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Abstract: Inflammasomes are components of the innate immune response that have recently emerged
as crucial controllers of tissue homeostasis. In particular, the nucleotide-binding domain, leucine-rich-
containing (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a complex platform
involved in the activation of caspase-1 and the maturation of interleukin (IL)-1β and IL-18, which
are mainly released via pyroptosis. Pyroptosis is a caspase-1-dependent type of cell death that is
mediated by the cleavage of gasdermin D and the subsequent formation of structurally stable pores
in the cell membrane. Through these pores formed by gasdermin proteins cytosolic contents are
released into the extracellular space and act as damage-associated molecular patterns, which are pro-
inflammatory signals. Inflammation is a main contributor to the development of hypertension and it
also is known to stimulate fibrosis and end-organ damage. Patients with essential hypertension and
animal models of hypertension exhibit elevated levels of circulating IL-1β. Downregulation of the
expression of key components of the NLRP3 inflammasome delays the development of hypertension
and pharmacological inhibition of this inflammasome leads to reduced blood pressure in animal
models and humans. Although the relationship between pyroptosis and hypertension is not well
established yet, pyroptosis has been associated with renal and cardiovascular diseases, instances
where high blood pressure is a critical risk factor. In this review, we summarize the recent literature
addressing the role of pyroptosis and the inflammasome in the development of hypertension and
discuss the potential use of approaches targeting this pathway as future anti-hypertensive strategies.
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1. Inflammation and Hypertension

Elevated blood pressure, defined as a systolic pressure higher than 130 mmHg and
diastolic pressure greater than 80 mmHg [1], is the leading risk for cardiovascular and
kidney diseases [2] and was reported to affect 1.13 billion people in the world in 2016 [3].
As a consequence, high blood pressure is a leading cause of death worldwide [4] and
research in the field of hypertension is highly dynamic. Extensive evidence demonstrates
an important role of inflammation in the pathogenesis of hypertension and vascular and
kidney diseases. A series of elegant studies performed by Grollman et al. in the 1960s
first evidenced that autoimmune factors play a critical role in an animal model of renal
infarction-induced hypertension [5,6]. The same group also reported that hypertension
could be transferred to normotensive rats by transplanting lymph node cells from rats with
renal infarction hypertension [7]. In the 1970s, Svendsen revealed that an intact thymus
is required for the maintenance or development of hypertension in three different animal
models of the disease: the deoxycorticosterone acetate (DOCA) salt model [8], mice with
partially infarcted kidneys [9], and the genetically hypertensive NZB/Cr mouse strain [10].
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Since those early studies, investigation of the interplay between inflammation and
high blood pressure has grown exponentially, and more than 18,000 publications have
explored this topic to date. It is now widely acknowledged that low-grade or persistent
inflammation is a key player in the development and maintenance of hypertension. Exhaus-
tive research demonstrates the infiltration of immune cells, like T cells, macrophages, and
dendritic cells in the kidneys, perivascular fat, or heart during the development and pro-
gression of hypertension [11–24]. In particular, immune cell transfer studies performed by
Guzik et al. [15] demonstrated that the development of angiotensin II-induced and DOCA
salt-induced hypertension was dependent on the presence of T cells. Moreover, pharmaco-
logical inhibition of immune cells with, for instance, mycophenolate mofetil, tacrolimus,
or cyclophosphamide attenuates the development of high blood pressure [25–29]. More
recently, the genetic ablation of certain immune cells and specific receptors on immune
cells or cytokines demonstrates that activation of immune cells like T cells, macrophages,
and dendritic cells [18,23,30–35] is essential for the development of elevated blood pressure.
Lately, B cells have also been reported to be important in the development of hyperten-
sion [36]. The role of immune cells from the adaptive and innate arms of the immune
response as well as different cytokines in hypertension has been extensively reviewed
elsewhere, and thus, we will not review it here [37–42].

As mentioned above, inflammatory cells have been repeatedly demonstrated to in-
filtrate organs involved with blood pressure regulation, including the vasculature, the
kidneys, and the brain [40,43,44], during hypertension. For instance, in a hypertensive
kidney, macrophages and T cells localize around glomeruli and arterioles and within the
interstitium [45,46]. Similarly, infiltration of immune cells and increased levels of inflam-
matory mediators have been demonstrated in the perivascular fat of large arteries and
arterioles in animal models of hypertension [45]. Activated inflammatory cells produce
and release cytokines like tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-17,
IL-6, and interferon-gamma (IFN-γ) that are known inducers of renal and vascular dys-
function [33–35,47–49]. Many of those inflammatory mediators are known to stimulate
fibrosis [47,50,51], for instance, which is seen in both vessels and kidneys of hypertensive
patients and animal models of the disease. In addition, T cells and macrophages contain
all the machinery needed for the production of vasoactive molecules such as angiotensin
II [52–54], endothelin-1 [55,56], or prostaglandins [57,58], which are known mediators of
hypertension and hypertension-induced end-organ damage. Moreover, a number of inflam-
matory factors released by activated immune cells can also modulate the local production
of angiotensinogen and, later, angiotensin II generation within the kidneys, vasculature, or
nervous system [51,59,60]. This implies that inflammatory cells increase the local levels
of pro-hypertensive stimuli and can further increase blood pressure by stimulating fluid
retention and vascular constriction [61]. Interesting animal studies have also shown that
IL-17 or IFN-γ deficiency is associated with alterations of sodium (Na+) transporters in the
kidneys and, consequently, reduced Na+ retention in hypertensive conditions [62]. Despite
all this evidence linking immune cell infiltration and the development and progression of
hypertension, the exact mechanisms that trigger low-level inflammation observed in the
elevated blood pressure setting still remain unclear.

