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Abstract: Functionally graded materials (FGM) have received extensive attention in recent years due
to their excellent mechanical properties. In this research, the theoretical process of calculating the
propagation characteristics of Lamb waves in FGM sandwich plates is deduced by combining the
FGM volume fraction curve and Legendre polynomial series expansion method. In this proposed
method, the FGM plate does not have to be sliced into multiple layers. Numerical results are given
in detail, and the Lamb wave dispersion curves are extracted. For comparison, the Lamb wave
dispersion curve of the sliced layer model for the FGM sandwich plate is obtained by the global
matrix method. Meanwhile, the FGM sandwich plate was subjected to finite element simulation, also
based on the layered-plate model. The acoustic characteristics detection experiment was performed
by simulation through a defocusing measurement. Thus, the Lamb wave dispersion curves were
obtained by V(f, z) analysis. Finally, the influence of the change in the gradient function on the Lamb
wave dispersion curves will be discussed.

Keywords: functionally graded materials; Legendre polynomial series expansion method; Lamb
wave dispersion curve; volume fraction curve; finite element simulation

1. Introduction

Functionally graded materials (FGM) are based on computer-aided material design,
using advanced material compounding technology to make the elements (composition,
structure, etc.) of the constituent materials continuously change from one side to the other
along the thickness direction. Thus, the properties and functions of the material also vary
in gradient. Functional gradient materials of metal-ceramics were proposed and prepared
in 1984 [1]. Since the volume content of the FGM components is continuously changed in
the spatial position, and there is no sudden change in physical properties, the interlayer
stress problem can be avoided and the stress concentration phenomenon can be reduced.
At the same time, FGM is a good devisable material, in which one can change the spatial
distribution of composition and content of the material by a target function, so as to achieve
the purpose of optimizing the internal stress distribution of the structure [2].

The FGM sandwich plate consists of three layers: the top layer, the middle layer
and the bottom layer. Generally, FGM sandwich plates are divided into two categories.
One is FGM as the top and bottom layers of the sandwich plate, and the homogeneous
isotropic materials as the intermediate layer. The other type is FGM as the middle layer
of the sandwich plate, and homogeneous isotropic materials as the top and bottom layers.
FGM sandwich plates have excellent overall performance, and have been used in optical,
biomedical, electromagnetic and mechanical engineering, etc. [3].

The elastic waves in the FGM sandwich plate contain ultrasound guided waves and
body waves. Ultrasonic guided waves cover Lamb waves, surface waves, Love waves, etc.
Ultrasonic guided waves provide unique capabilities for the structural health monitoring
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of plate-like structures [4]. However, the guided waves have multi-mode and dispersion
characteristics during propagation, and the dispersion appears to be a unique physical
property. It mainly indicates that the propagation characteristics of the guided waves
are affected by frequency. That is to say, the propagation velocity of a guided wave will
change by frequency, which is called dispersion [5]. In addition, most guided wave modes
have strong dispersion characteristics. Therefore, studying the relationship between the
dispersion curve of FGM sandwich plates and material property parameters is an important
part of theoretical research. Zhu et al. [6] used the matrix recursion method to establish
the characteristic equations of Lamb waves of multi-layer free plates, and analyzed the
dispersion characteristics of double-layer plates and sandwich plates. Wu et al. [7] studied
the propagation dispersion characteristics of Lamb waves from single-layer plates to
multi-layer FGM plates, and obtained the relationship between the continuous change in
material properties and the Lamb wave velocity and displacement. Bruck [8] analyzed
the propagation of stress waves in FGM by establishing a one-dimensional FGM model,
and transitioned the FGM layered model to a continuously changing gradient model.
Chen et al. [9] used a layered plate model to analyze the dispersion characteristics of FGM
plates under large frequencies and thick product conditions. In all the above research, the
FGMs were divided into many homogeneous or inhomogeneous layers, in order to solve
the wave propagation problem. However, the layer number of FGMs plays a vital role in
the numerical accuracy of the calculations.

