL

Frozen autologous CD3, DC-TL, and DC were used as source 
material for this assay. CD3 cells were stimulated with au-
tologous DC-TL (TL-pulsed DC) or DC alone (CD3:DC = 5:1) 
in AIM-V with 1% HABS, 1% Penicillin/Streptomycin, and 
25 ng/mL IL-7. Culture media (1 mL) was removed and re-
placed with 1  mL AIM-V media supplemented with 2.5% 
PLTMax on days 3 and 5 of culture plus IL-2 (100 U/mL on 
day 3 and 50 U/mL on day 5). CD3 cells cultured alone with 
designated IL-7 and IL-2 cytokines served as controls. On day 
7, T cells (CD3-cytokine, CD3-DC, CD3-DCTL) were harvested 
and replated for a second round of stimulation following 
the same stimulation procedure. After 14  days in culture, 
expanded CD3 from each stimulation/expansion condition 
were harvested and used in CTL killing assay of an HLA-A2+, 
GFP-labeled Mayo cGMP human GBM cell line.

In vitro GBM cell line beta-GFP cytotoxicity assay

Beta-GFP-labeled GBM cells were seeded at 5000 cells 
per well in 96-well flat-bottom tissue culture plates in 
AIM-V with 5% PLTMax, 1% GlutaMAX, 1% Penicillin/
Streptomycin, and 2 U/mL Heparin. After 24  h incuba-
tion for cells to attach, media were removed and 50 000 
culture-expanded T cells (CD3-cytokine, CD3:DC/TL, or 
CD3:DC) in AIM-V media plus 1% HABS in a final volume 
of 200  μL were layered over the attached GBM cells. 
Baseline GBM cell count imaging scan was acquired prior 
to the removal of GBM cell line base media and every 
4 h after the addition of T cells using the IncuCyte Zoom 
(Essen BioScience).

Statistical Analysis

Where applicable, the Mann–Whitney test, Wilcoxen test, 
correlation or T tests were performed by GraphPad Prism 
version 7.0e for Mac OSX, GraphPad Software (www.
graphpad.com).

Results

Mayo cGMP Media Is More Efficient for 
Establishing/Expanding Human GBM Cell 
Cultures Than NSC or FBS Media

Sixteen operative GBM specimens were brought into 
tissue culture. Mayo cGMP was more effective for 
establishing cultures (15/16; 94%) similar to NSC (13/16; 
81%) but more effective than FBS (7/16; 44%; P =  .03, χ2; 
Figure 1A). Similarly, GBM cultures in Mayo cGMP media 
grew faster (mean doublings/day  =  0.12; mean doubling 
time  =  8.3  days) than NSC (mean doublings/day  =  0.07; 

mean doubling time  =  14  days; P < .05) or FBS (mean 
doublings/day = 0.06; mean doubling time = 17 days; P < 
.002). Efficient doubling (defined as 1 doubling/week) oc-
curred in 44% of Mayo cGMP cultures compared with 13% 
for both NSC and FBS. Finally, doubling times remained 
relatively constant among efficiently growing Mayo cGMP 
cultures up to 10 passages (suggesting an absence of addi-
tional mutations over time causing instability).

Mayo cGMP Human GBM Cell Lines Express 
Stem-Like Markers and Tumor-Associated 
Antigens

Mayo cGMP human GBM cell lines generally expressed 
the putative glioma stem cell marker CD13325,26 more 
frequently than matched NSC or FBS cell lines, though 
with variability between individual matched cell lines 
(Figure  1B). Confocal immunostaining demonstrates im-
mature glioneuronal marker expression (nestin and SOX2; 
Figure 1B) as well as mature glioneuronal markers (GFAP 
and the tumor-associated antigen ephrin A2). Western 
blot confirms the expression of multiple tumor-associated 
antigens, though with substantial variation between cell 
lines (Figure 1C).