2. Inflammasomes and Pyroptotic Cell Death

Inflammasomes are essential players in the inflammatory response and one of the first
steps for the initiation of chronic low-grade inflammation. Inflammasomes are intracellular
protein oligomers that are sensors for pathogens, tissue injuries, and recognition of the
signals altering homeostasis. They are composed of an effector protein, an adaptor protein,
and a sensor protein that oligomerize in a large complex after activation. The inflam-
masome sensor protein is usually a pattern recognition receptor (PRR) that oligomerizes
after activation induced by pathogen-associated molecular patterns (PAMPs), endogenous
host-derived damage-associated molecular patterns (DAMPs), or homeostasis-altering
molecular processes (HAMPs) [63]. Three families of sensor proteins have been described,
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belonging to the nucleotide-binding domain, leucine-rich-containing family of receptors
(NLRs), the absent in melanoma 2-like receptors (ALRs) or pyrin, which give name to
the inflammasome and share analogous structural domains. Moreover, there are several
types of inflammasomes, such as NLRP1b (mouse), NLRP3, NLR family CARD domain-
containing protein 4 (NLRC4), NLRP6, NLRP9, pyrin, and absent in melanoma (AIM) 2.
A great variety of molecules activate different sensor proteins, including Bacillus anthracis
for NLRP1b, Salmonella typhimurium for NLRC4, lipoteichoic acid for NLRP6, viral dsRNA
for NLRP9, dsDNA for AIM2, toxin-induced modifications of Rho GTPases for pyrin,
and several PAMPs, DAMPs, and HAMPs for NLRP3 [64]. After activation, the sensor
protein oligomerizes and recruits the adaptor protein apoptosis-associated speck-like pro-
tein with the caspase recruitment domain (ASC) forming large filaments by prion-like
oligomerization [65]. ASC filaments recruit the effector zymogen pro-caspase-1 by caspase
activation and recruitment domain (CARD)–CARD homotypic interaction, facilitating its
autoactivation by close proximity [66]. However, other inflammasomes can be activated
without involvement of ASC, such as NLRC4 [67]. Activated caspase-1 induces the cleav-
age of gasdermin D and releases its lytic N-terminal domain (GSDMDNT) [68,69] from its
C-terminus repressor domain to form pores in membranes. GSDMDNT lyses mammalian
cells by acting from the inside of the cells and also has anti-bacterial activity [70]. Studies
of the full-length crystal structure of GSDMD reveals distinct features of auto-inhibition
among the gasdermin (GSDM) family members [71]. Released GSDMNT domains bind
to negatively charged membrane lipids like phosphatidylinositol phosphate, cardiolipin,
and phosphatidylserine [72]. Caspase-1 activation also mediates the proteolytic cleavage
of the inactive precursor cytokines pro-IL-1β and pro-IL-18 to produce their active forms
that are mainly released by GSDMD pores, which have a diameter of 10–14 nm and are big
enough to release the mature form of these cytokines [70] (Figure 1). The GSDMD pore
consists of about 54 N-terminal gasdermin subunits with a radical conformational change
compared to their conformation in the full GSDM sequence, with extensive interactions
among the inserted β-strands and the α-helix 1 localized in the globular domain [73].
Upon permeabilization of the plasma membrane by GSDMD pores, cells undergo a lytic,
pro-inflammatory cell death known as pyroptosis that further promotes and increases
the release of mature IL-1β and IL-18 and the induction of a pro-inflammatory environ-
ment [74]. If gasdermin pores at the plasma membrane are not repaired, pyroptosis will end
with a burst in pro-inflammatory cytokine release and the discharge of large intracellular
components (such as inflammasome oligomers or high mobility group box 1 (HMGB1)
among others), resulting in a highly pro-inflammatory cell death process [68]. Unlike
other programmed cell deaths, pyroptosis has been described as a strategy to preserve
the inflammatory response through the release of pro-inflammatory intracellular content
during plasma membrane permeabilization [75–77], a process that recruits immune cells
to combat invading infectious organisms and promote tissue healing [78]. Pyroptosis was
initially reported in macrophages infected with Salmonella typhimurium [79], but later it was
also demonstrated in other cell types and in response to different signals [80]. Since then,
pyroptosis has been associated with multiple diseases such as cardiovascular, liver, kidney,
inflammatory, and immune diseases or cancer [81].

