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The T cell repertoire potentially presents complexity compatible, or greater than, that

of the human brain. T cell based immune response is involved with practically every

part of human physiology, and high-throughput biology needed to follow the T-cell

repertoire has made great leaps with the advent of massive parallel sequencing (1).

Nevertheless, tools to handle and observe the dynamics of this complexity have only

recently started to emerge [e.g., (2–4)] in parallel with sequencing technologies. Here,

we present a network-based view of the dynamics of the T cell repertoire, during the

course of mammary tumors development in a mouse model. The transition from the

T cell receptor as a feature, to network-based clustering, followed by network-based

temporal analyses, provides novel insights to the workings of the system and provides

novel tools to observe cancer progression via the perspective of the immune system.

The crux of the approach here is at the network-motivated clustering. The purpose of

the clustering step is not merely data reduction and exposing structures, but rather to

detect hubs, or attractors, within the T cell receptor repertoire that might shed light on the

behavior of the immune system as a dynamic network. The Clone-Attractor is in fact

an extension of the clone concept, i.e., instead of looking at particular clones we observe

the extended clonal network by assigning clusters to graph nodes and edges to adjacent

clusters (editing distance metric). Viewing the system as dynamical brings to the fore the

notion of an attractors landscape, hence the possibility to chart this space and map the

sample state at a given time to a vector in this large space. Based on this representation

we applied two different methods to demonstrate its effectiveness in identifying changes

in the repertoire that correlate with changes in the phenotype: (1) network analysis of the

TCR repertoire in which two measures were calculated and demonstrated the ability to

differentiate control from transgenic samples, and, (2) machine learning classifier capable

of both stratifying control and trangenic samples, as well as to stratify pre-cancer and

cancer samples.

Keywords: T cells, T cell repertoire, network analysis, graph theory, machine learning, breast cancer, repertoire
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1. INTRODUCTION

The way by which the immune system deals with complexity of
signals, is by building a complex regulation system through its
arsenal of tools. This regulation system relies on the ability of
T cells and of B cells to present and to communicate through
a set of highly variable receptors. In T cells, these receptor are
called T cell receptors (TCRs), and their sequence complexity
is achieved through a delicate recombination mechanism (5) of
T cell DNA. As the sequences determining these recombined
regions are unique to each T cell clone (mean length around
13-aa), and since they are relatively short, the recent progress in
genome sequencing has made it possible to sequence millions of
T cells in parallel, for their TCR type, thereby determining the
collection of TCRs from those T cell. This collection has been
termed the T Cell Repertoire.

The interaction between T cells and tumor cells during
tumor progression is the subject of extensive study. Further,
Immunotherapy, which over the past few years have been
heralded as a great hope in the fight against cancer, relies on
the ability to revert tumor progression, by encouraging some
T cells to revert from a previous state of tolerance. In some
cases, the immune system is able to eliminate tumors before
they become uncontrollable. The role of presentation of tumor
specific antigens, Neoantigens, is rapidly taking center stage in
such immunotherapy research and treatment, with recent major
progress in the clinic (6) pushing the field forward. The mirror
image of these neoantigens lies in the immunological repertoire.
An ability to respond to antigens is an ability coded into the T cell
repertoire. The ability to account for the dynamics of the T cell
repertoire is therefore critical to our understanding of immune
response to tumor cells.

High-throughput biology, needed to follow the T-cell
repertoire, has made great leaps with the advent of massive
parallel sequencing (1). Nevertheless, tools to handle and observe
the dynamics of this complexity have only recently started to
emerge [e.g., (2–4, 7, 8)] in parallel with sequencing technologies.
Collectively, the sequencing step provides the CDR3 (and
possibly flanking regions, with some longer-read technologies)
for each of the collected cells. The outcome table, often describing
millions of cells, indicates involved clones and is referred to as the
Repertoire.

The computational study of T-cell repertoires is challenging
due to the complexity of the high-dimensional receptors
sequences landscape, as well as its time dependency. Several
methods for the computational and statistical analysis of
large-scale rep-seq data have been developed to resolve its
complexity, and less so its dynamics, and to gain insight
into the mechanisms controlling the immune system behavior
under various conditions. We mention here, and use later,
two major approaches: (1) Network-based analysis, in which
clones are associated with vertices of the graph, and edges
represent some distance measure between pairs of clones, and (2)
Machine learning techniques to relate physiological conditions
to a state vector composed of the magnitude of particular
clones. In Bashford-Rogers et al. (9) BCR sequences were
organized into networks which demonstrated that differences

in network connectivity may distinguish between repertoires
of healthy individuals from those with Chronic Lymphocytic
Leukemia, and possibly other clonal blood disorders. They used
measures defined by the Gini Index and cluster sizes. Madi
et al. (10) applied network analysis of TCR sequencing data
to show that substantial numbers of public CDR3-TCRβ are
identical in mice and humans. They further used annotated TCR
sequences associated with self-specificities such as autoimmunity
and cancer, to demonstrate a link to network clusters.