Mayo cGMP Human GBM Cell Lines Have Stable 
Karyotypic Abnormalities

MPSeq was used to assess 3 representative Mayo cGMP 
human GBM cell lines. All 3 have distinct structural var-
iance (Figure  2A). Each tumor predicts a tetraploid ge-
nome with genome doubling and additional gains/losses 
of chromosomes. Totals of 43, 86, and 54 junctions were 
detected in the initial clones for these 3 lines, respec-
tively. The first 2 lines presented with significant num-
bers of inter-chromosomal translocations but all events 
in the third line were intra-chromosomal. Consistent 
karyotypic abnormalities (eg, gain of chromosome 7 
and loss of chromosomes 10 and 22)  characteristic of 
GBM27,28 were observed in all 3 lines (Figure 2A and B). 
Furthermore, despite the significant variation between 
the 3 tumors, each presented with chromothryptic events 
on chromosome 9p, with resulting homozygous deletion 
of CDKN2A. This is also characteristic of GBM (particularly 
its epitheloid variant).29 Complex rearrangements were 
common but, despite the common hit on chromosome 9, 
additional events were distinct across the genome (line 1, 
chormoplextic event 9q-5q and chromothryptic event 12q; 
line 2, chormoplextic events 9q-21 and 11-17-20; line 3, 
distinct chromothryptic events on 8p, 9q, 16, and 19). High 
resolution of the classic GBM p16 deletion for 2 of the cell 
lines is shown in Figure 2B (the start of which is indicated 
by an arrow), with a corresponding chromothryptic event 
seen in the right panel.

The third cell line is very stable through propagation 
to 15 passages, and no new copy number changes in 
chromosomes are predicted (Figure 2C). In order to as-
sess variance in potential subclonal populations, abso-
lute Z-scores were calculated for variance in the number 
of supporting reads detected in 4 subclones from 

http://www.graphpad.com
http://www.graphpad.com
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different time points (passages 0, 5, 10, and 15) for the 
54 commonly detected events (Figure 2D). Supporting 
reads were initially corrected for the total number of 
fragments mapping across the sequenced samples. 
Absolute Z-scores varying greater than 2 indicate sig-
nificant variance from the norm. Just 0.7% (2 of 270 
measurements of variance [54 junctions × 5 samples]) 
and 2.8% (20 of 702 measurements of variance [54 junc-
tions × 13 samples]) presented with a significant abso-
lute Z-scores greater than 2 for mean values from the 4 
subclones or all samples individually, respectively. The 
majority of supporting reads detected (98.1% or 88.0%) 
had absolute Z-scores less than 1.5 for propagated lines 
or all samples, respectively. These results indicate only 

minor deviance from the norm of subclonal popula-
tions within the clones, suggesting very stable clonal 
populations.

Novel Culture Methods Are Required to Generate 
Mature DCs From GBM Patient’s CD14+ 
Monocytes

Peripheral blood CD14+ monocytes from healthy volun-
teers and GBM patients were cultured with a variety of DC 
culture techniques and frequency of mature CD83+ DCs 
was determined (Figure 3A). Note that this analysis was 
over a relatively long period of time as new methods were 
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Figure 1. Novel method of cGMP tumor cell growth. Human glioblastoma cell lines were established either using FBS, NSC cultures or Mayo 
cGMP condition. (A) Growth kinetics of 16 lines (doublings/day) in each condition. Dashed line: doubling cell count per week (~1.4 doublings/day). 
One line was split into 4 subcultured over 10 passages (doublings/day over time). (B) CD133 expression in 5 lines. (C) Confocal micrographs from 
a representative cell line showing nestin (red) and SOX2, GFAP, and EphA2 (green) expression. Blue = DAPI. (D) Western blot (7 lines) showing 
glioma-associated antigen expression.
  



 6 Parney et al. Manufacturing glioblastoma/dendritic cell vaccines

  

Z–Scores across Clonal Lines

>2

1.5–2

1–1.5

<1

>2

1.5–2

1–1.5

>2

<2

B

C D

46,XY,der(6)t(6;10)
(q13;q11.2),+inv(7)(p22q32),
add(9)(p22),add(9)(p13),
–10,t(11;17)

86–99, XXYY, +1[5], +2[8], –4, –4[6],
+6[13], +7, +7[15], add(8) p21x2,
del;(9)(p22)x2, –10, –10, +11[9],
–12[6], +14[7], –15[6], +15[5],
–16[13], –18[5], +19[9], +20,
+20[19], +20[13], –22[19], –22[5]
[cp20]     

