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A B S T R A C T

The structured vocabulary that describes gene function, the gene ontology (GO), serves as a powerful
tool in biological research. One application of GO in computational biology calculates semantic similarity
between two concepts to make inferences about the functional similarity of genes. A class of term simi-
larity algorithms explicitly calculates the shared information (SI) between concepts then substitutes this
calculation into traditional term similarity measures such as Resnik, Lin, and Jiang-Conrath. Alternative SI
approaches, when combined with ontology choice and term similarity type, lead to many gene-to-gene sim-
ilarity measures. No thorough investigation has been made into the behavior, complexity, and performance
of semantic methods derived from distinct SI approaches. We apply bootstrapping to compare the gener-
alized performance of 57 gene-to-gene semantic measures across six benchmarks. Considering the number
of measures, we additionally evaluate whether these methods can be leveraged through ensemble machine
learning to improve prediction performance. Results showed that the choice of ontology type most strongly
influenced performance across all evaluations. Combining measures into an ensemble classifier reduces
cross-validation error beyond any individual measure for protein interaction prediction. This improvement
resulted from information gained through the combination of ontology types as ensemble methods within
each GO type offered no improvement. These results demonstrate that multiple SI measures can be lever-
aged for machine learning tasks such as automated gene function prediction by incorporating methods from
across the ontologies. To facilitate future research in this area, we developed the GO Graph Tool Kit (GGTK),
an open source C++ library with Python interface (github.com/paulbible/ggtk).

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Researchers developed the gene ontology (GO) to provide a struc-
tured vocabulary that consistently describes the characteristics of
genes and proteins across different organisms [1,2]. Specific GO
terms in this vocabulary annotate proteins by specifying the bio-
logical processes in which they participate, their enzymatic and
molecular functions, and their location within the cell. As a struc-
tured vocabulary, GO explicitly defines the relationships between
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terms using a directed acyclic graph (DAG). These relationships serve
to clarify terminology, for example by identifying when one term
may be a more specialized from of another. Three separate ontolo-
gies exist that provide a DAG of terms and relationships used to
describe biological processes (BP), molecular functions (MF), and cel-
lular components (CC). These term structures are not fixed. The Gene
Ontology Consortium makes frequent updates to GO modifying the
relationship structure and adding or removing terms to better reflect
the current understanding of biological functions.

The annotation of gene products with GO terms provides a valu-
able resource allowing the comparison of functions both within and
between separate organisms. For each annotation of a term to a pro-
tein, GO provides evidence codes that allow researchers to consider
the methods that produced each annotation. The use of GO plays
an important role in the analysis of high-throughput experiments
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thanks in part to computational methods that utilize the rich domain
knowledge encoded in GO annotations. The rigid, well-defined struc-
ture of GO proves to be an advantage that facilitates its integration
into statistical and computational analyses. Methods of semantic
similarity take advantage of this structure to quantify the similarity
between the meaning of one term and another. Through semantic
measures, the concept level knowledge stored in functional annota-
tions provides the ability to quantify functional similarity between
genes. Researchers have employed semantic methods for predict-
ing protein–protein interactions [3–6], prioritizing host-pathogen
interactions [7], and automated function prediction [8,9]. Increas-
ingly, researchers apply computational methods to infer new GO
annotations. These annotations receive the evidence code inferred
from electronic annotation (IEA), and recent studies show that these
predicted annotations are increasingly reliable [7,10].

Since the seminal works by Lord et al. [11,12], semantic similarity
applications have become established tools in computational biol-
ogy and bioinformatics. Many diverse methods exist for calculating
semantic similarity between terms. The reviews of Refs. [13], [14],
and [15] provide a thorough overview of semantic measures used
in the Gene Ontology and other biomedical ontologies. The review
by Pesquita et al. [13] categorizes semantic similarity at the term
level into edge-based and node-based methods. Edge-based meth-
ods usually quantify semantic similarity using a function of the paths
between two terms in the graph. Node-based methods use properties
derived from the terms and often include operations on the shared
ancestors or descendants of two terms. Lord et al. adapted three
well studied information theoretic semantic measures, Resnik [16],
Lin [17], and Jiang-Conrath [18], using a corpus-based calculation of
term probability and information content (IC). These methods cal-
culate the similarity between two concepts by operating on their
shared and unique information. Lord et al. calculated shared informa-
tion using the IC of the most informative common ancestor (MICA)
between two terms. Information content based semantic methods
have been extensively studied and research suggests that IC offers
a superior conception of a term’s specificity over methods based on
graph depth [14,19].