Greif et al. (11) applied machine learning to develop an SVM-
classifier for separating private from public TCR sequences. Their
machine is reported to achieve 80% prediction accuracy of public
and private status in humans and mice, and was sufficiently
robust for public clone prediction across individuals and studies
using different library preparation and sequencing protocols. In
Ostmeyer et al. (12) the authors developed a statistical classifier
to diagnose individuals with multiple sclerosis. Their method
includes feature selection step based on snippets derived from the
BCR sequences that are converted into a set of chemical features
using Atchley factors. Those features are combined using logistic
regression function whose weights are trained. The outcome
is further transformed to a single score (probability) used for
diagnosis.

In Miho et al. (13) a computational method is proposed to
overcome the hurdle posed by the amount of unique sequences
[O(105) and higher]. The resulting sparse distance matrix is then
used to assess global and local properties of the network over
individuals, and at the local (clonal) level. Of interest to our study
is the redundancy found in the repertoire space of sequences.

In the following we propose to view the immune repertoire
dynamics as a nonlinear dynamical system [see e.g., (14)]
whose attractor landscape is characterized by the clusters of
similar sequences, hence denoted as Clone-Attractor (CA). This
representation assumes an inherent robustness, or redundancy,
in the repertoire. By this we mean that a cluster of highly similar
sequences may be viewed as an attractor, where larger clusters
have larger basin of attraction. Sequences belonging to the same
cluster-attractor may be relevant to a specific antigen. This
representation is used to demonstrate the differences between
experiment and transgenic mice via two approaches: (1) network
analysis of the TCR repertoire and, (2) machine learning study
aim at developing a classification tool to separate experiment
from transgenic, as well as the status of a sample as pre-cancer
vs. cancer.

2. METHODS

Temporal TCR repertoire analysis poses a unique problem, as
the number of different sequences is very large and (unlike, e.g.,
gene expression data) changes over time, whereas the amount
of samples available in each experiment is relatively small.
Since data is collected over several time points, sequences are
observed in part of the samples, part of the time, rendering
the association of particular clones to complex physiological
conditions uniquely challenging. This assertion is even stronger
assuming the condition is dominated by multiple clones with
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possible interactions between their members. We used a cluster-
based representation of the repertoire to tackle these difficulties.
This representation further makes the analyses more robust. This
robustness is gained by treating each cluster as “Clone-Attractor”
(CA) whose amplitude is the sum of its members amplitude at
each time point.

In the following we describe the clustering algorithm used,
followed by a description of two analysis approaches: (1) Graph
theoretic measures of the various networks, and (2) Machine
learning methods applied to the space of CAs in order to expose
a subspace sufficient for classification of control vs. transgenic
samples, as well as to stratify pre-cancer and cancer samples.

2.1. Experimental Setup, Data Collection
and Preprocessing
Full details of the data collection and preprocessing are given in
Gordin et al. (15). TCR sequencing data, from FASTQ files, has
been analyzed using MiXCR (16) to produce CDR3 abundance
levels per sample. Table summarizing the number and groups of
samples and time points and the number of sequences obtained
per sample and time point is given in the Supplementary

Material. These repertoires were the basis for the network
analyses described in the next sub sections. The setup is depicted
in Figure 1.

.

2.1.1. Transgenic Mice
Transgenic Mice expressing the inactivated rat neu (Erbb2)
oncogene under the transcriptional control of the mouse
mammary tumor virus promoter were purchased from Jackson
Laboratories [FVB/N-Tg(MMTVneu) 202 Mul/J]. The female
mice of this strain represent a mouse model of mammary tumor
in humans, model of HER2/ Erbb2 / Neu human breast cancer
(17). FVB/NJ strain with the same genetic background as the
transgenic mice, serve as a non-transgenic control mouse that
does not develop tumors. Mice were housed in accordance with
all applicable laws and regulations following approval by the
responsible animal care and ethical committee, under specific
pathogen-free conditions. Mice were monitored by palpitation
for tumor development monthly for up to 9 months.