In humans, GSDM family members are composed of 6 members: GSDMA, B, C, D,
E, and Pejvakin (PJVK), and all have a highly conserved N-terminal domain that induces
pyroptosis when expressed ectopically, except for PJVKNT [68]. Pyroptosis depends on
different innate immune pathways leading to GSDMD processing. Caspase-1 is one of the
most studied proteases involved in pyroptosis by GSDMD cleavage. However, GSDMD
cleavage and pyroptosis are also executed by other inflammatory caspases: human caspase-
4 and -5 and mouse caspase-11 [80,82]. Moreover, other caspases (like apoptotic caspase-3
or -8) and proteases (like elastase or granzyme) can also elicit processing of GSDMB, D,
and E and induce pyroptosis [83].
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Figure 1. Activation of the inflammasome and pyroptosis induce hypertension. In the first step of the inflammasome
activation, pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) stimulate
toll-like receptors (TLR) and the translocation of nuclear factor kappa B (NF-κB) to the cell nucleus, which, in turn, increases
the transcription of the nucleotide-binding domain, leucine-rich-containing (NLR) family pyrin domain containing 3
(NLRP3) inflammasome sensor, its posttranscriptional modification, and expression of pro-interleukin (IL)-1β and pro-
IL-18. The second signal such as crystalline particles or P2X purinergic receptor 7 (P2 × 7) activation via ATP induces
the oligomerization of the NLRP3 inflammasome complex which leads to the activation of caspase-1. Caspase-1 cleaves
gasdermin D and converts pro-IL-1β and pro-IL-18 into mature IL-1β and IL-18. Pyroptosis occurs by the insertion of the
N-terminal fragment of gasdermin D into the plasma membrane, creating oligomeric pores and allowing for the release of
pro-inflammatory cytokines such as IL-1β and IL-18 to the extracellular space. Pore formation also induces water influx
into the cell, cell swelling, and osmotic cell lysis which induce further inflammation and hypertension by releasing more
inflammatory products from the intracellular space. HMGB1: high mobility group box 1; IκB: inhibitor of κB; LDH: lactate
dehydrogenase.

NLRP3 is the most studied member of the inflammasome family as it has been im-
plicated in the pathophysiology of several autoinflammatory syndromes [84] and other
diseases associated with metabolic, degenerative, and inflammatory processes [85]. Activa-
tion of the NLRP3 inflammasome can be induced in two different manners: the “canonical”
and “non-canonical” pathways.

Canonical NLRP3 inflammasome activation begins with a priming signal driven
by several classes of receptors facilitating the upregulation of NLRP3 and pro-IL-1β via
nuclear factor kappa B (NF-κB) signaling and also key post-translational modifications of
NLRP3. An activation signal is then initiated by PAMPs, DAMPs, or HAMPs, inducing
physiological changes that are detected by NLRP3 and followed by the recruitment of
ASC and caspase-1 to form the inflammasome complex [86]. Among the activators of
this cascade, our group found different microorganisms, bacterial pore-forming toxins,
hemozoin, or even melittin [87,88]. NLRP3 can also be activated by the phagocytosis
of particulate matter (silica, alum, asbestos, uric acid crystals, cholesterol crystals, or β-
amyloid deposits) as well as by cell swelling [89] or extracellular adenosine triphosphate
(ATP) acting through the P2X purinoceptor 7 (P2X7) [90]. This activation signal islinked to
mitochondrial dysfunction, lysosomal destabilization or plasma membrane damage, which
result in cell metabolic changes, reactive oxygen species (ROS) formation, potassium (K+)
and chloride (Cl–) efflux, and calcium (Ca2+) influx [91]. Although the exact mechanism
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leading to NLRP3 activation is not well-known, K+ efflux is a common initial step for
NLRP3 activation in response to most of the triggers [92,93].

In the non-canonical inflammasome pathway, gram-negative bacteria activate the
toll-like receptor 4 (TLR4)–toll IL-1 receptor (TIR)-domain-containing adapter-inducing
interferon (IFN)-β (TRIF) signaling pathway leading to type I IFN production and up-
regulation of guanylate-binding proteins (GBPs) and immunity-related GTPase family
member B10 (IRGB10), which in turn target outer membrane vesicles (OMVs) or bacterial
and vacuolar membranes to facilitate the release of lipopolysaccharides (LPS) into the
cytoplasm [94]. LPS can directly interact with murine caspase-11 or human caspase-4/5
and activate NLRP3 as a consequence of K+ efflux induced by GSDMD pores in the cell
membrane or after sensing DAMPs released by pyroptotic cells, suggesting a functional
crosstalk between the canonical and non-canonical pathways [95].

On the other hand, GSDMD pore formation has been found responsible for IL-1β re-
lease in the absence of pyroptotic cell death [96]. Likewise, calcium influx through GSDMD
pores can act as a signal to induce membrane repair by recruiting the endosomal sorting
complexes required for transport (ESCRT) machinery to damaged plasma membrane areas,
inducing cell survival mechanisms beyond pyroptosis [97]. Moreover, IL-1β release upon
activation of caspase-1 can be independent of GSDMD membrane permeabilization [98].
The different mechanisms involved in the activation of the NLRP3 inflammasome is a topic
of active investigation and thus, in addition to the mechanisms described above, alternative
molecular mechanisms have also been unveiled recently. Because of space concerns, we
only reviewed here the more established mechanisms, but we refer the reader to [99–101]
for a more detailed description of these novel mechanisms.