Couto et al. [20] developed an alternative approach to shared
information. While the MICA shared information considers only a
single ancestor, the alternative approach, called the graph-based
similarity measure (GraSM), considers multiple inheritance of ontol-
ogy terms using a path counting method. GraSM calculates the mean
IC of disjunctive common ancestors between two concepts. Couto et
al. recognized the modularity of using alternative shared informa-
tion methods and substituted GraSM shared information into Resnik,
Lin, and Jiang-Conrath deriving three new term similarity algorithms.
This method was shown to improve the performance of semantic
similarity on accepted evaluation metrics such as correlation with
sequence and domain similarity. The computational cost of path
counting poses a significant challenge to the real-time calculation of
GraSM. Zhang and Lai [21] proposed a faster GraSM alternative called
exclusively inherited shared information that calculates a subset of
the disjunctive common ancestors. The modular separation of shared
information from term similarity leads to some interesting proper-
ties. Any new conception of shared information immediately implies
the construction of three new term similarity measures. The success
of GraSM and alternative conceptions of shared information clari-
fies the need for a thorough exploration of shared information in the
biomedical ontologies.

Extending term similarity to gene similarity requires methods
operating on term sets. For two genes, represented as term sets, the
all-pairs term similarity is calculated then summarized by aggre-
gation methods such as the min [22], max [23], average [11], or
best-match average (BMA) [24]. See Ref. [13] for a detailed description
of aggregation methods. Furthermore, genes are described by anno-
tations from each of the independent ontologies (BP, MF, CC). The

choices for shared information calculation, term similarity algorithm,
aggregation method, and ontology type lead to a combinatorial
increase in the number of gene similarity measures. Considering the
number of measure that can be constructed, we address the follow-
ing questions in this work. Are the methods derived from alternative
shared information calculations truly distinct or do they offer no
statical difference in practical applications? If these methods are not
distinct, it would imply that computationally intensive algorithms,
such as GraSM, can be replaced by more efficient alternatives. Some
gene similarity methods avoid explicit calculation of shared informa-
tion, term similarity, and aggregation. Methods based on the simple
yet powerful Jaccard set similarity, such as SimUI [25], SimGIC [19],
SimDIC [26], and SimUIC [26], have been shown to perform well on a
variety of tasks and are computationally easy to compute. Can meth-
ods derived from modular combination with shared information
outperform these more efficient methods? If the shared information-
based methods are truly distinct, can the large quantity of measures
be leveraged for performance gains through ensemble integration
techniques?

This work presents extensive and novel research on the under-
studied effects of shared information in semantic calculations in the
gene ontology through robust evaluations of their performance on
traditional and real-world tasks. As no method can determine true
semantic similarity between genes [13], various methods for evalua-
tion have been put forward to evaluate the performance of semantic
similarity methods. Commonly used evaluations include correla-
tion with sequence similarity [11,19], correlation with domain set
similarity [13,20,27], correlations with gene expression [4,23,28],
clustering genes into known pathways [3,5,21], and prediction of
protein–protein interactions [3,6,29]. Based on these past works, we
have constructed a new suite of six benchmarks to evaluate seman-
tic similarity that provides evaluations for a broad range of use cases.
These benchmarks are provided as lists of protein pairs and scores
to facilitate use by other researchers. It is known that the GO anno-
tations are incomplete and can suffer from bias and noise [30]. To
address these issues, our evaluations use bootstrapping to provide
robust statistical performance comparisons for each measure. Due to
the large number of measures and the number of evaluations needed,
no current tools addressed our simultaneous needs of speed and
modularity. To achieve these goals, we have developed a new set of
efficient, modular tools for working with GO graphs in C++, called
the GO Graph Tool Kit (GGTK). With the aim of facilitating further
research in the community, we provide an easy-to-use Python pack-
age that wraps the functionality of GGTK and release all GGTK code
under the permissive BOOST License. GGTK will remain an ongoing
open source project available at github.com/paulbible/ggtk.

2. Methods

2.1. Calculating information content and shared information

Understanding the structure of the GO DAG provides insight into
how semantic similarity is derived at the term level. In GO graphs,
each vertex or node represents a term or concept and each edge
presents a relationship such as is_a or part_of [1]. A root node in GO
represents the most general concept (e.g. biological_process), and all
other concepts are considered descendants of this term. Information
theoretic semantic measures rely on assigning a value of probability
to a term. Lord et al. [11] proposed defining a term’s probability as
the number of times it occurs in a corpus of annotations divided by
the number of occurrences for all terms. A term occurs if it or any
of its descendants appear in the corpus. Eq. (1) shows the definition
of probability where ot is the number of occurrences for a term t.
The information content (IC) follows, in Eq. (2), as the negative log of
probability. As ot includes all appearances of child terms, P(root) = 1
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and any non-root term t satisfies P(t) < P(root). These definitions
ensure IC is monotonically increasing toward more specific terms.