In addition, Lefebvre et al. [10] proposed the Legendre orthogonal polynomial series
expansion (LOPSE) method to study the propagation properties of waves in layered-plate
structures. Yu et al. [11] further introduced the Legendre series expansion method into
the dispersion curve calculation of an anisotropic multilayer piezoelectric material plate
with a greater difference in mechanical parameters. Compared with the rotation matrix
method, a good calculation result is obtained. Dong et al. [12] studied the SH surface
wave in the piezoelectric gradient half space, considering the horizontal shear direction
displacement by using Laguerre orthogonal polynomials. Salah et al. [13] proposed a
layered model to analyze the Love wave over a half space of an elastic substrate covered by
a functionally gradient piezoelectric material plate. As mentioned above, the studies treated
the FGM structures as a continuously gradient medium, and they effectively calculated
the propagation characteristics of acoustic waves in FGMs without separating them into
multilayer plates. However, there are few reports on the numerical simulation of Lamb
wave propagation in FGM sandwich structures.

Likewise, the finite element method is a numerical method with both a theoretical
basis and practical significance. It was originally used by Zienkiewicz [14] to simulate
wave propagation and scattering, but then Finnveden [15] successively used the spectral
finite element method to study the periodic waveguide structure and the guided wave in
the viscoelastic damped waveguide structure. Cheng et al. [16] studied the propagation of
surface acoustic waves excited by lasers in functionally graded materials, and simulated the
gradients of various mechanical and thermal parameters in functionally graded materials.
Kim and Paulino [17] proposed an isoparametric gradient element model, and applied
the shape function of the model to obtain the material properties of the attribute of the
element node to the inner difference. Zhang and Xiao [18] applied this method to prove
that the finite element model based on isoparametric gradient elements can better reflect
the gradient variation in material properties. Wang and Gross [19] proposed a layered
model of FGM. The material parameters of each layer change according to a continuous
function and are continuous at the interface. Such a layered model achieved good results
in the crack analysis of FGM structures. Nevertheless, little research paid attention to the
complex multi-mode dispersion characteristics of functionally graded materials, which can
provide more abundant information for non-destructive testing and the evaluation of the
characteristics of FGM plates.

In this research, we use the Legendre polynomial series expansion method to study
the propagation of Lamb waves in functionally graded material sandwich plates, and
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discuss their convergence problem. The influence of gradient layer parameter changes on
Lamb wave dispersion curves will also be given. In addition, the finite element model of
FGM sandwich plates was established by PZFlex (Division of Applied Science, Mountain
View, United States), and the experimental process of defocusing the measurement of
line-focused ultrasonic transducers based on acoustic microscopy, also known as the V(f, z)
measurement, was simulated.

2. Theoretical Derivation and Numerical Results
2.1. Modeling

For a functionally graded sandwich plate, as shown in Figure 1, the propagation
direction of the Lamb wave is along the x1 axis. The thickness of the sandwich plate is
h1 + h2 + h3, in which h2 is the thickness of the FGM layer, and h1 and h3 are the thick-
nesses of steel and copper, respectively. The material parameters of the FGM layer vary
continuously in the thickness direction. Here, we are referring to the density and the elastic
constants, which are functions of x3.
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Figure 1. Schematic diagram of Lamb wave propagation and spatial coordinate system in a function-
ally graded material sandwich panel.

Assuming that the displacement components of the Lamb wave are the following:

u1 = U(x1, x3, t)
u2 = 0
u3 = W(x1, x3, t)

(1)

then the equations of motion will be given as follows:

∂σ11
∂x1

+ ∂σ13
∂x3

= ρ ∂2u1
∂t2

∂σ31
∂x1

+ ∂σ33
∂x3

= ρ ∂2u3
∂t2

(2)

Geometric relationship under the assumption of small deformation is as follows:

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(i, j = 1, 2, 3) (3)

Free harmonics of the particle displacement can be written as follows:

u1 = U(x3) · e[i(kx1−ωt)]

u3 = W(x3) · e[i(kx1−ωt)] (4)
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where σij and εij represent stress and strain, respectively, U(x3) and W(x3) are the amplitudes
of particle vibrations on the x1 and x3 direction, k is the wave number, and ω is the
angular frequency.

Considering the boundary problem of isotropic plates, the rectangular window func-
tion can be introduced by the following:

πhn(x3) =

{
1, 0 ≤ x3 ≤ h1 + h2 + h3
0, elsewhere

(5)

The elastic constant and density of the material are expressed as a function of position,
as follows:

Cij =
N
∑

n=1
Cn

ijπhn(x3)

ρ =
N
∑

n=1
ρnπhn(x3)

(6)

where N is the total number of layers, and here, N = 3. Therefore, the elastic constants and
density in the sandwich plate can be expressed as follows:

Cij(x3) = C1
ijπh1(x3) + C2

ij(x3)πh2(x3) + C3
ijπh3(x3)