62–84,XXXX,–1,–2,–2,–3,–4,–5,–5,
6,+7,+7,+add(7)(q11.2)x2,t(7;18)
(p13;p11.2)x2,–8,–8,–10,–10,del(11)
(p11.2p13)x2,–13,–13,–14,–14,–15,
–15,–16,–17,–17,–18,–18,–19,+0–3
mar[cp20]   

Founding Culture 

Passage 5

Passage 10 

Passage 15

A

Figure 2. Stable GBM-associated cGMP tumor cell karyotypic abnormalities. (A) Mate-pair sequencing of 3 lines showing chromosome 7 gain, 
partial loss of 9, 10, and 22, and homozygous p16 deletion. (B) High-resolution p16. Homozygous deletion is indicated by an arrow. Chromothrypsis in 
Q36721 can be seen in right panel. (C) Long-term genetic stability. Four subclones of Q36279 were grown for up to 15 doublings. Samples were sub-
mitted for mate-pair sequencing and each line is shown. (D) Z-scores indicate very limited genetic drift during the course of expansion.

  



7Parney et al. Manufacturing glioblastoma/dendritic cell vaccines
N

eu
ro-O

n
colog

y 
A

d
van

ces

successively developed and then discarded due to poor 
yield with GBM patients. Thus, the patients in each condi-
tion varied in number and clinical scenario (newly diag-
nosed vs recurrent), though all patients were off therapy at 
the time of processing. A technique analogous to that used 
to generate DCs without a dedicated maturation step in 
many GBM vaccine clinical trials2,6,30,31 (M1) had low levels 
of CD83+ cells, as expected (20.7% ± 2.9%). Another tech-
nique incorporating a maturation step analogous to a dif-
ferent but commonly used technique in GBM DC vaccine 
clinical trials32–35 (M2) efficiently generated CD83+ mature 
DCs from healthy volunteer monocytes (84.5% ± 9.8%) but 
not from GBM patients (70.9% ± 19.3%; P < .05). We then 

empirically assessed 5 additional variations on culture 
techniques to generate mature DCs from GBM patient and/
or healthy volunteer monocytes before achieving success 
with a technique (M6) that generated mature CD83+ DCs 
at frequencies (85.4% ± 7.2%) that were no longer signif-
icantly different from mature CD83+ DC frequency from 
healthy volunteer monocytes using optimized techniques. 
Finally, further minor variation to this technique (M7) re-
sulted in an even higher frequency of CD83+ DCs (91.5% 
± 4.4%) from GBM patients’ monocytes enrolled in a pilot 
clinical trial.

To confirm the generation of mature DCs in a more 
controlled patient population, we then used our 
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Figure 3. Optimized generation of mature dendritic cells for clinical-grade production. (A) Efficient mature DC (CD83+) generation. Various culture 
conditions (M1–M7) were tested in healthy volunteers (HV; black) or GBM patients (red). (B) M7 was used in clinical-scale cGMP manufacturing of 
22 newly diagnosed GBM patients for enrollment in a pilot vaccine trial. Five markers (CD83, CD80, CD86, HLA-DR, and CCR7) describing the purity 
and potency of the cells are indicated. The mean percent positive for each marker is shown. Note: same patients as M7 in 3A. (C) Cell number after 
apheresis, isolation of CD14+ cells, and mature dendritic cell (mDC) culture with M7. (D) Culture conditions for DC culture M1–M7.
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optimized technique to generate mature DCs from 22 re-
cently diagnosed adult GBM patients who had already 
undergone surgical resection as well as radiation with 
concurrent temozolomide but had not yet initiated ad-
juvant temozolomide (Figure 3B). These patients under-
went apheresis to acquire peripheral blood mononuclear 
cells as part of potential enrollment in a clinical trial of 
DC vaccination in newly diagnosed GBM, the full results 
of which will be reported separately. In keeping with 
being mature DCs, expression of CD80 (98.2% ± 3.0%), 
CD86 (92.3% ± 8.9%), and HLA-DR (97.5% ± 8.0%) was 
also high and CCR7 was positive for a portion of the cells 
(13.6% ± 7.4%). Finally, the overall DC yield was good 
(3.4 × 108 ± 5.5 × 107 cells; Figure 3C). This represents an 
efficiency of about 21% mature DC generation from the 
purified population of CD14+ cells (1.6 × 109 ± 8.8 × 108). 
This manufacturing protocol yields enough mature DCs 
to produce an average of more than 13 doses of vaccines 
(approximately 2.5  × 107 cells/dose) from single apher-
esis in a GBM patient.