P(t) =
ot

oroot
(1)

IC(t) = − log(P(t)) (2)

Using the above definitions Lord et al. used the IC calculation in
adapting Resnik [16], Lin [17], and Jiang-Conrath [18] to GO. The
original shared information approach calculates the set of common
ancestors (CA) between two ontology terms (Eq. (3)), and finds the
most informative common ancestor (MICA) or equivalently, after
Resnik [16], the probability of the minimum subsumer (Eq. (4)). The
shared information of these traditional term similarity measures is
defined in Eq. (5).

CA(t1, t2) = Ancestors(t1) ∩ Ancestors(t2) (3)

Pms(t1, t2) = min
t∈CA(t1,t2)

{P(t)} (4)

SIMICA(t1, t2) = IC (MICA(t1, t2))

= − log(Pms(t1, t2)) (5)

Using the above definitions, Resnik, Lin, and Jiang-Conrath
semantic similarity (SS) can be re-written equivalently in terms of
shared information (Eqs. (6), (7), and (8) respectively).

SSResnik(t1, t2) = SI(t1, t2) (6)

SSLin(t1, t2) =
2 ∗ SI(t1, t2)

IC(t1) + IC(t2)
(7)

SSJC(t1, t2) = 1 − (IC(t1) + IC(t2) − 2 ∗ SI(t1, t2)) (8)

2.2. Implementation considerations affecting time complexity

Before describing the different shared information algorithms
and their time complexity, we will explain the implementation of
GO used within the Go Graph Tool Kit (GGTK). Varying reports on
the time complexity of semantic similarity algorithms have been put
forward due to implicit assumptions about the representation of the
GO DAG and associated annotations. Here we clarify the graph rep-
resentation and its implementation. GGTK reads the ontology files
(go-basic.obo) provided by geneontology.org [1], and stores the
graph structure for the three disjoint ontologies (BP, MF, CC) in mem-
ory as adjacency lists. Let n be the number of terms in the ontology.
Probability and information content are calculated from annotations
taken from UniProt-GOA [31]. GGTK reads GO annotations from file,
indexes annotations by gene, and provides gene-to-annotation look-
ups in O(1) time. Calculation of IC is performed after Lord et al. [11]
and is accomplished in O(n) time. Specifically, a depth first traversal
visits every node in the GO graph. The number of annotation occur-
rences is calculated for each term starting with leaf nodes, moving to
more general terms in the graph, and finishing with the root node.
The number of cumulative occurrences for the root node is used to
calculate term probability and IC after Eqs. (1) and (2) respectively.
After the initial calculation, a function that maps a term to its IC
is available as a map in which lookups are performed in O(1) time.
In this work, IC was calculated using human annotations (GOA Dec.
2016) including electronically inferred annotations and considering
only is_a and part_of relationships.

The semantic similarity methods under study in this work all rely
on the calculation of the set of common ancestors shared between
two concepts. The DAG structure of GO complicates estimates of the
size of this set with respect to the number of terms, n. For a tree
based ontology, the size of the common ancestor sets is bounded
by O(logn), but this complexity is not guaranteed for general DAGs.
Using GGTK we compiled historical data on the average branching
factor and number of ancestors of each term from 2006 to 2016. Fig. 1
shows summary data for the three ontologies BP, MF, and CC (con-
sidering only is_a and part_of relationships) as the graph topology
evolved over 10 years. The number of nodes, mean branching factor
(node degree), and mean ancestor number are growing over time.
Fig. 1D shows that logn is an under estimate in the case of BP and
CC but over estimates the average number of ancestors in MF. After
Couto et al. [20], we will refer to the number of common ancestors as
k in our complexity analysis where |CA| = O(k). Based on our empir-
ical analysis of the GO graph over the past 10 years, it appears that
O(k) ≈ O(logn) for current and past graphs; however, this relation
may not hold in the future.

2.3. Shared information algorithms and their time complexity

Determining the shared information between two ontology terms
is an area of ongoing research. In this work we address the effects
of five unique shared information algorithms on their derived gene
functional similarity measures. A thorough analysis of these methods
must address their time complexity as well as qualitative features. In
this section, we provide a brief description of the shared information
algorithms analyzed in this work, describe their features, and address
their time complexity. A more detailed description of the algo-
rithms can be found in Appendix A. The source code for all methods
is available at github.com/paulbible/ggtk. The following complexity
bounds refer to the calculation of single-term-to-single-term shared
information.

