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Increasing life expectancy is causing the prevalence of age-related
diseases to rise, and there is an urgent need for new strategies to
improve health at older ages. Reduced activity of insulin/insulin-
like growth factor signaling (IIS) and mechanistic target of
rapamycin (mTOR) nutrient-sensing signaling network can extend
lifespan and improve health during aging in diverse organisms.
However, the extensive feedback in this network and adverse side
effects of inhibition imply that simultaneous targeting of specific
effectors in the network may most effectively combat the effects
of aging. We show that the mitogen-activated protein kinase
kinase (MEK) inhibitor trametinib, the mTOR complex 1 (mTORC1)
inhibitor rapamycin, and the glycogen synthase kinase-3 (GSK-3)
inhibitor lithium act additively to increase longevity in Drosophila.
Remarkably, the triple drug combination increased lifespan by
48%. Furthermore, the combination of lithium with rapamycin
cancelled the latter’s effects on lipid metabolism. In conclusion, a
polypharmacology approach of combining established, prolongevity
drug inhibitors of specific nodes may be the most effective way to
target the nutrient-sensing network to improve late-life health.
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Aging is a complex process of progressive cell, tissue, and
systemic dysfunction that is involved in the etiology of age-

related diseases (1). Genetic, dietary, and pharmacological in-
terventions can ameliorate the effects of aging in laboratory
animals and may lead to therapies against age-related diseases in
humans (2–4).
In organisms ranging from invertebrates to mammals, re-

ducing the activity of the nutrient-sensing mechanistic target of
rapamycin (mTOR) and insulin/insulin-like growth factor sig-
naling (IIS) network can promote longevity and health during
aging (2, 3). Lowering network activity can also protect against
the pathology associated with genetic models of age-related
diseases (1, 2). The network contains many drug targets, in-
cluding mTOR, mitogen-activated protein kinase kinase (MEK),
and glycogen synthase kinase-3 (GSK-3) (Fig. 1A). Down-
regulation of mTOR activity by rapamycin, GSK-3 by lithium,
or MEK by trametinib can each individually extend lifespan in
laboratory organisms (5–11), and brief inhibition of mTOR has
recently been shown to increase the response of elderly people to
immunization against influenza (12). In addition, both mTOR
and MEK inhibitors have been shown to reduce senescent phe-
notypes in human cells (13), while increasing concentrations of
lithium levels in drinking water correlate with reduced all-cause
mortality in a Japanese population (10). An advantage of phar-
macological interventions is that the timing and dose of drug
administration are relatively simple to optimize, and drugs can
be easily combined (4, 14–16). Combination drug treatments also
have the potential to counter resistance from feedback and to
reduce each other’s side effects (17). Rapamycin, trametinib, and
lithium each target different kinases and transcription factors to

extend lifespan (5, 8, 11), and therefore their effector mechanisms
are at least partially different from each other. Simultaneous
inhibition of multiple targets within the nutrient-sensing net-
work may hence be needed to optimize effector outputs and
health benefits. Here, we measure the effects of combination
treatments of rapamycin, lithium, and trametinib on lifespan and
other traits, using Drosophila as a model organism.

Results and Discussion
Rapamycin treatment, from Caenorhabditis elegans to humans, is
associated with altered metabolism, including hypertriglyceridemia
and obesity (5, 18). Alone, a lifespan-extending dose of lithium
(11) did not alter triglyceride levels, but simultaneous treatment
with both lithium and rapamycin reversed the dyslipidemia
caused by rapamycin (Fig. 1B). To confirm that this change in
lipid levels was physiologically relevant, we pretreated (14 d) flies
with lithium, rapamycin, or a combination, and assessed their
survival under starvation. Lithium did not alter survival under
starvation conditions, while rapamycin increased it (Fig. 1C).
Consistent with their effects on lipid levels, combining lithium
and rapamycin treatment resulted in control levels of starvation
resistance (Fig. 1C). Lithium can therefore reverse metabolic stor-
age alterations associated with mTOR inhibition.
Lithium inhibits GSK-3 activity to extend lifespan (11), im-

plying that activation of GSK3 is likely, if anything, to shorten
lifespan. Inhibition of IIS in the canonical PI3K pathway can
extend lifespan and health span, but reduces inhibitory phos-
phorylation of GSK3 by Akt (Fig. 1A), and hence activates GSK3
(4), a potentially deleterious side effect of lowered IIS (19). We
therefore tested whether lithium could have additive effects in
combination with genetic inhibition of IIS upstream of Akt.
Lithium was able to further extend the lifespan of flies lacking
the insulin-like peptides 2, 3, and 5 (dilp2-3,5) (Fig. 1D) (20). In
contrast, rapamycin or trametinib, neither of which inhibit GSK3,
were not able to extend the lifespan of dilp2-3,5 flies (Fig. 1 E and
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F). Lithium thus reverses an adverse side effect of inhibition of the
canonical IIS pathway.
Because rapamycin, lithium, and trametinib extend lifespan by