3. Novel Roles of the NLRP3 Inflammasome and Pyroptosis in Blood
Pressure Regulation

Fascinating new literature suggests an involvement of the inflammasome in the
development and progression of hypertension along with the induction of end-organ
damage. Immune cell activation is dependent on the presence of pattern recognition
receptors (PRRs) on antigen-presenting cells. These receptors not only recognize molecules
of pathogens or PAMPs, but they can also be activated by binding to DAMPs [41] that may
be released by damaged cells in an organ injured during hypertension. Elevated activation
levels of the key NLRP3 inflammasome priming factor, NF-κB, in tissue and inflammatory
cells are persistent in hypertension [102,103] and result in exaggerated levels of circulating
and tissue IL-1β and IL-18 in patients with essential hypertension and in animal models of
the disease [104,105]. Polymorphisms in the NLRP3 gene, specifically the rs7512998 variant,
are associated with elevated blood pressure in older populations [106]. Those individuals
with polymorphisms in the NLRP3 gene develop higher elevations in blood pressure after
the age of 50 than individuals without that gene variant [106]. A different polymorphism,
in this case, an intronic 42 base pair variable number of tandem repeat (VNTR) in the
CIAS1 gene encoding NLRP3, has also been linked to susceptibility to develop essential
hypertension [107].

3.1. NLRP3 Inflammasome in Human Pulmonary Hypertension

The involvement of the NLRP3 inflammasome in human pulmonary hypertension is
also a topic of active investigation, as reviewed by Scott et al. [108], although research in this
area is still in the early stages. In the pulmonary disease setting, expression of components
of the inflammasome has been described in macrophages [109], endothelial cells [110,111],
and lung epithelial cells [112]. In addition, lung-specific overexpression of IL-18 in mice
was also shown to associate with pulmonary hypertension [113], while IL-18 suppression
attenuates that blood pressure elevation [114] and IL-18 receptor deficiency results in
protection against a respiratory insult such as cigarette smoke [115]. Taken together, this
evidence highlights the importance of the inflammasome pathway in inducing lung disease.
Moreover, absence of the ASC adaptor protein attenuates hypoxia-induced pulmonary
hypertension in mice [116]. Pre-clinical and clinical studies further support the involve-
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ment of the NLRP3 inflammasome in pulmonary hypertension [117–124] and confirm the
occurrence of pyroptosis in rat pulmonary arteries and hypoxic human pulmonary smooth
muscle cells [125]. Although more research is clearly needed to better define the exact
mechanisms mediated by the NLRP3 inflammasome in leading to pulmonary hypertension,
the current evidence surely hints to this pathway as a presumed therapeutic target in this
devastating disease.

3.2. NLRP3 Inflammasome in Pre-Eclampsia and Systemic Hypertension

Studies have also reported activation of the NLRP3 inflammasome in monocytes dur-
ing pre-eclampsia [126], demonstrating a crucial role of NLRP3 inflammasome activation in
increasing maternal blood pressure during pregnancy. Similarly, monocytes obtained from
hypertensive patients demonstrate exaggerated production of IL-1β when isolated and
stimulated in vitro with known hypertensive stimuli like angiotensin II [127]. Importantly,
a recent unbiased next-generation RNA sequencing approach revealed the differential
expression of 60 genes between monocytes isolated from normotensive and hypertensive
individuals [128]. Most of those genes were involved in the IL-1β pathway [128], thus
implying an overstimulation of the inflammasome pathway in these cells during hyper-
tension. These same investigators also identified a correlation between expression of the
IL-18 receptor accessory protein (IL-18RAP) and elevated blood pressure in a cohort of
African American patients and suggested this protein as a possible novel immune target in
hypertension [128].

In animal studies, activation of the NLRP3 inflammasome has been demonstrated in
cardiovascular organs and those important for blood pressure regulation like the kidneys,
the vascular endothelium, or the hypothalamus, organs that are often affected by persistent
elevations of blood pressure. For instance, in the mouse model of DOCA salt-induced
hypertension, an increased expression of components of the NLRP3 inflammasome was
described in the kidneys, as well as elevated levels of IL-1β [129]. Most interestingly, the ele-
vation of blood pressure in response to DOCA salt could be prevented by using MCC950, a
novel NLRP3 inflammasome inhibitor that prevents its oligomerization and activation [129].
Furthermore, in very recent studies, this same research group demonstrated that inhibi-
tion of the NLRP3 inflammasome was also effective in reducing the renal dysfunction,
inflammation, and fibrosis associated with DOCA salt-induced hypertension [130]. Sup-
porting the critical role of the NLRP3 inflammasome in the development of hypertension,
genetic interventions to knockout NLRP3 or ASC proved to prevent the elevation of blood
pressure observed in the mouse two kidney, one clip (2K1C) model of hypertension [131].
Others demonstrated that endothelial nitric oxide synthase (eNOS)-deficient mice exhibit
exaggerated renal NLRP3 inflammasome activation after an aldosterone-induced renal
damage protocol [132], emphasizing that the eNOS–NO pathway controls the activation
of the NLRP3 inflammasome and keeps it in check. This is especially significant because
a deficient eNOS function has been repeatedly demonstrated in hypertension [133–135].
Another recent study used a rat model of hypertension involving NOS inhibition with
L-NG-nitroarginine methyl ester (L-NAME) to show that blockade of NF-κB attenuates
blood pressure and protects against hypertension-induced kidney damage, underscoring
the importance of inflammasome priming in hypertension [136]. Other inflammasomes,
such as the NLRC4 inflammasome, have been tentatively implicated in blood pressure
regulation in mice [137]; however, further studies are needed to confirm this involvement.