2.1.2. Antibody Staining and Cell Sorting
Blood was sampled from the retro-orbital sinus of 15 mice once
per month for 8 time points (total of 120 samples). Mononuclear
cells from the peripheral blood was isolated by density gradient
centrifugation using Ficoll (Ficoll PaqueTM plus, GE Health
Care), Single cell suspensions were prepared from thymus and
spleen that were removed from each mouse at the end of
the experiment. For cell sorting, cells were stained with the
following fluorescently labeled monoclonal antibodies: anti-CD4
Pacific Blue (BD), anti-CD25 PE (eBioscience), anti-CD44 APC
(BD) and anti-CD62L PE-Cy7 (eBioscience) and viability using
the Fixable Viability stain 450 (BD Horizon). Cell sorting was
performed using FACS ARIA III sorter. CD4+ D44loCD62Lhi
were sorted as naive T cells. After sorting, cells were pelleted and
resuspended with 300µl of RNA protect cell reagent (Qiagen).
Cells were stored at minus 80oC until RNA extraction. RNA was

purified from RNAprotect-stabilized cells using the RNeasy Plus
Mini Kit. After RNA extraction, samples were run on TapeStation
to estimate quality.

2.1.3. High-Throughput Sequencing of the T Cell

Repertoire
The method for high-throughput sequencing of the T cell
repertoire was performed as previously described in Di Niro
et al. (18) and Tsioris et al. (19). Briefly, RNA was reverse-
transcribed into cDNA using a biotinylated oligo dT primer.
An adaptor sequence was added to the 3’ end of all cDNA,
which contains the Illumina P7 universal priming site and a
17-nucleotide unique molecular identifier (UMI). Products were
purified using streptavidin-coated magnetic beads followed by
a primary PCR reaction using a pool of primers targeting
the TCRα and TCRβ regions, as well as a sample-indexed
Illumina P7C7 primer. The TCR-specific primers contained tails
corresponding to the Illumina P5 sequence. PCR products were
then purified using AMPure XP beads. A secondary PCR was
performed to add the Illumina C5 clustering sequence to the
end of the molecule containing the constant region. The number
of secondary PCR cycles was tailored to each sample to avoid
entering plateau phase, as judged by a prior quantitative PCR
analysis. Final products were purified, quantified with Agilent
Tapestation and pooled in equimolar proportions, followed by
high-throughput paired-end sequencing on the Illumina MiSeq
platform. For sequencing, the Illumina 600 cycle kit was used
with themodifications that 325 cycles was used for read 1, 6 cycles
for the index reads, 300 cycles for read 2 and a 20% PhiX spike-in
to increase sequence diversity.

2.2. Clustering Algorithm
The clustering method we used, roughly follows the UClust (20)
algorithm with some modifications. Its purpose is twofold: (1)
data reduction, i.e., mapping the very large space of unique
sequences to the space of representative clusters, 2–3 orders of
magnitudes smaller, and (2) reducing the inherent fluctuations
in the data, assuming very similar TCR-sequences are associated.
In addition, we naturally minimize the occurrence of missing
values, a phenomenon in which many algorithms struggle [e.g.,
see (21, 22)], since the activity of each cluster (CA) is now
based on several sequences. The graph nodes (or features) are
considerably less sensitive to the noise in measuring the single
sequences.

The algorithm begins by sorting the sequences according to
their length and starting from the smallest. It then iteratively
checks for existing cluster to associate the next sequence whose
editing distance from the cluster’s representative is smaller than
a given threshold. The association step is greedy, namely, to the
first cluster that meets the constraint. The editing distance used
was ’Levenshtein’ with parameters [deletion = 1.1, insertion =
1.1, substitution = 1.9]. The association threshold was set
to λ = 3. This choice of parameters ensures at most 2
deletions/insertions, or 1 substitution plus 1 insertion/deletion
with respect to the ’cluster-representative’ sequence.

Following is the pseudo-code describing the algorithm. Let
us denote the current set of already found clusters by C =
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FIGURE 1 | Experimental procedure 120 blood samples were drawn from the retro-orbital sinus of 10 FVB/N-Tg (MMTVneu), a mouse model of HER2 human breast

cancer mice, and from 5 FVB/NJ control mice. Over these 8 time points, none of the control mice (blue) developed any tumors. Progress of tumor in the ten

transgenic mice is demonstrated using the red colored samples in the figure. The last time point before tumors are shown was defined as pre-cancer and marked light

red. From each time point, the peripheral blood mononuclear cells were isolated and stained for flow cytometry. Cells were analyzed and gated for sorting using a

FACS ARIA III sorter, and CD4+CD62L+CD44- naive population was separated for RNA extraction and T cell receptor library preparation.

c1, c2, · · · , ck, where each cluster’s representative is denoted by
Cr = cr1, cr2, · · · , crk. Each cj is the set of all sequences associated
with the j’th cluster.