2.3.1. Common ancestor shared information
For purposes of evaluation, we developed a naive baseline

algorithm called common ancestor shared information (CASI). CASI
simply calculates the set of common ancestors and returns the mean
IC as the shared information. This naive baseline serves as a useful
tool for evaluating other shared information algorithms. The time
complexity of CASI is O(k). Calculating the common ancestor set is
performed in O(k) and using GGTK’s O(1) IC map allows the mean to
be calculated in O(k).

2.3.2. Most informative common ancestor shared information
The most informative common ancestor (MICA) shared infor-

mation remains the most common shared information measure as
it forms the basis of traditional term similarity methods. (Eq. (5),
above). MICA shared information is equivalent to Resnik term sim-
ilarity [11,16], and is defined as the IC of the MICA. Due to its
simplicity, it is one of the most widely used shared information
measures and forms the foundation for many more sophisticated
semantic algorithms. The time complexity of MICA is O(k). Construc-
tion of the common ancestor set takes O(k) and finding the term with
maximum IC in the set is also O(k).

2.3.3. Couto et al. 2007, GraSM
Couto et al. devised GraSM [20] as an alternative to MICA.

They observed that different paths in the ontology represent differ-
ent interpretations of concepts. They reasoned that ancestors with
multiple interpretations, designated disjunctive common ancestors
(DCA), should factor into the shared information. Calculation of
the DCA involves determining if a common ancestor has unique
paths to each of the two terms that are separate from the other
ancestors under consideration. For each common ancestor, ta, paths
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Fig. 1. Changes in GO graph structure (using is_a and part_of relationships) over time lead to variations in (A) number of nodes, (B) mean ancestor number, and (C) the mean
branching factor for each term. Panel D shows the log of the number of terms minus the mean ancestor number.

are counted to determine if ta is disjoint from another ancestor, say
tb. If the number paths from ta to the two input terms under con-
sideration is greater than or equal to the number of paths from tb

to the input terms, ta must be disjoint and represent some unique
interpretation of the shared information by virtue of having a unique
path to the terms that does not pass though tb. This process is
repeated for all pairs of common ancestors. A detailed description
of the GraSM algorithm is provided in Appendix A.3. Couto et al.
reported the GraSM time complexity as O(k2), but their implementa-
tion uses a pre-computed path number map. The term-to-term path
number map can be calculated for a one-time cost of O(n2), where n
is number of terms in the ontology. The parallelized version of this

calculation can be performed by n separate topological sorts each
taking O(n) time. This ‘one-time’ cost could be quite large as n � k
and would need to be recalculated anytime other relationship edges
were considered. To calculate GraSM shared information in real-time
requires O(k3) operations. This result follows from the O(k2) calcu-
lations required to constructing the DCA and an added O(k) cost for
path counting at each step leading to a runtime that is cubic in the
number of common ancestors.

2.3.4. Adjusted GraSM
Close study of the behavior of GraSM on real-world datasets leads

to some unexpected results. In many cases, the DCA comprises a large
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proportion of the common ancestor set including the root node. An
illustration of this behavior is provided in Supplemental Informa-
tion Trace 1. GraSM is calculated by averaging the IC of DCA terms
and may decrease as more shallow terms are included. In determin-
ing the membership of the DCA set, GraSM uses a greater than or
equal to comparison on the number of paths. By changing the greater
than or equal to (≥) to a strictly greater than (>) in the path num-
ber comparison, the algorithm’s behavior changes and fewer terms
are included in the DCA set. This modified algorithm is referred to
as adjusted GraSM (A-GraSM). See Supplemental Information Trace
1 and 2 for further details on A-GraSM. The time complexity of the
adjusted algorithm is the same as GraSM, O(k3).

2.3.5. Semantic frontier
Zhang and Lai introduced the exclusively inherited common

ancestors set as an alternative to the DCA [21] that calculated a
subset of the DCA in linear time. Our group developed an efficient
implementation of the algorithm by Zhang and Lai, called the seman-
tic frontier (SF) algorithm. A simple analogy can help to explain the
exclusively inherited common ancestor set. The common ancestor
set can be considered a region of the GO graph. Terms that form the
semantic frontier lie on the frontier of the territory formed by the
common ancestors. Specifically, terms in the semantic frontier set
are common ancestor terms that have an incoming edge leading from
one of the input terms not shared by paths leading from the other.
The average IC of this set is returned as the shared information. The
SF implementation offers a reduced search space over the algorithm
proposed by Zhang and Lai. The SF algorithm is based on the concept
of a breadth first search (BFS) visitor. A BFS visitor performs actions
when certain events in a BFS occur. A BFS is performed for each of the
two input terms and the SF set is calculated by examining the vis-
ited edges entering the common ancestor set. A detailed description
of the SF algorithm is available in Appendix A.5.