3.3. Renal Inflammasome Activation and Pyroptosis in Hypertension

Despite the evidence reviewed above describing activation of the NLRP3 inflamma-
some in the kidneys during hypertension, there is a lack of information in the literature
regarding the presence of renal pyroptosis in the hypertensive setting. A recent small
pilot study performed in Germany investigated the levels of inflammatory cell pyroptosis
in hemodialysis patients and hypertensive patients with intact renal function and found
that hypertensive patients had exaggerated active caspase-1 expression in monocytes com-
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pared to hemodialysis patients [138]. These findings suggest that the dialysis protocol
was effective in removing pyroptotic cells from the circulation and confirm the outcomes
described by others of elevated activation of the inflammasome pathway in monocytes
isolated from hypertensive patients [127]. Increasing evidence, however, demonstrates
exaggerated activation of the inflammasome in renal disease. For instance, activation of the
NLRP3 inflammasome in glomerular cells and podocytes was associated with the progres-
sion of renal damage in the diabetic setting and in HIV-associated nephropathy [139,140].
Similarly, silencing of GSDMD-mediated pyroptosis in glomerular cells inhibits cell death
and protects renal function in hyperglycemic conditions [141]. Deposition of the calcium
carbonate crystal, which is crucial in the mechanism of tubular injury and kidney fibrosis
during kidney stone pathology, has also been shown to stimulate the NLRP3 inflamma-
some via the transforming growth factor beta receptor (TGFR) signaling pathway [142].
Other reports suggest that the inflammasome cascade might considerably contribute to
glomerular damage. All the components of the inflammasome are present in podocytes and
its activation in these cells contributes to glomerulosclerosis in a model of hyperhomocys-
teinemia [143]. NADPH oxidase and ROS [144,145] have also been identified as potential
triggers of the NLRP3 inflammasome in podocytes. This is highly significant because
increased generation of reactive oxygen species is widely known to be intimately related to
the development of hypertension [146,147]. Enhanced NLRP3 expression was detected in
murine cultured podocytes, and human kidneys with mild signs of diabetic nephropathy
exhibited immunohistochemical staining for NLRP3 in proximal and distal tubules as well
as in sporadic cells that appeared to be podocytes [148]. Moreover, the inhibition of the
NLRP3 inflammasome ameliorates renal injury in a variety of animal models [149]. Taken
together, all this accumulating evidence for the expression and activation of the NLRP3
inflammasome in different kidney cell types during kidney diseases strongly suggests
a role for pyroptosis in hypertensive kidney disease. Further in-depth investigation of
the pyroptotic pathways in hypertensive kidneys is needed for the development of novel
therapeutics that could prevent the progression of kidney disease in hypertensive patients.

3.4. Vascular Inflammasome and Pyroptosis Activation in Hypertension

Likewise, activation of the inflammasome pathway is also involved in the vascular
dysfunction that occurs in hypertensive conditions. Evidence demonstrates that the NLRP3
inflammasome modulates the phenotype and proliferation rate of vascular smooth muscle
cells in hypertension [150] and that the activation of the NLRP3 inflammasome in these con-
ditions is triggered by increased cytosolic Ca2+ mediated by the calcium-sensing receptor
CaSR [151]. The Ca2+-induced activation of the inflammasome elicits aortic fibrosis during
hypertension [151]. It is also known that NLRP3-dependent pyroptosis in endothelial cells
mediates endothelial dysfunction, which is one of the greatest contributors to the pathogen-
esis of hypertension [152]. Intriguingly, in vitro studies identified pyroptosis mediated by
the NLRP3 inflammasome as a potential mediator of endothelial cell death after treatment
with pollutants like cadmium or acrolein [153,154]. Other reports in the literature underline
the possible role of noncoding RNAs, which are emerging biomarkers in the hypertension
field [155], as regulators of endothelial function via the NLRP3 inflammasome signaling
pathway [156]. Additionally, certain drugs that are often used to treat hypertension such as
statins [157], hypoglycemic agents [158], and other anti-inflammatory drugs [159], together
with specific inhibitors of NLRP3 such as MCC950 [160], have been reported to improve
vascular dysfunction by inhibiting the NLRP3 inflammasome signaling cascade. More-
over, deletion of the NLRP3 gene attenuates the vascular remodeling and vascular smooth
muscle cell transformation that is normally promoted by angiotensin II [161]. Interestingly,
an inflammasome-independent role of NLRP3 has also been reported in the endothelial
dysfunction that is induced by high salt consumption [162]. In summary, although growing
evidence highlights the NLRP3 inflammasome and the consequent pyroptosis as impor-
tant mediators of vascular dysfunction and vascular damage in hypertension, the exact
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molecular mechanisms that lead to activation of these damage pathways in this disease
need more investigation.