T Cells Stimulated With Autologous Mature DCs 
Pulsed With Allogeneic GBM Cell Line Lysate Kill 
HLA-A2-Matched GBM Cells

Using mature DCs generated with our M7 protocol, our 
fluorescent killing assay shows that autologous T cells 
stimulated with DCs pulsed with Mayo cGMP GBM cell line 
lysate robustly kill HLA-A2-matched GBM cells (Figure 4A). 

No killing is seen with unstimulated T cells. T cells stimu-
lated with mature but naïve (ie, not pulsed with TL) DCs 
show very mild tumor killing, but much less than those 
stimulated with TL-pulsed DCs, suggesting some degree of 
non-antigen-specific T-cell stimulation (Figure 4B).

Discussion

Although DC vaccines for GBM have been in clinical trials 
for nearly 2 decades36 and have shown considerable 
promise,2,6,30–35 they have yet to be FDA approved or widely 
adopted in clinical practice. There are multiple potential 
reasons for this, but issues related to antigen choice, DC 
potency, and manufacturing feasibility may be important 
contributors. In this article, we have outlined a novel allo-
geneic glioma cell/autologous DC platform that addresses 
these issues.

First, human GBM cell lines established with our 
platelet lysate-based Mayo cGMP protocol have many 
features that could make them ideal antigen sources 
for DC vaccines (Figure  1). They grow quickly—faster 
than matched human GBM cells grown in either neural 
stem cell conditions or standard serum-containing con-
ditions. This underscores the feasibility of using these 
cell lines as an antigen source. They appear to have a 
mixture of stem-like and more differentiated markers. 
Expression of the putative stem-like marker CD13337 is 
actually higher in these cell lines than in matched lines 
established with stem cell media. However, they grow in 
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Figure 4. Autologous dendritic cell/allogeneic tumor lysate directed killing. Representative fluorescent micrographs (A) and time plots (B) showing 
reduced glioblastoma cells (green) after adding HLA-A2-matched CD3+ T cells stimulated with autologous DC pulsed with tumor lysate (+DC/TL 
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monolayers and express a spectrum of common glioma-
associated antigens and mature glioneuronal markers 
more typically associated with differentiated glioma 
cells, suggesting that they may represent a mix of these 
phenotypes. This is particularly attractive as an antigen 
source for glioma vaccines which would ideally target 
both stem-like and differentiated cells. Finally, the es-
tablished presence of these common glioma-associated 
antigens in a renewable antigen source could allow 
antigen-specific response testing in the context of clin-
ical trials that cannot be accomplished in patient-derived 
bulk antigen vaccines.6,7