ρ(x3) = ρ1πh1(x3) + ρ2(x3)πh2(x3) + ρ3πh3(x3)
(7)

The middle layer of the sandwich plate is the FGM layer; the volume fraction of copper
of this layer is represented as VCu, which can be written by a power function, as follows:

VCu =

(
1− x3 − h1

h2

)n
(h1 ≤ x3 ≤ h1 + h2, 0 ≤ n ≤ ∞) (8)

where n is the exponent of the power function. The propagation characteristics of Lamb
waves in the FGM layer under different gradient distributions can be obtained by chang-
ing the power exponent n. Then, in the FGM layer, the relationships between elastic
constants/density and volume fraction are as follows:

Csteel
I J = Csteel

I J +
(

CCu
I J − Csteel

I J

)
VCu

ρsteel = ρsteel +
(
ρCu − ρsteel)VCu

(9)

Substituting Equation (8) into Equation (9) yields the functions of the elastic constant
and density in the FGM layer, with respect to x3:

Csteel
I J (x3) = Csteel

I J +
(

CCu
I J − Csteel

I J

)(
1− x3−h1

h2

)n

ρsteel(x3) = ρsteel +
(
ρCu − ρsteel)(1− x3−h1

h2

)n (10)

Thus, the constitutive relationship is given as follows:

σ11 = [C11(x3)ε11 + C13(x3)ε33] · π(x3)
σ33 = [C13(x3)ε11 + C33(x3)ε33] · π(x3)
σ13 = 2C55(x3)ε13 · π(x3)

(11)

2.2. Legendre Orthogonal Polynomial Expansion

Substituting Equations (3), (4), (7), (10) and (11) into Equation (2) yields the wave
control equation in the x1–x3 plane. Then, the wave control equation in the x1 direction is
as follows:
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[
C1

11πh1(x3) + C2
11(x3)πh2(x3) + C3

11πh3(x3)
]
· i2k2 ·U

+
[
C1

13πh1(x3) + C2
13(x3)πh2(x3) + C3

13πh3(x3)
]
· ik ·W ′

+C2
55
′(x3)πh2(x3) ·U′ +

[
C1

55πh1(x3) + C2
55(x3)πh2(x3) + C3

55πh3(x3)
]
·U′′

+C2
55
′(x3)πh2(x3) · ik ·W +

[
C1

55πh1(x3) + C2
55(x3)πh2(x3) + C3

55πh3(x3)
]
· ik ·W ′

+

[
C1

55[δ(x3 − 0)− δ(x3 − h1) ] + C2
55(x3)[δ(x3 − h1)− δ(x3 − h1 − h2) ]

+C3
55[δ(x3 − h1 − h2)− δ(x3 − h1 − h2 − h3) ]

]
· (U′ + ik ·W)

= −
[
ρ1πh1(x3) + ρ2(x3)πh2(x3) + ρ3πh3(x3)

]
·ω2 ·U

(12)

The wave control equation in the x3 direction is as follows:[
C1

55πh1(x3) + C2
55(x3)πh2(x3) + C3

55πh3(x3)
]
· ik ·U′

+
[
C1

55πh1(x3) + C2
55(x3)πh2(x3) + C3

55πh3(x3)
]
· i2k2 ·W

+C2
13
′(x3)πh2(x3) · ik ·U +

[
C1

13πh1(x3) + C2
13(x3)πh2(x3) + C3

13πh3(x3)
]
· ik ·U′

+C2
33
′(x3)πh2(x3) ·W ′ +

[
C1

33πh1(x3) + C2
33(x3)πh2(x3) + C3

33πh3(x3)
]
·W ′′

+

[
C1

13[δ(x3 − 0)− δ(x3 − h1) ] + C2
13(x3)[δ(x3 − h1)− δ(x3 − h1 − h2) ]

+C3
13[δ(x3 − h1 − h2)− δ(x3 − h1 − h2 − h3) ]

]
· ik ·U

+

[
C1

33[δ(x3 − 0)− δ(x3 − h1) ] + C2
33(x3)[δ(x3 − h1)− δ(x3 − h1 − h2) ]

+C3
33[δ(x3 − h1 − h2)− δ(x3 − h1 − h2 − h3) ]

]
·W ′

= −
[
ρ1πh1(x3) + ρ2(x3)πh2(x3) + ρ3πh3(x3)

]
·ω2 ·W

(13)

The amplitudes of U(x3) and W(x3) of the displacements are expanded into the form
of a summation of the Legendre orthogonal polynomials, which can be written as follows:

U(x3) =
∞
∑

m=0
p1

m ·Qm(x3)

W(x3) =
∞
∑

m=0
p3

m ·Qm(x3)
(14)

where (i = 1, 3; m = 1, 2, . . . , M) are the expansion coefficients of Qm(x3). Theoretically, m
takes from zero to infinity, but, in fact, m takes a finite value of M. Higher-order terms can
be considered as infinitesimal quantities, and M is the cutoff order of Legendre orthogonal
polynomial series. It should be noted that Qm(x3) is an orthogonally normalized polynomial
group, as follows:

Qm(x3) =

√
2m + 1

h1 + h2 + h3
Pm(

2x3 − h1 − h2 − h3

h1 + h2 + h3
) (15)

Substituting the displacement amplitude Equation (14) into the wave control
Equations (12) and (13) will derive the final form of Legendre polynomial expansion equa-
tions. Multiply both sides of the expanded equation by Qj(x3) and integrate x3 from zero to
h1 + h2 + h3. Using the orthogonal properties of the Legendre polynomial, a matrix form of
the equations can be given, as follows:[

Aj,m
11 Aj,m

12
Aj,m

21 Aj,m
22

]{
p1

m
p3

m

}
= −ω2

[
Mj

m 0
0 Mj

m

]{
p1

m
p3

m

}
(16)

where Aj,m
ij and Mj

m can be obtained from the wave control equations after expansion,
which are shown in Appendix A. According to the matrix Equation (16), the relationship
between the wave number k and the angular frequencyω can be obtained by solving the
eigenvalues. That is how the dispersion curves of the Lamb wave in the FGM sandwich
plate can be extracted.
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2.3. Numerical Results and Discussion
2.3.1. Convergence Analysis of Cutoff Order M

The material selected was a copper–FGM–steel sandwich plate, and the mechanical
performance parameters of copper and steel are shown in Table 1. In total, the thickness of
the plate is 0.4 mm, in which both the thicknesses of copper and steel are 0.1 mm, and the
thickness of the FGM layer is 0.2 mm. According to Equation (8), the volume fraction of
copper in the FGM layer along the thickness direction will take the indices n = 0.2, 0.5, 1, 2,
10, respectively, as illustrated in Figure 2.

Table 1. Parameters of Cu and steel [20].

Material C11 (GPa) C13 (GPa) C33 (GPa) C55 (GPa) ρ (kg/m3)

Cu 154.8 81.5 154.8 36.7 8292
Steel 275.0 113.2 275.0 80.9 7900
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Figure 2. Volume fraction distribution of copper.

From the LOPSE method, it can be concluded that in the process of solving the Lamb
wave dispersion curves, once the number of polynomials exceeds a certain threshold, the
phase velocity will infinitely approach the eigenvalue. Calculations of the Lamb wave
dispersion curves in the frequency range of 0–10 MHz under seven cutoff orders (M = 3, 4,
5, 6, 7, 8, 9) are shown in Figure 3a–g, where the volume fraction index is n = 0.2. It can be
observed that as the cutoff order M increases, the Lamb wave dispersion curve shows a
convergence trend, which is consistent with the characteristics of the LOPSE method. This
verifies the feasibility of the theoretical method. As can be observed from Figure 3h, when
M = 8 and M = 9, the curves are substantially coincident, so the Lamb wave dispersion
curves obtained at M = 8 are taken as a convergence solution.
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Taking the volume fraction curve at n = 0.2 as an example, according to Equation (10),
the elastic constant CIJ and density ρ of the FGM layer can be sliced into 10 equal minor sub
layers. Meanwhile, when N = 1, the corresponding material layer is Cu; and when N = 10,
the corresponding material layer is steel, and the material parameters can be obtained from
Table 1. The thickness of each layer is 0.02 mm, and the material parameters vary in the
same step. The corresponding parameters of all layers can be obtained from Equation (10),
which are shown in Table 2.
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Table 2. Parameters of sliced FGM layer.