1. Read one sequence, denoted as x̂
2. Calculate similarity measure S(x̂, crj) ∀j, i.e., Levenshtein

distance, between the sequence and the j’th cluster
representative

3. Find the nearest cluster ci to x̂

(a) Associate x̂ to the most similar cluster ci if S(x̂, cri) ≤
λ . Update cluster representative by searching for a new
member of the cluster that minimizes the distance from all
other members

(b) If no cluster found, i.e., S(x̂, cri) > λ ∀i, create a new cluster
ck+1 with representative crk+1 = x̂ and add it to the set C

4. Repeat the above steps until exhausting all sequences

The algorithm goes over all sequences once, and the number
of clusters found depends on the threshold λ defining the
“radius” of the CAs, i.e., the ensemble of highly similar sequences.
As mentioned, to reduce the complexity of the algorithm, we
adopted a greedy strategy in which the current sequence is
associated to the first cluster that is found close enough (winner
takes all).

2.3. Graph Theoretic Analysis
Our temporal data give rise to multiple graphs, each represents
a sample at a given time-point. Graphs were generated based on
the CAs as nodes, and the distance between the representative
sequences of each pair of CA as edges. Nodes with <10 members
(‖CAi‖ < 10) were eliminated. Edges of distance >8 were
eliminated as well. Finally, we kept only CAs that appeared in
more than 60% of the time points. So, starting from ∼ 360 k
sequences, we obtained ∼ 57 k CAs, from which ∼ 550 CAs
remained after applying the above filtering process. Nevertheless,
those remaining CAs account for ∼ 100 k of all sequences.
The above parameters were chosen empirically, taking into
consideration both robustness and complexity issues. That is,
we opt for taking considerable amount of CA’s, however, those
CA’s should be statistically significant (hence the cutoff at 10
members). In addition, we require them to cover enough time
points to ensure they represent a phenomenon and not a sample.
The exact parameters’ value is less important, and one can vary
them to filter more or less CAs. The results shown below are
not sensitive to these parameters. We tested various sets of
parameters that resulted in an amount of CA’s that roughly varies
in the range 400− 1, 000.

To compare the various graphs, we build the following
quantities to reflect measures of the graphs (other than visual
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inspection), which are required for an unbiased comparison of
non-trivial and large networks. Many such measures have been
developed within the field of graph theoretical analysis [see (23)].
We demonstrate the differences between the control/transgenic
groups using two measures, namely, the Betweenness Centrality
(BWC) which is a node level measure, and the Molecular
Topological Index (MTI) which is a graph level measure.

The molecular topological index originated from the study of
graph representation in (mathematical) chemistry (24), and some
of its properties can be found in Gutman (25). TheMTI is defined
by

MTI =

n∑

i=1

n∑

j=1

di(Aij + Dij) (1)

where n is the number of vertices of the graph, di is the degree
vector of the vertices, Aij are the entries of the adjacency matrix
A (Aij is 1 if vertices i and j are adjacent and 0 otherwise), and
D the graph distance matrix, i.e., the number of edges on the
shortest path. One of its properties, relevant to our case, is the
inverse relation between its value and the graph “branchness.”

The betweenness centrality (one of several centrality
measures) is defined as follows:

BWC(i) =
∑

i6=j 6=k

gjk(i)

gjk
(2)

where gjk is the total number of shortest paths from node j to
node k and gjk(i) is the subset of paths that pass through i. The
BWC is ameasure of accessibility, i.e., the number of times a node
is crossed by shortest paths in the graph between pairs of nodes
j− k.

Since the BWC is a node level measure, we basically evaluate
its quantity for every graph node. Although we begin the process
of building the graph for each sample from the same set of
CA’s, the effective size of each graph (based on the activity of
the nodes/CA’s at that time-point) is different. To facilitate the
comparison between the graphs, we evaluate a single global

variable from each vector of EBWC values, being the sum of all
components above some threshold taken as the median of all
BWC vectors (th50). This global variable is in fact the temporal-
graph-mean-BWC (since the original number of nodes is the
same). It’s biological meaning is then: “the average amount of
influential CA’s.”

sBWC =
∑

i

BWCi, ∀BWCi > th50, i = 1..n (3)

We note that the results presented below are not sensitive to the
threshold chosen, i.e., other statistical values will work as well.