The time complexity of the SF algorithm is O(k). SF calculates the
common ancestor set in O(k), each BFS visitor operates in O(k), and
checking for frontier edges takes O(k) time. Zhang and Lai report
the complexity of their algorithm as O(nlogn) [21]. The greater com-
plexity reported by Zhang and Lai may be the result of less efficient
ancestor or IC access which GGTK provides in O(k) and O(1) time
respectively. Based on the increase in GO graph size in past 10 years,
our early exit and reduced search space features may yield further
performance gains in the future.

2.4. From shared information to term similarity

Methods for calculating term similarity can be constructed from
shared information calculations through substitution into Resnik,
Lin, and Jiang-Conrath (see Eqs. (6), (7), and (8)). In order to construct
term similarity calculators using these method, GGTK provides a
shared information interface that allows the modular combination of
shared information and term similarity algorithms. This combination
allows multiple distinct term similarity measures to be constructed.
The interface promotes extensibility allowing other researchers to
construct shared information algorithms and immediately combine
them with existing term similarity measures.

2.4.1. Gene similarity from all-pairs of terms aggregation
The calculation of gene functional similarity relies on methods

that aggregate the all-pairs term similarity between gene annota-
tions [6]. GGTK provides max, average, and best-match average (BMA)
gene similarity aggregators. Research by Pesquita et al. [19] and oth-
ers has suggested that BMA outperforms other methods of aggrega-
tion. Based on initial experiments using the Collaborative Evaluation
of Semantic Similarity Measures (CESSM) online tool, we arrived at
the same conclusion. We evaluated the gene similarity benchmarks

using BMA, but other aggregation methods may be useful in other
contexts.

The number of gene-to-gene semantic similarity measures (NGSS)
explodes in a combinatorial fashion as described in Eq. (9) where
|si| is the number of shared information methods, |ss| the number
of semantic term similarity methods, |a| the aggregation methods,
and the final term, 3, represents the distinct ontologies, BP, MF, and
CC. As new methods are devised to calculate term similarity, shared
information, and aggregation of term similarity, the number of gene
similarity measures grows combinatorially. This increasing makes
evaluation a challenge, but offers a rich set of measures from which
to choose. We explore whether these measures are significantly dis-
tinct in terms of performance and if gains can be achieved by using
multiple measures.

NGSS = |si| ∗ |ss| ∗ |a| ∗ 3 (9)

2.4.2. Jaccard-based gene similarity measures
Some gene similarity methods act on sets of terms without the

need to explicitly calculate term-to-term similarity or employ aggre-
gation of term similarity. To contrast the performance of shared
information methods with other established approaches, we con-
sider alternative gene similarity methods reported by the literature
to perform well. Many of these approaches are variations of the Jac-
card index [32] for set similarity. The Jaccard index calculates the
ratio of the intersection to the union of sets. GGTK provides four
Jaccard-based gene similarity measures. Gentleman [25] introduced
a Jaccard-based gene similarity measure that calculates the ratio of
shared ancestors between two terms to the union of each terms’
ancestors. Let At be the set of all ancestors of term t (including t).
The set At can be thought of as the induced subgraph of a term t
in the ontology DAG. Eq. (10) describes the measure called SimUI, a
similarity based on the union and intersection of term ancestors.

SimUI(t1, t2) =

∣∣At1 ∩ At2

∣∣∣∣At1 ∪ At2

∣∣ (10)

Pesquita et al. [19] developed an information content weighted
version of SimUI called SimGIC, a graph-based information content
similarity. SimGIC is defined in Eq. (11).

SimGIC(t1, t2) =

∑
t∈At1 ∩At2

IC(t)∑
t∈At1 ∪At2

IC(t)
(11)

Studies by Mazandu et al. [26] introduced two modified meth-
ods similar to SimGIC. These methods are called by those authors,
SimDIC and SimUIC after Dice and universal indexes. These measures
are defined in Eqs. (12) and (13).

SimDIC(t1, t2) =
2 ∗ ∑

t∈At1 ∩At2
IC(t)∑

t∈At1
IC(t) +

∑
t∈At2

IC(t)
(12)

SimUIC(t1, t2) =

∑
t∈At1 ∩At2

IC(t)

max
{∑

t∈At1
IC(t),

∑
t∈At2

IC(t)
} (13)