3.5. Hypothalamic Activation of the Inflammasome During Hypertension

Fewer studies have focused on the activation of the inflammasome signaling cascade in
blood pressure-controlling areas of the brain, like the hypothalamus. Chronic inhibition of
NF-κB activity in the hypothalamic paraventricular nucleus (PVN) has been proven to delay
the development of hypertension by upregulating anti-inflammatory cytokines, reducing
NLRP3 and IL-1β expression and attenuating the enzymatic activity of the activated
inhibitor of nuclear factor NF-κB kinase β (p-IKKβ, NF-κB p65) and NAD(P)H oxidase
in the PVN of salt-sensitive hypertensive rats [163]. These findings suggest that high-
salt-induced NF-κB activation in the PVN evokes hypertension via sympathoexcitation,
which is related to the increases of NLRP3, IL-1β, and oxidative stress in the PVN [163].
Likewise, Wang et al. [164] found that NLRP3 expression in the PVN was significantly
increased in a pre-hypertensive rat model and was accompanied by increased expression
of pro-inflammatory cytokines, C-C motif ligand 2 (CCL2), CXC chemokine receptor
type 3 (CXCR3), and vascular cell adhesion molecule 1 (VCAM-1). When the NLRP3
inflammasome was inhibited, it resulted in significantly decreased blood pressure and
reduced pro-inflammatory cytokines, CCL2 and VCAM-1 [164]. On the other hand, a
robust correlation between hypertension, depression, and other anxiety disorders has been
identified [165,166]. It was reported that a strong association between chronic stress and
depression exists and results in hippocampal and pre-frontal cortex atrophy by modulating
the activity of the hypothalamic–pituitary–adrenal (HPA) axis and eliciting an oxidative
stress and neuroinflammatory response [167]. If these effects in the morphology of the brain
are related to hypertension is still under investigation; however, treatment with salvianolic
acid B abolishes the chronic mild stress-induced depression through downregulating
NLRP3 protein expression and results in improved behavior, antioxidant status, and
anti-inflammatory activity [168]. The effects of modulation of the NLRP3 inflammasome
pathway in the hypothalamus in a wider variety of animal models of hypertension are
needed to achieve a deeper understanding of its role in the control of systemic blood
pressure.

4. Targeting the NLRP3 Inflammasome and Pyroptosis in Hypertension: Emerging
Pharmacological Approaches

Numerous antihypertensive drugs with anti-inflammatory properties such as cy-
clooxygenase (COX) inhibitors, angiotensin receptor blockers, or peroxisome proliferator-
activated receptors (PPAR) gamma activators induce their anti-inflammatory effects indi-
rectly by the inhibition of pro-inflammatory and pro-oxidant pathways [169]. Paradoxically,
other anti-inflammatory agents, such as non-steroidal drugs and even some COX inhibitors,
induce the opposite effect and increase blood pressure [170,171], indicating that the rela-
tionship between inflammation and blood pressure regulation is extraordinarily complex.

As we described earlier in this review, numerous pieces of evidence demonstrate that
the inflammasome and pyroptosis play a crucial role in essential and high-salt-dependent
hypertension, as well as in preeclampsia, pulmonary hypertension, and in its related
secondary disorders, evidencing that the attenuation of the inflammasome activity may
be a promising target for achieving blood pressure control. The inflammasome is a key
component in the regulation of the immune system and represents an initial step in the
immune response. Several checkpoints in the inflammasome pathway have been tested
to determine their efficiency in mitigating inflammasome activity and, thus, whether they
constitute a possible target to reduce elevated blood pressure (Figure 2 and Table 1). In this
section, we will highlight several of these checkpoints.
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family pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis pathways to reduce blood pressure.

Table 1. Potential pharmacological approaches targeting the NLRP3 inflammasome and pyroptosis to reduce blood pressure.

Drug Mechanism of Action Effect on Blood
Pressure Regulation Organism Publications

A-740003 P2X7 receptor antagonist
Decreases mean RV

pressure associated with
pulmonary hypertension

Rat [123]

PKT100 P2X7 receptor antagonist
Improves survival in the
pulmonary hypertension

model
Mouse [172]

Anakinra IL-1 receptor antagonist

Reverses salt-induced
hypertension/reduces

pulmonary blood
pressure

Mouse/human [172–175]

Canakinumab IL-1β blocker No effect on blood
pressure regulation Human [176]

NSA Gasdermin inhibitor No evidence Human/mouse [177]

Disulfiram Gasdermin inhibitor No evidence Human/mouse [178]

DMF Gasdermin inhibitor No evidence Mouse [179]

Nrf2 activators Gasdermin inhibitors,
antioxidants

Reduces systolic blood
pressure Mouse [180–190]

MCC950 NLRP3 inflammasome
inhibitor

Reverses salt-induced
hypertension/reduces

blood pressure
Mouse/rat [129,130,160,191,192]

Ellagic acid Antioxidant Reduces pulmonary
artery hypertension Rat [121]

ELABELA Antioxidant Mitigates hypertension Human renal tubular
cells [193]

IMD-0354 NF-κB inhibitor Reduces RV pressure Rat [194]

PDTC NF-κB inhibitor Reverses salt-induced
hypertension Rat [163]

DMF, dimethyl fumarate; NSA, necrosulfonamide; PDTC, pyrrolidine dithiocarbamate; RV, right ventricular.
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4.1. P2X7 Receptors Antagonism

P2X purinoceptors 7 (P2X7) are members of the ionotropic ATP-gated receptor fam-
ily [195], and are involved in NLRP3 inflammasome activation in different diseases like
depression and diabetes [196]. Recently, the selective P2X7 receptor antagonist A-740003
was reported to significantly attenuate the NLRP3 inflammasome upregulation and de-
crease the mean right ventricular (RV) pressure and RV hypertrophy associated with
pulmonary hypertension [123]. On the contrary, treatment with a different P2X7 receptor
antagonist, PKT100, did not alter right ventricular systolic pressure, but substantially
improved survival in a mouse model of pulmonary hypertension [172], suggesting that
further studies are needed to determine the possible role of P2X7 receptor antagonists in
regulating blood pressure.