2.4. Machine Learning Methods
While using graph theoretic measures can shed light on
global level differences between networks (in our case, of
different genetic and/or physiologic origin), the purpose of
applying machine learning methods is to identify particular
representations that will provide efficient classification results,

but, just as important, an efficient geometrical representation.
Since the number of data points in our experiments, i.e., samples
at different time points, is small in terms of statistical machine
learning, especially with respect to the original dimensionality of
the data, it is imperative from the generalization point of view to
obtain a robust, low-dimensional solution.

2.4.1. Feature Selection
The first step involves feature selection. In our case, the features
are the magnitudes of each Clone-Attractor, taken per sample
per time point. Since the number of CAs is relatively high, while
the number of data points is very small, we first reduced the
set of CAs to the subset that is active across samples (> 95%
of samples). “Active” in this context means that at least one
sequence in the CA is expressed in a sample/time-point. This
process resulted in <100 CAs.

To search this, still very high, feature space we adopted a
sequential bottom-up (forward) scheme. The two classes for this
step where Control/Transgene for which there were 24/49 data
points respectively. The classifier used was SVM with “Gaussian”
kernel (26, 27). Instead of starting from choosing among all
single features, we trained 2D classifiers on all pairs of CA
features. Based on the leave-one-out cross validation (LOOCV)
(28), the top-50 pairs were chosen to continue. This process
has been repeated for the subsequent iterations until the overall
performance converged. At the end of this stage we obtained the
best k = 50 sets of features for each dimension.

2.4.2. Robust Model Evaluation
One of themajor problems in assessing performance of a learning
machine based on a very small data set is the robustness of the
solution, or the generalization error. Since its impractical to apply
the standard statistical learning methodology, i.e., to subdivide
the data set into training/validation/test sets, due to its size, we
combined the following techniques:

1. Using LOOCV, as described above for the feature selection
phase

2. Naive form of ensemble averaging (29) - committee of
classifiers trained on different feature subspace

3. Model testing via noisy versions of the original data

Using ensemble averaging of m = 10 machines reduced the
variance of the combined (meta) classifier, as expected. In order
to obtain a more robust evaluation of the model, we generated
noisy data sets, each with a higher noise amplitude. Each noisy
set has been generated as follows. Let us denote the original set

by EX, then the k’th noisy set EnX
k
is obtained by multiplying the

data by random normally distributed variable with variance σ 2
k
,

i.e.,

nXk
i = Xi(1+ Vk

i ) i = 1..n, V ∼ N (0, σ 2
k ) (4)

We used noise amplitudes varying in the range [0, . . . , 0.25].
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3. RESULTS

3.1. Cluster Analysis Results
The fundamental step in our analysis is clustering the T-Cell
repertoire sequences and generating “Clone-Attractors” (CAs).
Due to the smaller amount of TCRα sequences, and the higher
occurrence of time points absent of TCRα sequences, we show
results of TCRβ only.

The original data set obtained comprised of ≈ 360k TCRβ

sequences. Following the clustering procedure, the number of
clusters found was ≈ 57k. Figure 2 depicts the network of the
CAs obtained from all the sequences. The size of each red circle
is proportional to the size of the CA (number of sequences
associated) and the blue lines correspond to the graph edges (line
width is inversely proportional to the distance between each pair
of CAs). The figure has been generated using “Gephi” (30).

A quick examination of Figure 2 reveals a small number
of highly connected CAs (hubs) and numerous more isolated
ones. This qualitative observation is verified in Figure 3, where
the distribution of cluster sizes is shown to follow a power-law
scaling (31),

P(K) ∝ (K)−α , K = ‖CA‖

This result holds for all samples/time-points, with different pre-
factors and slightly different power values, where α ≈ 3. This
is a strong indication that the network belongs to the class of
scale-free networks.

FIGURE 2 | Clone-Attractors network. Red dots represent nodes (CAs) of the

graph (size proportional to the number of sequences in the CA), and blue lines

are the edges (line width is inversely proportional to the distance.

Before we provide results of the graph theoretic analysis, it
is useful to see the panel (Figure 4) of example Control vs.
Transgenic networks at two time points along the experiment,
early/late (denoted T1/T2 respectively). It is evident from the
figure that while the network of the Control mice becomes
more sparse, the network of the Transgenic mice remains
densely connected. In the next subsection we elaborate on the
quantitative results regarding this behavior.