The cell lines established with our Mayo cGMP protocol 
appear stable over time, highlighting their utility as a re-
newable bulk antigen source. Although the cell lines grow 
quickly, their growth does not appear to accelerate much 
over time up to 15 passages (Figure  1A). Furthermore, 
MPseq over time also shows stability (Figure 2). However, 
it should be noted that a subgroup of events not detected 
in every specimen consisted of events with lower num-
bers of supporting reads, which fall below the reporting 
threshold for MPseq data. Hence, the majority were de-
tectable to the level of at least 1 supporting read in the 
majority of specimens. Increasing the sequencing depth 
would be expected to report these events at higher confi-
dence. Therefore, while whole-genome-based sequencing 
techniques may not provide the greatest sensitivity for 
detecting new variant clones in a passage specimen, they 
are well-suited for predicting overall clonal stability. New 
variations would be expected to initially occur in 1 single 
cell, which would take time to preferentially expand to a 
level which can be detected by a lower sensitivity whole-
genome-based technique. The number of supporting 
reads crossing a breakpoint junction provides clues as to 
the frequency of such an event in a cell line as a whole. 
Ideally in a pure 100% tumor cell line, the number of sup-
porting reads of a single occurring junction (ie, no copy 
gain) should equal half the allelic bridged coverage (at 50× 
genome coverage, the average event supporting read cov-
erage should be approximately 25). However, significant 
variance of these values from the ideal is frequently ob-
served. Tumor heterogeneity results in lower numbers of 
supporting reads for lower represented clones. Repetitive 
genome regions challenge MPseq mapping because 
a single sequence could be mapped to multiple sites. 
MPseq is often able to span over these repetitive regions, 
but the total number of mapping events can be reduced. 
In total 90 somatic junctions (3 or more supporting reads) 
were detected in one cell line in the founding day 0 colony 
and 12 additional clones from 5, 10, and 15 passages of 4 
independent clonal lines. Of these 90 junctions, 54 (60%) 
were detected in every clone. The remaining 36 events 
presented with lower supporting reads across clones in-
dicative of potential subclonal populations in the cell lines 
or events lying in repetitive regions of the genome diffi-
cult to assess by mate pair. However, in total, 83 of the 90 
events (92.2%) presented evidence in at least 1 clone from 
the 4 independent clonal lines. Just 2 events, both with 3 
supporting reads, presented evidence in just 1 clone, each 
within early-passage 5 clones. Taken together, this method 
appears to produce primary tumor lines at high frequency, 

with stable genetics, under cGMP conditions suitable for 
therapeutic use.

DC culture techniques that do not incorporate matu-
ration steps (eg, technique M1) do not result in signif-
icant numbers of CD83+ cells even with healthy donor 
monocytes (Figure  3A). Standard culture techniques 
for generating mature DCs (eg, technique M2) pro-
duce many CD83+ cells when performed with healthy 
donors’ monocytes but not when using GBM patients’ 
monocytes. We suspect that this reflects the high fre-
quency of immunosuppressive monocytic cells such as 
myeloid-derived suppressor cells within GBM patients’ 
CD14+ monocytes.16,17 Through empiric modification, 
we were able to develop a culture method that results in 
high levels of CD83+ mature DCs (technique M7). These 
cells express high levels of other DC markers including 
HLA-DR, CD80, and CD86 (Figure  3B). The efficiency of 
this method to generate mature CD83+ DCs from CD14+ 
precursors was about as expected, that is, on average 
3.4 × 108 per patient (Figure 3C). This would correspond 
to more than 13 doses of vaccine at 2.5 × 107 cells per 
dose. Thus, this is a highly feasible method for vaccine 
manufacture.

Putting this all together, T cells stimulated with autolo-
gous DCs generated with our optimized technique (M7) 
and pulsed with our allogeneic GBM cell lysate show po-
tent killing ability against HLA-A2-matched GBM cell lines 
(Figure 4). This is much more marked than the moderate 
increase in GBM cell killing by T cells stimulated with DCs 
that were not pulsed with GBM cell line lysate, though 
the presence of this killing suggests some degree of non-
antigen-specific T-cell activation (Figure 4B). No GBM cell 
killing at all was seen for unstimulated T cells.

Thus, we have outlined a novel method for 
manufacturing DC vaccines for GBM that addresses sev-
eral deficiencies in standard approaches. Our Mayo cGMP 
protocol generates stable human GBM cell lines that repre-
sent a stable and self-renewing source of GBM-associated 
antigens. This obviates the need for tumor tissue derived 
from individual patients for vaccine manufacture and 
would allow antigen-specific response testing in the con-
text of clinical trials. Our DC culture technique is a highly 
efficient and feasible method for generating large num-
bers of mature DCs from CD14+ monocytes derived from a 
single apheresis in GBM patients. Finally, the combination 
of these DCs pulsed with our GBM cell line lysate stimu-
lates T cells that potently kill HLA-A2-matched GBM cells. 
This vaccine platform is, therefore, both highly feasible for 
manufacture and highly potent. It is necessary to test the 
safety and feasibility of this approach in GBM patients as a 
next step. Therefore, we have initiated clinical trials of this 
vaccine platform in both newly diagnosed (in combination 
with temozolomide chemotherapy; NCT01957956) and re-
current GBM (as a single agent; NCT03360708) patients.

Supplementary Data

Supplementary data are available at Neuro-Oncology 
Advances online.
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