Layer C11 (GPa) C13 (GPa) C33 (GPa) C55 (GPa) ρ (kg/m3)

N = 1 154.8 81.5 154.8 36.7 8292.0
N = 2 157.6 82.2 157.6 37.7 8282.9
N = 3 160.7 83.0 160.7 38.8 8272.8
N = 4 164.2 84.0 164.2 40.1 8261.5
N = 5 168.1 85.0 168.1 41.6 8248.5
N = 6 172.8 86.2 172.8 43.3 8233.3
N = 7 178.5 87.7 178.5 45.4 8214.7
N = 8 186.0 89.7 186.0 48.2 8190.2
N = 9 197.6 92.8 197.6 52.4 8152.6
N = 10 275.0 113.2 275.0 80.9 7900.0

The parameters from Table 2 are used to obtain a comparison result from Disperse
(Imperial College NDT Laboratory, London, UK), also under n = 0.2. Compared with the
convergent solution from the Legendre orthogonal polynomial expansion method, the
results are shown in Figure 4. It can be observed that the curve is basically consistent
in the frequency range of 0–10 MHz, which means that the theoretical solutions of the
non-sliced model by Legendre expansion are consistent with the solutions of the sliced
model by Disperse. In this case, M = 8 will approach closely enough to the results of the
global matrix method [21].
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2.3.2. Effect of Volume Fraction n on Dispersion Curves

Under different power exponents, the gradient distribution of material parameters
in the FGM layer is different, which has a certain influence on the Lamb wave dispersion
curves. The dispersion curves of Lamb waves in the sandwich plate under different
gradient distributions are calculated, as shown in Figure 5. The cutoff order of the Legendre
orthogonal polynomial is also M = 8. Figure 5a–e show Lamb wave dispersion curves in
five different sandwich plates, with n = 0.5, 1, 5, 10, 20, respectively. It can be observed
that as the power exponent increases, the phase velocity of S0 mode at a low frequency
range gradually increases. Meanwhile, the same phenomenon shows up in the higher-order
modes. According to Figure 5, when the power index is gradually increased to infinity, the
copper content in the FGM layer almost reduces to zero, and the sandwich plates can be
regarded as double-layered plates with a top layer of 0.1 mm copper and a bottom layer of
0.3 mm steel. The Lamb wave dispersion curve in the copper–steel double-layered plate
calculated by the Legendre orthogonal polynomial method is shown in Figure 5f.
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2.3.3. Displacement and Stress Distribution

The amplitude distribution of displacements and stress components along the thick-
ness direction is the wave structure. According to the calculation result of the dispersion
curve at n = 1 in Figure 5b, the eigenvector and its corresponding eigenvalue are calculated.
Then, the displacement distribution of the different Lamb wave modes at different frequen-
cies can be obtained. An arbitrary frequency f = 2 MHz is selected, and the Lamb wave
velocities corresponding to the A0 (anti-symmetric zero-order mode) and S0 (symmetrical
zero-order mode) modes at this frequency are 1933 m/s and 4469 m/s, respectively. The
matrix eigenvectors p1

m and p3
m are inversely obtained by using the angular frequencyω

corresponding to the two wave velocities as the eigenvalues. Substituting p1
m and p3

m into
the Equation (16), the displacement and stress distribution in the FGM sandwich plate
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can be obtained, as shown in Figures 6 and 7. So, the displacement and stress distribution
curves corresponding to the arbitrary modes of the Lamb wave at any frequency can
be obtained.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 17 
 

 

  
(a) (b) 

Figure 6. Lamb wave displacement distribution curve in FGM sandwich plate. (a) A0 mode; (b) S0 
mode. 

  
(a) (b) 

Figure 7. Lamb wave stress distribution curve in FGM sandwich plate. (a) A0 mode; (b) S0 mode. 

It can be observed from Figure 6 that, with the gradual change in the material com-
position in the FGM sandwich plate along the thickness direction, the LOPSE method can 
ensure that the displacement variation in the plate is continuous. Additionally, due to the 
gradual change in the material composition, its displacement distribution no longer has a 
strict “symmetric” or “asymmetric” distribution, with respect to the center position of the 
plate. The advantage of the LOPSE method is that the sandwich plate can be calculated 
globally without delamination, thus solving the problem of stress discontinuity at the 
boundary. In the calculation, the stress distribution of the Lamb wave can be obtained by 
simply substituting the obtained displacement solution into the constitutive equation and 
the geometric equation. As can be observed from Figure 7, the stress components σ31 and 
σ33 are continuously distributed in the FGM sandwich plate, and the stress components 
at the top and bottom boundaries are zero. 