at least partially independent mechanisms, we investigated the
effects on lifespan of their double and triple combinations. Double
combinations of lithium and rapamycin, lithium and trametinib, or
rapamycin and trametinib produced a reproducibly greater life-
span extension than controls, on average 30%, compared to each
compound alone, which extended lifespan by an average of 11%
(Fig. 2 A and B and Dataset S1). Importantly, the triple com-
bination of rapamycin, trametinib, and lithium promoted lon-
gevity beyond that of the double combinations, extending
median lifespan by 48% (Fig. 2 A and B and Dataset S1). Thus,
each compound independently displayed an additive effect on
lifespan. The additive effect of rapamycin, trametinib, and lith-
ium on lifespan is unlikely to have been due to changes in
feeding behavior, because feeding frequency, food intake, and
drug uptake were unaltered by the treatment regimens (Fig. 2 C
and D). Fecundity is often reduced in interventions that promote
lifespan extension (21), and this could provide a potential ex-
planation for the greater longevity with drug combinations.
However, at the concentrations used, only trametinib and
combinations containing trametinib significantly reduced fe-
cundity (Fig. 2E). Importantly, the triple drug combination did
not reduce egg laying below that achieved with double
trametinib-containing combinations, or trametinib treatment
alone (Fig. 2E). Thus, a trade-off with fecundity is unlikely to

explain the greater longevity observed with the triple drug
combination.
Given the complex nature of the aging process, it is unlikely

that the most effective preventative antiaging therapy could be
achieved by a single compound with a single target. We have
shown that simultaneous inhibition by 3 components of different
nodes in the nutrient-sensing network using a combination of
drugs already approved for human use is a viable strategy to
maximize animal longevity and to reduce a side effect. Rapa-
mycin treatment results in insulin resistance and dyslipidemia in
patients and mice (4, 18, 22), and this disturbance manifests as
hypertriglyceridemia in Drosophila (5). Lithium reversed this and
the starvation resistance associated with rapamycin treatment.
Taken together, our results highlight a potential therapeutic
avenue to promote longevity, coadministrating compounds that
act on different nodes of the nutrient-sensing network, to max-
imize their beneficial effects while minimizing negative side
effects.

Methods
Fly Stocks, Husbandry, and Lifespan Analysis. For all experiments, a wild-type
white Dahomey (wDah) stock, or, when noted, dilp2-3,5 mutant flies
(wDah backcrossed), were used, and raised as previously described (20). LiCl
(Sigma) in ddH2O, trametinib (LC laboratories) in dimethyl sulfoxide, and
rapamycin (LC laboratories) in 100% ethanol were added to sugar−yeast−
agar (SYA) medium to a final concentration of 1 mM, 15.6 μM, and 50 μM,
respectively (5, 8, 11). Equivalent volumes and concentrations of vehicle
were added to SYA medium for control treatments. Drug treatments were
started 2 d posteclosion. Female flies (n = 130 to 200, 15 to 20 per vial) were
sorted onto SYA medium that was replaced every 2 d to 3 d throughout life.
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Fig. 1. Lithium blocks negative side effects of mTORC1 and IIS inhibition.
(A) A simplified diagram of the Drosophila nutrient-sensing network
showing the target kinases of rapamycin, trametinib, and lithium. Lithium
reversed the (B) hypertriglyceridemia (n = 6 replicas of 5 flies per condition,
1-way ANOVA) and (C) starvation resistance induced by rapamycin (50 μM)
(n = 75). (D) Lithium treatment significantly extended lifespan of both wDah

and dilp2-3,5 mutant flies. Neither (E) rapamycin (P = 0.58) nor (F) trametinib
(P = 0.14) further extended lifespan of dilp2-3,5mutant flies [log-rank test (n =
150)]. Cox Proportional Hazard analysis showed a significant genotype by
treatment interaction for rapamycin (P = 0.002) and trametinib (P = 0.0018).
Error bars represent SEM. ***P < 0.001 (1-way ANOVA or log-rank test).
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Fig. 2. A triple drug combination maximizes longevity. (A) Representative
survival curve and associated pairwise log-rank tests. (B) Replicated median/
maximum lifespans plotted for all single (n = 4), double (n = 3), and triple
(n = 2) combinations of rapamycin, trametinib, and lithium treatments. Each
lifespan contained 130 to 200 flies per treatment. Numbers in parentheses
show (total number of flies/number of censors). (C) Proboscis extension feed-
ing behavior assay (1 and 15 d of treatment; Top and Middle) and quantifi-
cation of ingested nonabsorbable (Bottom) blue dye (n = 8 replicas of 4 to 5
flies 15 d old, 1-way ANOVA with Dunnett’s test). (D) Mass spectrometry of
systemic trametinib (Top) or rapamycin (Bottom) levels when other drugs were
coadministered (n = 5, 1-way ANOVA). (E) Fecundity of treated (15 d) flies
within a 24-h period (n = 8 replicas of 4 to 5 flies). Error bars show Tukey
whiskers, and outlying data points are shown as dots. *P < 0.05, **P < 0.01,
***P < 0.001 (Kruskal−Wallis test and Dunn’s pairwise tests).
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Lifespan raw data are provided as Dataset S1. Starvation assay was per-
formed as previously described (11).

Food Intake, Fecundity, and Triglyceride Measurements. Feeding behavior
(proboscis extension at 1 and 15 d of treatment) and food intake (quantified
by dye-calibrated feeding) (4 to 5 flies per replicate, n = 8 to 10) were
measured as previously described (23). Fecundity was quantified as number
of eggs laid within 24 h (15 d), and triglyceride measurements (5 flies per
replicate, n = 8) were performed as previously described (5, 11).

Mass Spectrometry. Flies (n = 5, 15 flies) were treated with drugs (15 d), their
digestive system was allowed to void (1 h), they were snap frozen, drugs were
extracted as previously described (5), and they were resuspended in 100 μL of
acetonitrile/isopropanol 70:30 for measurement with an Acquitiy UPLC I-class
System/Xevo TQ-S (Waters) with MassLynx and absolute quantification.
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