3.2. Graph Theoretic Results
Using the clustering algorithm for all repertoire sequences,
resulted in an array of CAs as described in 2.2. Since the TCR
repertoire was generated for each sample, control and transgenic,
at several time points, we generated multiple graphs from the
active CAs from each pair (time↔ sample). As mentioned above,
we filtered the CAs such that the remaining subset contained
only those clusters that were found active in most samples/time-
points. As mentioned in section 2.3, the filtering process resulted
in ∼ 550 CAs upon which the results below were obtained, i.e.,
these CAs were the graph’s nodes.

The measures described in 2.3, Betweenness Centrality
and Molecular Topological Index, were calculated for each
sample/time-point. In the next two figures we present the median
value of all time points per sample. In both figures themedian and
std are presented for each sample, where the std is calculated over
time points.

Figure 5 shows the variable sBWC (Equation 3) averaged
over time per each sample. The separation between the two
groups is apparent, where 80% success rate was achieved in
distinguishing control (4 out of 5) from transgenic sample (8
out of 10). The same result is obtained using the MTI in
Figure 6.

It is worth noting that the lower levels of the MTI measure
in the control group may be attributed to the graph ’branchness’
observed at later times (see Figure 4). Similarly, the lower levels

FIGURE 3 | Cluster size distribution in log-log scale, showing a power-law

relation. The analysis was done for all the active CAs combined from the

Control/Transgenic samples, respectively.
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FIGURE 4 | Graph dynamics of Control (up) and Transgenic samples (down), depicted at 2 time points, T1 < T2. The Transgenic graph remains dense, whereas the

Control becomes branched and diluted at later time.

FIGURE 5 | Samples graph Betweenness-Centrality. The sum of BWC of each

sample (indices [1–5] - Control, [6–15] - Transgenic) is shown along with the

1σ errorbar.

of the sBWC are associated with the decreasing number and
amplitude of significant nodes (or hubs), again at later times, in
the control group.

FIGURE 6 | Samples graph Molecular-Topological-Index. Similar to Figure 5,

but for the MTI measure.

3.3. Machine Learning Based Classification
As mentioned earlier, the overall data available for analysis (from
the 5-control and 10-transgenic mice) consisted of 73 time
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FIGURE 7 | Machine learning results of the first classification stage: separating Control from Transgenic classes. Left panel: AUC of models trained on different

dimensional features space (see legend) at various noise levels (Equation 4). The 5-dimensional model is preferred. Middle panel: ROC of the same models as the left

panel, where each point is the average over the noise levels. This curve allows us to prefer the model D = 5 assuming our operating point is FPR = 0.1. Right panel:

Zoom in the best model, showing the performance degradation for various levels of noise added to the data.

points, of which 24 from control and 49 from transgenic. Prior
to the feature selection process described in 2.4, the data is about
hundred dimensional, originated from the CAs.

We applied the machine learning pipeline described in section
2.4 in two stages. First, we applied to classify the Control and
Transgen groups. Assuming the first stage is successful, we
then used the same pipeline to generate another classification
machine to classify the pre-cancer and cancer sub populations
within those classified as Transgenic. Indeed, it turns out that
the subset of features found in the second stage are mostly
different than those found in the first stage. This hierarchical
scheme allowed us to separate the two problems and control the
learning process, in particular in view of the small size data set at
hand.

Figure 7 summarizes the results of the first stage. The left side
panel shows the Area-Under-Curve (AUC) of several classifier
models trained as described above. Each classifier model (an
ensemble of 10 machines of the same input dimension) operates
on a different dimensional space, shown are Dim = 3, . . . , 8.
The models were tested with various levels of noise amplitudes,
ranging noise = 0, . . . , 0.25. The best model, according to
the AUC is obtained for D = 5. The middle panel shows
the Receiver-Operating-Characteristic curve (ROC), i.e., the true
positive rate (TPR) vs. the false positive rate (FPR) calculated
at various threshold values of the classifier’s output. The values
of each point are the average over the noise level tested. The

models D = 5, 6 perform the best, hence we shall take the lower
dimensional model. Finally, the graph on the right shows the
ROC for the chosen model (D = 5) for various noise levels.
The robustness of the model is evident by the gradual decrease in
performance as a function of the noise. One can set the operating
point of the classifier at FPR = 0.1 to obtain TPR ≈ 0.9. The TPR
value is taken at the worst noise level.