As these methods operate on the gene-level term sets, they avoid
the all-pairs-of-terms calculation and need no aggregation step mak-
ing these Jaccard-based methods more efficient than the shared
information methods. The linear time shared information algorithms
showed acceptable speed for all the practical applications of this
work despite being necessarily slower than these Jaccard-based
methods. For this reason, their execution time was not measured.
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2.4.3. Decoupling term similarity calculation from gene similarity
As some shared information methods are computationally ineffi-

cient, we wanted to decouple the calculation of shared information
from the calculation of gene similarity. To achieve efficient calcula-
tion of gene similarity, GGTK provides capabilities to generate and
import pre-computed term similarity matrices. By pre-computing
term similarity, term similarity algorithms can operate on sets of
terms and access the similarity of a pair of terms in O(1) time.
Although the memory cost would appear to be O(n2) in the worst
case, an optimization mitigates this cost by calculating only simi-
larity between terms that appear in a given corpus (rather than all
terms in the ontology). The separation of terms in each of the dis-
joint ontologies (BP, MF, CC) provides further space savings. If no
gene in the corpus has a particular function annotation there is no
need to calculate its similarity to other terms. These optimizations
greatly reduce the memory cost and allow for efficient calculation of
the gene-to-gene functional similarity.

2.4.4. Measuring execution speed of shared information algorithms
The calculation of term similarity matrices also serves as a bench-

mark for measuring each algorithms’ execution speed. In order to
quantify the execution speed of the algorithms in each complexity
class, the wall-clock time of each matrix calculation was recorded
for each shared information algorithm using the Linux time com-
mand. In calculating the matrix, only those terms with annotations in
the human corpus need to be analyzed. Using this optimization, the
term similarity matrices were calculated processing 11,394 anno-
tated terms for BP, 4149 for MF, and 1546 terms for CC. Taking
advantage of symmetry (Sim(A, B) = Sim(B, A)), the resulting number
of calculations equals the number of elements in the upper triangular
portion of the term similarity matrix

(
n(n−1)

2

)
. Where the all-pairs-

of-terms similarity is calculated, 64,905,921 pairs were processed for
the BP, 8,605,026 for MF, and 1,194,285 for CC. The resulting wall-
clock time for each of these calculations is reported as the execution
time for each method.

2.5. Semantic similarity performance evaluations

Various performance evaluations have been put forward starting
with Lord et al. [11] who measured the Pearson correlation between
gene-to-gene semantic similarity scores and sequence similarity.
Foundational approaches accepted in the literature measure the cor-
relation between gene-to-gene semantic similarity and sequence,
domain set, or expression profile similarity [14]. Perhaps more use-
ful evaluations measure the predictive power of semantic similarity
to discover protein–protein interactions [6,29] or to correctly clus-
ter genes belonging to known pathways [21]. Machine learning
evaluations such as these have more applications in the field.

Few studies have addressed the inherent uncertainty in both
GO graph structure and the limited depth and breadth of gene
annotations [29]. The machine learning community has long used
bootstrapping to improve generalization and to overcome issues of
noise [33]. To address the issue of uncertainty, we employ robust
bootstrapping approaches that provide generalized measures of per-
formance as well as performance distributions that allow direct
statistical comparisons between similarity methods. In the follow-
ing sections we describe the specific performance evaluations and
datasets used to compare a gene similarity method with respect
to the shared information algorithms. In this work we evaluate
five shared information algorithms using three term similarity mea-
sures across the three ontologies of GO resulting in 45 distinct gene
similarity measures (5 shared information methods * 3 term simi-
larity methods * 3 ontology types). In addition, these methods are
compared to 12 gene similarity methods derived from the Jaccard-
based methods (4 Jaccard-based methods * 3 ontology types). The
performance of 57 measures in total has been analyzed.

2.5.1. CESSM
The Collaborative Evaluation of Semantic Similarity Measures

(CESSM) [34] is an online dataset and comparison tool used to eval-
uate gene similarity measures. Though CESSM has some issues [27],
the community has accepted it as a useful but limited performance
benchmark which can provide comparisons with 11 other measures.
The CESSM annotation and test data was downloaded and used to
evaluate each measure. The 45 shared information methods were
submitted individually to the CESSM server and the results, once
collected, were analyzed. CESSM is available at xldb.di.fc.ul.pt/tools/
cessm/. CESSM was used to evaluate term aggregation techniques.
BMA performed best on this benchmark. The aggregators max and
average performed poorly and were not considered for subsequent
analysis. This agrees with similar observations by Pesquita et al. [19]
and others. This analysis motivated the choice of BMA and the results
for each ontology type are available in Supplemental Information
Figures S1–S3.

2.5.2. Relative reciprocal BLAST score
The relative reciprocal BLAST score (RRBS) is a measure of

sequence similarity developed by Pesquita et al. [19] derived from
the BLAST alignment tool [35]. Eq. (14) gives the RRBS definition
between two sequences A and B [19]. All-pairs BLAST was performed
using an e-value cut off of 1e−4 after [19] with the human protein
dataset. Pesquita et al. noted the relationship between shared infor-
mation and RRBS is non-linear. For this reason, we evaluated the
non-linear Spearman’s rank correlation, or Spearman’s q, between
gene similarity values and the sequence alignment derived RRBS. The
performance distribution of the Spearman correlation was calculated
by taking 1000 bootstrap samples of size 100,000 from the set of all
RRBS scores calculated.