3. Finite Element Analysis 
3.1. Simulation Model 

Based on ultrasonic microscope technology, an acoustic measurement simulation 
model with an FGM sandwich plate was established, and the corresponding Lamb wave 
dispersion curve was extracted. For the functionally graded material sandwich panel, the 
thickness of the sandwich plate is h1 + h2 + h3, in which h2 is the thickness of the FGM layer, 
and h1 and h3 are the thicknesses of steel and copper, respectively. In order to simulate the 

Figure 6. Lamb wave displacement distribution curve in FGM sandwich plate. (a) A0 mode;
(b) S0 mode.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 17 
 

 

  
(a) (b) 

Figure 6. Lamb wave displacement distribution curve in FGM sandwich plate. (a) A0 mode; (b) S0 
mode. 

  
(a) (b) 

Figure 7. Lamb wave stress distribution curve in FGM sandwich plate. (a) A0 mode; (b) S0 mode. 

It can be observed from Figure 6 that, with the gradual change in the material com-
position in the FGM sandwich plate along the thickness direction, the LOPSE method can 
ensure that the displacement variation in the plate is continuous. Additionally, due to the 
gradual change in the material composition, its displacement distribution no longer has a 
strict “symmetric” or “asymmetric” distribution, with respect to the center position of the 
plate. The advantage of the LOPSE method is that the sandwich plate can be calculated 
globally without delamination, thus solving the problem of stress discontinuity at the 
boundary. In the calculation, the stress distribution of the Lamb wave can be obtained by 
simply substituting the obtained displacement solution into the constitutive equation and 
the geometric equation. As can be observed from Figure 7, the stress components σ31 and 
σ33 are continuously distributed in the FGM sandwich plate, and the stress components 
at the top and bottom boundaries are zero. 

3. Finite Element Analysis 
3.1. Simulation Model 

Based on ultrasonic microscope technology, an acoustic measurement simulation 
model with an FGM sandwich plate was established, and the corresponding Lamb wave 
dispersion curve was extracted. For the functionally graded material sandwich panel, the 
thickness of the sandwich plate is h1 + h2 + h3, in which h2 is the thickness of the FGM layer, 
and h1 and h3 are the thicknesses of steel and copper, respectively. In order to simulate the 
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It can be observed from Figure 6 that, with the gradual change in the material com-
position in the FGM sandwich plate along the thickness direction, the LOPSE method can
ensure that the displacement variation in the plate is continuous. Additionally, due to the
gradual change in the material composition, its displacement distribution no longer has a
strict “symmetric” or “asymmetric” distribution, with respect to the center position of the
plate. The advantage of the LOPSE method is that the sandwich plate can be calculated
globally without delamination, thus solving the problem of stress discontinuity at the
boundary. In the calculation, the stress distribution of the Lamb wave can be obtained by
simply substituting the obtained displacement solution into the constitutive equation and
the geometric equation. As can be observed from Figure 7, the stress components σ31 and
σ33 are continuously distributed in the FGM sandwich plate, and the stress components at
the top and bottom boundaries are zero.

3. Finite Element Analysis
3.1. Simulation Model

Based on ultrasonic microscope technology, an acoustic measurement simulation
model with an FGM sandwich plate was established, and the corresponding Lamb wave
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dispersion curve was extracted. For the functionally graded material sandwich panel,
the thickness of the sandwich plate is h1 + h2 + h3, in which h2 is the thickness of the
FGM layer, and h1 and h3 are the thicknesses of steel and copper, respectively. In order
to simulate the structural characteristics of nonhomogeneous materials (FGM layer), the
corresponding material properties should vary between homogeneous steel and copper.
Meanwhile, it is assumed that the material properties of each element layer are constant,
and the material properties mesh uniformly along the thickness direction [22,23]. A number
of subdivisions can approximate the continuous property variation; the corresponding
propagation characteristics of acoustic waves are close to the graded type at this time [24].
On the other hand, when using the commercial finite element package PZFlex to simulate
the distribution of sound field in materials, it is very important to assign mechanical
property parameters to the corresponding layer of the FGM sandwich plate. In this problem,
the uniform element with a thickness of 0.02 mm can solve the numerical simulation of
sound field distribution for functionally graded material layers with a thickness of 0.2 mm.

In this section, a two-dimensional finite element model for a line-focusing ultrasound
transducer was built in PZFlex. The dimensional parameters and material properties of
the finite element model of the line-focusing ultrasonic transducer were referred to with
the ultrasonic transducer used in the experiment. In the model, a piezoelectric polymer
of polyvinylidene fluoride (PVDF) film was selected as the excitation/receiving element,
and the polarization direction is directed to the center of the circle. The upper surface of
the film is the positive electrode and the lower surface is the negative electrode. Back10
(tungsten-loaded epoxy, 10% VF, 5.8 Mray1) was used as the backing. Water was selected
as the coupling medium for detection, and a copper–FGM–steel sandwich plate was used
as the specimen.