4.2. Reactive Oxygen Species (ROS) Production Inhibitors

The phenolic compound ellagic acid ameliorates monocrotaline-induced pulmonary
artery hypertension in rats via inhibiting the NLRP3 inflammasome signaling pathway,
mostly due to its anti-oxidative properties [121]. Moreover, a recent study reports that
ELABELA, a 32-residue hormone peptide, mitigates hypertension by attenuating the
NADPH oxidase/ROS/NLRP3 inflammasome axis in human renal tubular cells stimulated
with aldosterone, thus demonstrating the role of ROS in NLRP3 activation and blood
pressure regulation in the kidneys [193].

4.3. NLRP3 Inhibitors

MCC950 is a specific NLRP3 blocker [160,197,198] and, as we mentioned before, it
has been reported to partially reverse salt-induced hypertension in mice [130]. MCC950
reduces the renal expression of NLRP3 inflammasome subunits (NLRP3, ASC, pro-caspase-
1) as well as inflammatory and injury markers (such as pro-IL-18, pro-IL-1β, IL-17A,
TNF-α, osteopontin, ICAM-1, VCAM-1, CCL2, or vimentin) in hypertensive mice [84,130],
while none of these parameters were altered by the same treatment in normotensive
mice. These observations indicate that MCC950’s capacity to reduce blood pressure in
salt-induced hypertension is due to the attenuation of the inflammasome activity [130]. In
another study, Sprague–Dawley rats fed a high-salt diet were also treated with MCC950
via bilateral cannulae implanted into the hypothalamic paraventricular nucleus (PVN)
for four weeks. At the end of the study, these rats presented with significantly increased
NLRP3 expression in the PVN accompanied by increased microglia. The inhibition of the
NLRP3 inflammasome significantly decreased blood pressure, reduced the expression of
the chemokine CCL2, chemokine receptor CXCR3, and vascular cell adhesion molecule 1
(VCAM-1) and restored plasma norepinephrine (NE) expression levels [164]. Moreover,
treatment with MCC950 was efficient in normalizing vascular ROS generation and reducing
vascular dysfunction in db/db mice [191], and it also prevented the development of aortic
aneurysms and dissections in mice [192]. Together, these data demonstrate the ability of
MCC950 to reduce blood pressure by acting at both the hypothalamic level as well as the
vascular level, improving endothelial function.

4.4. NF-κB Inhibitors

As mentioned above, priming of the NLRP3 inflammasome is predetermined by the
activation of NF-κB (Figure 1). Treatment with IMD-0354, which inhibits NF-kB activity
by blocking the translocation of p65, effectively prevented the increase in right ventricular
pressure and suppressed the proliferation and induced apoptosis of pulmonary arterial
smooth muscle cells [194]. Further, infusion of pyrrolidine dithiocarbamate (PDTC), a
different compound that also inhibits NF-κB, into the hypothalamic PVN hinders the
development of high-salt-induced hypertension through the NLRP3 inflammasome and
caspase-1 pathway [163], highlighting the possible relevance of preventing the development
of hypertension by inhibiting NF-κB and caspase-1 activity at hypothalamic levels.
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4.5. IL-1β Receptor Antagonism

IL-1β and IL-18 are associated with hypertension [104,105] and hypertensive patients
exhibit enhanced levels of IL-1β [138]. IL-1β stimulates the expression of vascular cell
adhesion protein-1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and E-selectin
in essential hypertension patients, which, in turn, results in unwanted atherosclerotic
effects [199]. Enalapril, quinapril, and losartan are angiotensin-converting enzyme (ACE)
inhibitors and angiotensin receptor blockers (ARBs) and are widely used as antihyperten-
sive drugs. Use of these ACE inhibitors in hypertensive rats led to significantly decreased
LPS-stimulated TNF-α and IL-1β levels, highlighting the ability of these drugs to attenuate
inflammation [200]. Different studies revealed that polymorphisms in the IL-1β gene
are associated with higher blood pressure in ethnic populations [165,201,202]; however,
the question still remains whether IL-1β and IL-18 are inflammatory markers or media-
tors of hypertension in humans [203]. Serum levels of IL-1β and IL-1RA were described
as predictors of elevated diastolic blood pressure in 537 subjects with insulin resistance
syndrome [204]. In another study, incubation of the carotid arteries with LPS induced
a greater concentration-dependent expression of mRNA for IL-1β in the spontaneous
hypertensive rat (SHR) than in the normotensive Wistar–Kyoto rat [205]. Moreover, a
study in anesthetized rats demonstrated that the intracisternal injections of IL-1β caused
dose-dependent vasopressor responses; however, IL-1 did not constrict the peripheral
vasculature in the perfused hindlimb preparation, which suggests that IL-1β may cause
vasopressor effects via increases in the abdominal sympathetic discharge [206]. Anakinra
is a specific recombinant antagonist of the IL-1β receptor currently approved by the U.S.
Food and Drug Administration for use in inflammatory syndromes such as rheumatoid
arthritis [173]. Preclinical studies in mice evidenced that Anakinra reduces blood pressure
and renal fibrosis in the one kidney/DOCA salt-induced hypertension model [174]. In a
phase II pilot study, Anakinra reduced pulmonary blood pressure and right ventricular
failure [175]. However, a recent clinical study with a total of 9,549 participants reported
that canakinumab, a specific anti-IL-1β blocking antibody, did not reduce blood pressure
in hypertensive patients despite reducing major adverse cardiovascular event rates [176].
Anakinra has the ability of crossing the blood–brain barrier and reduces inflammation in
the central nervous system (CNS) [207]. The reported difference in treatment responses to
these two IL-1β pathway blocking agents may be due to different success in entering the
CNS [208]. All these data underscore Anakinra as a promising treatment to reduce blood
pressure in essential hypertension patients.