RRBS(A, B) =
BLASTbitscore(A, B) + BLASTbitscore(B, A)
BLASTbitscore(A, A) + BLASTbitscore(B, B)

(14)

2.5.3. Jaccard index set similarity of Pfam domains
The Jaccard index [32] measures the similarity between two sets

as the size of their intersection divided by the size of their union. In
general, the functional domains, rather than just sequence, dictate a
protein’s function. To this end, Pfam domains [36] have been used in
various gene similarity measure evaluations [13,20,27]. Taking genes
as sets of domains (DA and DB), a domain similarity method is derived
(Eq. (15)). On the human protein dataset, Pfam domains were pre-
dicted using HMMER3 [37] with an e-value threshold of 3e−6. After
removing gene isoforms, the all-pairs Jaccard Pfam similarity was
calculated for the protein dataset. As above, performance distribu-
tions for each algorithm were generated by calculating the Spearman
correlation between the gene similarity measure and Jaccard Pfam
for 1000 bootstrap samples of size 100,000.

SimJaccard(DA, DB) =

∣∣DA ∩ DB
∣∣∣∣DA ∪ DB
∣∣ (15)

2.5.4. TF–IDF cosine similarity of Pfam domains
Term frequency –inverse document frequency (TF–IDF) is a tech-

nique in information retrieval that weights terms by their rela-
tive specificity [38]. Similarly, domains that appear frequently in a
diverse set of proteins may have little influence on the protein’s func-
tion. Song et al. [39] previously applied TF–IDF to protein domains.
Eq. (16) shows the weight for a particular domain d belonging to
a protein, where fd is the frequency of that domain in the pro-
tein, N is the total number of proteins in the corpus, and nd is the
number of proteins having the domain. From this weight measure,
proteins are represented as a vectors of domain weights (A and B)

http://xldb.di.fc.ul.pt/tools/cessm/
http://xldb.di.fc.ul.pt/tools/cessm/
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and cosine similarity (Eq. (17)) represents the protein similarity.
Performance distributions for this measure were calculated using
Spearman correlation and bootstrapping as described above.

wd = fd ∗ log
(

N
nd

)
(16)

SimTF−IDF(A, B) =
A • B

‖ A ‖‖ B ‖ (17)

2.5.5. Gene expression across 79 human tissues
Highly correlated genes are often functionally related. Studies in

the literature [4,23,28] have evaluated performance by measuring
gene-to-gene semantic similarity correlation with gene expression
correlation. The gene similarity measures were evaluated in terms of
their correlation with microarray gene expression across 79 human
tissues (NCBI GEO accession GSE1133). Probes from the human
U133A array were mapped to their Refseq identifiers which were
then mapped to Uniprot identifiers. Genes without any GO annota-
tions in GOA were removed. After filtering, the all-pairs correlation of
5688 genes was calculated resulting in 16,173,828 unique correlation
pairs. Both Pearson and Spearman gene correlations were calculated.
As in previous literature [6], the absolute value of the correlation
was calculated between expression pairs to attempt to detect a rela-
tionship either negative or positive. The semantic methods were
then evaluated for their Spearman correlation to either the absolute
Pearson or Spearman expression correlation. From these correlation
pairs, 100 bootstrap samples were taken for each algorithm. Each
sample had a size equal to 15% of the total number of pairs (>2.4
million).

2.5.6. Reactome pathway analysis
Uncovering pathway relationships between genes constitutes an

important use case for semantic similarity algorithms that has been
studied in the literature [3,5,21]. Using Reactome [40], we tested the
performance of gene similarity methods in terms of their ability to
partition sets of genes into known pathways by clustering. The vari-
ation of information (VI) criterion [41] was used to determine the
agreement between known Reactome pathways and partitions of
genes derived from hierarchical clustering using Ward’s method [42]
and gene-to-gene semantic similarity based distances (1 - similar-
ity). Specifically, 100 datasets were generated from Reactome by
randomly selecting 10 human pathways having between 10 and 150
proteins. These datasets were further processed replacing any over-
lapping pathways with non-overlapping pathways to remove any
ambiguous assignments. For each gene similarity method, distance
was calculated and the proteins were clustered into 10 groups. VI
was calculated between the gene similarity based clustering and
the known pathway assignments from Reactome. The 100 separate
datasets were used to construct performance distributions.