Table 3 shows the material parameters of the model. The top layer of the specimen is
copper, the middle is layered FGM, and the bottom is steel. The transverse/longitudinal
wave velocity and density of copper and steel are known. The material parameters of the
FGM layered model are obtained from the volume fraction curve (n = 0.2). The parameters
of each layer are shown in Table 3. The thickness, focus radius, and full opening angle of
PVDF film were set to 40 µm, 20 mm, and 80◦, respectively. Then, this finite element model
can be simplified to a two-dimensional model, as shown in Figure 8. The signal excited
by the line-focusing ultrasonic transducer is a transient wide-band signal. Therefore, the
excitation signal in the simulation selects the Sine-Impulse broadband signal with a central
frequency of 7 MHz.

Table 3. The material property parameters of the model.

Material Density ρ (Kg/m3)
Longitudinal Wave
Velocity CL (m/s)

Transverse Wave
Velocity CT (m/s)

Back10 2975 1960 1047

PVDF 1780 — —

Water 1000 1496 —

Cu 8292 4321 2103

FGM layer

8282.9 4357.7 2128.5
8272.8 4398.4 2156.8
8261.5 4444.0 2188.5
8248.5 4496.1 2224.7
8233.3 4557.4 2267.2
8214.7 4632.5 2319.4
8190.2 4731.2 2388.0
8152.6 4882.5 2493.1

Steel 7900 5900 3200
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Figure 8. Finite element simulation model.

The simulation started at the focusing plane. Generally, at around 28 µs, the PVDF
film receives the reflected echo from the bottom surface of the specimen for the first time.
Thus, in this simulation, the propagating times of the acoustic waves were set to 35 µs. The
finite element model is discretized by a rectangular grid, and a unit wavelength is divided
by 20 grid nodes in water. It should be noted that the bottom surface of the model is set as
a free boundary. In order to prevent reflection, the other boundaries of the model are set as
absorbing boundaries.

3.2. Simulation Results

By changing the relative position of the ultrasonic transducer to achieve equal interval
defocusing, a defocusing measurement simulation based on an ultrasonic microscopy
technique was simulated, which is called V(f, z) analysis [25]. The defocus distance was
15 mm and the step was 0.025 mm. The finite element simulation was performed on each
defocus position, and, in total, 600 sets of simulation data were obtained. The Lamb wave
dispersion curve can be extracted by performing 2D Fourier transform of the time and
space domains, as shown in Figure 9.
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Figure 9. Defocusing experiment simulation results. (a) Time domain signal waveform at different de-
focusing positions; (b) frequency domain diagram after time domain Fourier transform; (c) frequency
peak tracing after spatial Fourier transform; (d) Lamb wave dispersion curves.

The Lamb wave dispersion curves from the simulation were superimposed with the
dispersion curves from the LOPSE method, as shown in Figure 10. It can be observed
from the figure that the theoretical results solved by the LOPSE method using the volume
fraction index are consistent with the finite element simulation results using the layered
model. Therefore, this result lays the theoretical foundation for FGM characterization by
acoustic microscopy.
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4. Conclusions

In this research, the problem of Lamb wave propagation in the FGM sandwich plate
without discretizing the gradient structure into a homogeneous multilayered model is
solved numerically.

(1) The LOPSE method is employed for solving the Lamb wave dispersion curves
and their displacement and stress distributions, even when the material parameters vary
continuously along the thickness direction. The convergence of the results by a polyno-
mial method is analyzed, and the convergence solution is also obtained. Moreover, the
convergence solution is basically consistent with the results calculated using the global
matrix method.

(2) The middle layer of the sandwich plate is FGM, in which the material parameter
changes gradiently along the thickness direction. By solving the Lamb wave dispersion
curve of the sandwich plate under different gradient distributions, it is obvious that the
volume fraction of the top layer material in the FGM layer decreases and the volume
fraction of the underneath layer material increases when the power exponent increases,
then the dispersion relation of the Lamb wave gradually approaches a double-layer plate.
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(3) The finite element model of the FGM sandwich plate is established by slicing the
FGM into layers, and the defocus measurement simulation by a line-focusing ultrasonic
transducer was carried out based on an acoustic microscopy technique. The extracted
Lamb wave dispersion curves are basically consistent with the theoretical calculation
results, which further verifies the LOPSE method. Then, this research provides an approach
for the FGM characterization method based on acoustic microscopy.