4.6. Gasdermin D Inhibitors

Although there is no direct proof in the literature that cell pyroptosis directly con-
tributes to the pathological process of hypertension, this type of cell death could represent
a promising pathway to reduce blood pressure. There are several compounds to inhibit
GSDMD activity, and all of them directly target its cysteine (Cys) residues. The molecular
structure of Cys contains a thiol group (Cys-SH) susceptible to oxidation by ROS, and
thus, this residue serves an important structural role in many proteins. The oxidation of
thiol groups results in sulfenic (Cys-SOH), sulfinic (Cys-SO2H), and sulfonic (Cys-SO3H)
groups, which tend to create a covalent bond with other Cys residues to form disulfide
bonds [209]. Disulfide bonds between Cys groups (Cys-SS-Cys) are crucial for protein
folding and stability, can modify protein rigidity, and affect their proteolytic resistance [210].
Thus, disulfide bonds in proteins are formed consequently of the oxidation of cysteine
thiol group residues [209] and a pro-oxidant environment could avoid their formation.
Additionally, chemical modifications of the cysteine thiol group such as succinylation [211]
could also prevent the formation of disulfide bonds.

In this context, it has been demonstrated that the oxidation of the cysteine residues of
GSDMDNT is needed for pore formation, in particular, oxidation of Cys191 [177,212]. The
α-Cys-reactive drug necrosulfonamide (NSA) inhibits pyroptosis in human and mouse
cells by disrupting disulfide bonds formed at Cys191 [177]. Disulfiram is another potent
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inhibitor of GSDMD pore formation in vitro and in vivo, and covalently modifies hu-
man/mouse Cys191/Cys192 in GSDMD to block pore formation [178]. Moreover, dimethyl
fumarate modifies GSDMD and GSDME through succinylation on Cys192 in mice, which
is equivalent to Cys191 in human, and prevents its interaction with caspases, blocking its
ability to induce pyroptosis [179]. The Cys sulfhydryl group is nucleophilic and easily
oxidized by ROS production; therefore, antioxidant compounds may have an important
role in GSDMD inhibition by preventing the oxidation of its Cys groups. Several studies
demonstrate the ability of antioxidants to reduce IL-1β expression and to mitigate pyropto-
sis in renal cells. Some of these antioxidant compounds are salvianolic acid B (SalB) [180],
EPZ015666 (a specific inhibitor protein arginine methyltransferase 5 (PRMT5)) [181], di-
hydromyricetin (DHM) [182], sulforaphane [183], parthenolide [184], neferine [185], and
sodium butyrate [141]. Interestingly, some of these antioxidants (salvianolic acid B [186],
dihydromyricetin [187], sulforaphane [188], neferine [189], and sodium butyrate [190])
have also been reported to reduce blood pressure in animal models, suggesting that part of
their antihypertensive effects could be mediated through the inhibition of GSDMD. In ad-
dition, all these antioxidant compounds have in common their ability to stimulate nuclear
factor erythroid 2-related factor 2 (Nrf2) pathways [180–182,213–215], a master regulator
of antioxidant genes with the capability of attenuating inflammasome activity [216]. Our
group reported that the Nrf2 inducer bardoxolone normalizes oxidative stress-dependent
hypertension associated with the depletion of renal DJ-1 in mice [217].

Taken together, this evidence suggests that the potential actions of these compounds
on blood pressure may be mediated by the attenuation of pyroptosis, and thus, the inflam-
masome and pyroptosis are promising pharmacological targets for the development of
novel antihypertensive drugs.

5. Conclusions and Future Perspectives

Growing evidence highlights the activation of the inflammasome and the consequent
pyroptosis as emerging mediators of the low-grade inflammation that is typical of the hyper-
tensive state. Macrophages, T cells, and dendritic cells have been extensively demonstrated
to be crucial for the development and progression of hypertension. The inflammasome
pathway is upstream of the activation of adaptive and innate immune cells, and pyroptosis
is known to exacerbate the kidney and vascular dysfunction that worsens hypertension.
Thus, the inflammasome pathway is rising as a promising target for the development of
novel antihypertensive drugs. In fact, drugs that are already in the market for the treatment
of inflammatory disorders, like Anakinra, as well as experimental NLRP3 inflammasome
inhibitors like MCC950, demonstrate effective decrease in blood pressure in the experi-
mental setting. In addition, blockers of GSDMD activity also show promise as potential
tools for the attenuation of hypertension and hypertension-induced end-organ damage.
The inflammasome/pyroptosis signal cascade is one of the most effective pathways to
induce inflammation and is emerging as a promising target to develop novel therapeutic
approaches to block inflammation and prevent hypertension.
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