Note that the FPR refers to the expected error in the Control
group, whereas the TPR refers to the Transgenic group. More
specifically, at this operating point, there is a 0.1 probability of
misclassifying a Control sample as a Transgenic, and about 0.9 of
correctly classifying a Transgenic sample.

The results depicted in Figure 8 refer to the second
classification stage, i.e., of separating the classes pre-
cancer/cancer of the Transgenic group. The details of the
three panels in the figure are identical to Figure 7. However,
the main conclusion here are that the performance of the best
ensemble are reduced with-respect-to the first classification
stage. One may expect at FPR ≈ 0.2 to obtain TPR ≈ 0.8.

As noted, the set of features (CAs) found for the two
classification stages are different, indicating that there might
be two biological processes involved. Referring to Table S1 in
the Supplementary Material, the list of sequences denoted as:
[1, 2, 10, 13, 17, 23, 26, 44, 48, 60, 68, 71] was found best for stage-
1, and the list: [3, 5, 11, 16, 32, 33, 35, 38, 42, 63, 64, 77, 82] was
found best for stage-2.
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FIGURE 8 | Machine learning results of the second classification stage: separating precancer from cancer classes of the Transgenic group. The structure of the figure

are as Figure 7. The main difference between the two stages is the reduced performance observed here. In particular, the best model achieves a TPR ≈ 0.8 at an

operating point where FPR ≈ 0.2 .

3.4. Correlation With Public TCR DataBase
The growing number of availble rep-seq datasets, over multiple
phenotypes, enabled the production of curated databases of
T-cell receptor (TCR) sequences with associated antigens.
One such database is the VDJdb (32) (see project web-page
https://vdjdb.cdr3.net), whose primary goal is to facilitate access
to existing information on T-cell receptor antigen specificities,
i.e., the ability to recognize certain epitopes in a certain MHC
contexts.

Out interest in these types of Db’s is 2-fold: analyzing the
extent of public sequences in private repertoire, and correlating
the sequences with our CA representation. The VDJdb currently
contains ≈ 16k β− sequences. Analysis of the distance matrix
between the VDJdb sequences and our CAs reveals the following
interesting results. When taking into account the CAs used for
the graphs analysis (≈ 550, section 2.3), the number of sequences
from the VDJdb whose distance (d) from any of those CAs is
d = 0, 1 amount to 4, 126, respectively. That is, four sequences
were identical to CAs representatives, and another 126 differ by a
single insertion/deletion from CAs. Of interest is the fact that out
of those 126 sequences, 38 are identical to one of the members of
the respective CAs.

As for the CAs chosen for the machine learning (ML) study
(section 2.4), the number of sequences from the VDJdb whose
distance from any of those (ML)CAs is d = 0, 1 amount to 2, 64
respectively. Again, out of those 64 sequences, 30 are identical to
one of the members of the respective (ML)CAs.

Table 1 presents the set of sequences from the VDJdb that
matches CAs found in the ML process described above, i.e., they
are among the CAs comprising the feature space upon which
the classification machines were built. First 4 sequences matches
features found in stage-1 (section 3.3), and the next 4 sequences
corresponds to features found in stage-2.

4. DISCUSSION

We have proposed a new way to look at TCR rep-seq data.
By rebuilding the sequences into a network, and by following
this network over temporal changes in the phenotype, we were
able to identify changes in the repertoire that associate with
changes in the phenotype. Using the proposed methodology,
we demonstrated its utility in two different disciplines,
namely, graph/network theory and statistical machine learning.
Following a clustering process and further pruning, we generated
a network for each sample/time-point. By summing up the
sequences associated with the respective clusters measured
at that time-point per sample, the nodes of each network
represent the “activity” of the Clone-Attractors. We applied
two graph measures on the networks: Betweenness-Centrality
and Molecular-Topological-Index, and demonstrated its ability
to discriminate the two populations, control and transgenic,
with a rate of 0.8. The same Clone-Attractors were used for
developing a two-stage classifier machine, separating control
from transgenic, and further separating pre-cancer from cancer
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TABLE 1 | List of sequences from the VDJdb that matches CAs revealed via the machine learning process.

AA sequence Species AG gene AG species IGoR Prob.