Author Contributions: Conceptualization, Y.L.; methodology, J.G.; software, J.Z.; validation, G.S.;
data curation, J.Z.; writing—original draft preparation, J.G.; writing—review and editing, C.H.; visu-
alization, Y.L. and C.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Nos. 12072004,
11872082); Beijing Municipal Education Commission and Beijing Natural Science Foundation
(No. KZ202110005005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the support from National Natural Science Foundation of
China and Beijing Municipal Education Commission and Beijing Natural Science Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In the integration process, the common factor term is extracted for the convenience of
calculation, as follows:

The common factor of the first layer:

u1(j, m, l) =
∫ h1

0 Q∗j (x3) · ∂l Qm(x3)
∂x3

l · [H(x3 − 0)− H(x3 − h1)]dx3

K1(j, m, l) =
∫ ∞
−∞ Q∗j (x3) · ∂l Qm(x3)

∂x3
l · [δ(x3 − 0)− δ(x3 − h1)]dx3

(A1)

The common factor of the second layer:

u2(j, m, l) =
∫ h1+h2

h1
Q∗j (x3) · ∂l Qm(x3)

∂x3
l · [H(x3 − h1)− H(x3 − h1 − h2)]dx3

K2(j, m, l) =
∫ ∞
−∞ Q∗j (x3) · ∂l Qm(x3)

∂x3
l · [δ(x3 − h1)− δ(x3 − h1 − h2)]dx3

(A2)

The common factor of the third layer:

u3(j, m, l) =
∫ h1+h2+h3

h1+h2
Q∗j (x3) · ∂l Qm(x3)

∂x3
l · [H(x3 − h1 − h2)− H(x3 − h1 − h2 − h3)]dx3

K3(j, m, l) =
∫ ∞
−∞ Q∗j (x3) · ∂l Qm(x3)

∂x3
l · [δ(x3 − h1 − h2)− δ(x3 − h1 − h2 − h3)]dx3

(A3)

Then the matrix items Aj,m
ij and Mj

m can be obtained by the following:

Aj,m
11 = i2k2 ·

[
C1

11 · u1(j, m, 0) + C2
11(x3) · u2(j, m, 0) + C3

11 · u3(j, m, 0)
]

+C2
55
′(x3) · u2(j, m, 1) + C1

55 · u1(j, m, 2) + C2
55(x3) · u2(j, m, 2)

+C3
55 · u3(j, m, 2) + C1

55 · K1(j, m, 1) + C2
55(x3) · K2(j, m, 1) + C3

55 · K3(j, m, 1)
(A4)

Aj,m
12 = ik ·


C1

13 · u1(j, m, 1) + C2
13(x3) · u2(j, m, 1) + C3

13 · u3(j, m, 1)
+C2

55
′(x3) · u2(j, m, 0) + C1

55 · u1(j, m, 1) + C2
55(x3) · u2(j, m, 1)

+C3
55 · u3(j, m, 1) + C1

55 · K1(j, m, 0) + C2
55(x3) · K2(j, m, 0)

+C3
55 · K3(j, m, 0)

 (A5)
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Aj,m
21 = ik ·


C1

55 · u1(j, m, 1) + C2
55(x3) · u2(j, m, 1) + C3

55 · u3(j, m, 1)
+C2

13
′(x3) · u2(j, m, 0) + C1

13 · u1(j, m, 1) + C2
13(x3) · u2(j, m, 1)

+C3
13 · u3(j, m, 1) + C1

13 · K1(j, m, 0) + C2
13(x3) · K2(j, m, 0)

+C3
13 · K3(j, m, 0)

 (A6)

Aj,m
22 = i2k2 ·

[
C1

55 · u1(j, m, 0) + C2
55(x3) · u2(j, m, 0) + C3

55 · u3(j, m, 0)
]

+C2
33
′(x3) · u2(j, m, 1) + C1

33 · u1(j, m, 2) + C2
33(x3) · u2(j, m, 2)

+C3
33 · u3(j, m, 2) + C1

33 · K1(j, m, 1) + C2
33(x3) · K2(j, m, 1) + C3

33 · K3(j, m, 1)
(A7)

Mj,m
11 = ρ1 · u1(j, m, 0) + ρ2 · u2(j, m, 0) + ρ3 · u3(j, m, 0) (A8)

Mj,m
22 = ρ1 · u1(j, m, 0) + ρ2 · u2(j, m, 0) + ρ3 · u3(j, m, 0) (A9)
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