1. “CASSLGGYEQYF” “Mus-Musculus” “PA” “InfluenzaA” 0.29

2. “CASSPLGANTGQLYF” “Mus-Musculus” “PA” “InfluenzaA” 0.14

3. “CASSPGTDTQYF” “HomoSapiens” “NP177” “InfluenzaA” 0.12

4. “CASSPLTDTQYF” “HomoSapiens” “BZLF1” “EBV” 0.1

5. “CASSPQTDTQYF” “HomoSapiens” “p65” “CMV” 0.11

6. “CASSLAGEQYF” “HomoSapiens” “p65” “CMV” 0.2

7. “CASSLNYEQYF” “HomoSapiens” “p65” “CMV” 0.64

8. “CASSLLGGDAETLYF” “Mus-Musculus” “M45” “MCMV” 0.1

Sequences 1–4 coincide features of stage-1 (see section 3.3), and sequences 5–8 coincide features found in stage-2. The last column is the IGoR probability (33).

samples in the transgenic sub-population. This machine achieves
an estimated true positive rate of 0.9 at a false positive
rate of 0.1. A word of caution is in order here regarding
the machine learning results at this time. As the amount
of data available for the study was limited, it is reasonable
to assume a certain level of over fitting, although this
concern has been addressed by applying a robust estimation.
Additional experimental data is required to further test our
method.

This new way provides, in essence, a biologically-inspired
means to perform dimensionality reduction on repertoire data.
The Clone-Attractors are built using their biology, namely,
their sequence similarities. When we collapse sequences onto
the network representation, we use this biology to raise an
alternative view of the system, in a different set of dimensions.
However, this dimensionality reduction, as useful as it might
be for data compression and representation, would not be
interesting without exposing utility. Indeed, such utility is readily
presented, by 1. stratifying different network behaviors in the two
phenotypes we have studies: mice that develop tumor vs. mice
that do not, and by 2. using the behavior of the Clone-Attractors
to classify different samples according to their origin, as well as
physiological state.

Further, we find that the CA themselves are associated with
a number of curated sequences, that appear in context of a
set of related and unrelated pheotypes, curated in the VDJdb
database. This association, which may be interesting in and of
itself, further provides context to the possible cognate peptides
of the T cells. Since many of the TCR sequences identified
in this manner (see Table 1) are associated with human and
mouse viral peptides, the biology behind the association between
these specific peptides and the tumor phenotype remains to be
seen.

It is important to emphasize, however, that part of the public
nature of many of the sequences is, in fact, an artifact of the
measurement itself. The method used here is unable to provide
a match between the alpha and beta sequences. In that case, a
single beta sequence may actually represent a number of distinct
T cell clones, which differ in their alpha sequence. In spite of this
limitation, the conclusion of the computation used here, which
is the success in classification, overcomes this issue and is able to
deliver the reported results. It might be that with the progress in

single-cell sequencing, we would be able to significantly improve
over these classifications.

However, the Clone-Attractor phase space representation
is more than merely a dimensionality reduction tool. We
hypothesize that this space reflects the temporal status of the
immune response to tumor progression as follows. CAs having
small basin of attraction, i.e., that are composed of a small
number of sequences, may be a normal immune response to
antigens, pathogens, etc. This can be viewed as an extension of
the clone notion. When the immune response fails to control
those cells and the tumor evolves, it is possible that the immune
system replicates further T cells with similar TCRs to explore
the adjacent sequence space, resulting in a larger basin of Clone-
Attractor. This CA is also expected to be more active as the tumor
progress. As temporal data become more abundant, it might
be possible to chart certain regions of the CA landscape and
associate both dynamics and specific attractors with particular
pathologies.

The work described here succesfuly stratifies two classes: mice
that would devlop tumors and mice that would not. However,
in the context of machine learning, these are also the only two
classes included in the experimnet. That is, we do not know
if the classification easily carries into the complexity of the
heterogenetiy of human subjects. To be able to carry the method
further, much research is still needed, both in animal models
and in human samples. The actual span of relevant classes is not
binary, but huge, and probably, since T cells are involved in most
aspects of physiology, contains any phenotype in the physiology
of organisms. To be able to achieve such resolutions, a larger set
of data needs to combine over multiple experiments, to feed a
much more informative model.

With continuous research into T Cell Repertoires, especially
with recent progress in the ability to associate TCRs with specific
peptides (34, 35), we expect many future studies to produce
TCR repertoire data. These data may benefit from a network
perspective such as the one proposed here. The example we
provide here raises interesting questions regarding the biology
behind Clone-Attractors in general and specifically in breast
cancer. Our own research continues to follow these specific
clones and their role in tumor progression. Other data sets may
raise to the surface a novel set of clones. Combined, these efforts,
the networks that they use and the attractor-network that they
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would build, may further promote our understanding of this
complex phenomena.
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