2.5.7. Protein–protein interaction prediction
Several works in the literature [3,6,29] have used protein–protein

interaction prediction to evaluate semantic similarity measures. Fol-
lowing previous methods, positive and negative datasets were gen-
erated from the Interologous Interaction Database (I2D) [43], and
the semantic similarity measures were evaluated by their ability to
distinguish interacting from non-interacting protein pairs. The I2D
public version 2.3 was downloaded from http://ophid.utoronto.ca/
and used as the positive set of interacting proteins (228,847 human
interactions). A negative dataset of equal size was generated after
Guo et al. [3] by randomly choosing protein pairs resulting in a
balanced dataset of 457,694 interactions. For each gene similarity
method, 100 bootstrap samples of a size equal to 15% of the original
dataset were used to calculate receiver operator characteristic (ROC)
curves using the ROCR package [44] of the R programming language.

A ROC curve plots the true positive rate (TPR), the ratio of true pre-
dictions to all predictions made, against the false positive rate (FPR),
the ratio of false predictions to all prediction, across a range of differ-
ent thresholds. For the gene-to-gene semantic similarity measures,
the ROC curve would be equivalent to sorting all the values of seman-
tic similarity and counting the number of true and false predictions
below each unique value for plotting. From these 100 samples, a per-
formance distribution of the area under the ROC curve (AUC) values
was used to statistically compare the performance of each semantic
similarity measure. A classifier must have an AUC above 50% to be
considered better than random guessing.

2.6. Isolating the effect of shared information from other factors

The choice of shared information, term similarity algorithm, and
ontology type specify the gene-to-gene semantic similarity measure.
To determine the effects of shared information on performance in
the previous evaluations it is important to isolate the effects of other
factors that influence the results.

2.6.1. Regression analysis of mean performance
Linear regression analysis on the bootstrapped mean perfor-

mance values is used to examine the effects of shared information
type, term similarity algorithm, and gene ontology type. A design
matrix was created with each row representing a separate gene-
to-gene semantic similarity method constructed through combining
the different factors under study. Each column of the design matrix
represents the different factors as categorical variables, with the
ontology variable taking a value in {BP, MF, CC}, the term similarity
variable taking a value in {Resnik, Lin, JC}, and the shared information
variable taking a value in {casi, mica, grasm, agrasm, sf }. Using this
design matrix, linear models were trained for each performance eval-
uation using the mean bootstrapped performance as the response
variable. The models where creating using the lm function of the R
programming language. The influence of each factor is reported as
the negative log of the regression p-value taken from the analysis of
variance of each fitted model using the anova function of the R pro-
gramming language. Separate models were fitted for each of the six
performance benchmarks and the relative influence of each factor is
reported for all evaluations.

2.6.2. Performance ranking and statistical ties
Within each choice of term similarity and ontology type, the

shared information algorithms were ranked based on statistical tests
of their performance. For a specific choice of term similarity and
ontology type, the shared information methods were sorted based
on their mean performance and ranked using a statistical method
operating on their performance distributions. A statistical tie in per-
formance between two methods is determined if a t-test of the
methods’ performance distributions fails to reject the null hypothe-
sis of equal means (p-value > 0.05, Welch’s two sample t-test). The
ranks are exhausted meaning that if two methods are tied for first
place, method 1 and 2 receive the rank of 1, but the next best per-
former receives the rank of 3 (rather than 2). The overall ranks of all
shared information methods are reported for every combination of
term similarity and ontology type. The average shared information
algorithm rank is reported for each ontology type and term similarity
method.

2.7. Ensemble classifiers and cross-validation

With such a large number of gene similarity approaches, could
they be combined through ensemble methods to improve perfor-
mance on machine learning tasks? To answer this question, we
applied majority voting to the task of protein-protein interaction
prediction. A majority voting classifier makes a prediction based on

http://ophid.utoronto.ca/
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the votes of a panel of other classifiers [45]. Although the area under
the ROC curve provides a good estimate of a classifier’s behavior
across a range of thresholds, in practice, a single threshold must be
chosen for a particular task. A process that maximized the F-score
over a set of training data selected the threshold for an individual
gene-to-gene semantic similarity method to be used as a classifier.
The F-score represents the trade off between making true predictions
and limiting false predictions. It is the harmonic mean of precision
and recall and is defined in Eqs. (18), (19), and (20). These values
were calculated using the ROCR [44] package in R. This training
process was repeated for every individual method. From these indi-
vidual classifiers, voting classifiers were constructed that predicted
an interaction only if a majority of its constituent classifiers also pre-
dicted an interaction. Three ontology specific voting classifier were
designed to include only methods in BP, MF, or CC categories. These
classifiers helped to determine if any advantage could be derived
from ensemble classifiers limited to a single GO type. A final voting
predictor was constructed which consisted of all individual methods.

precision =
true positives

true positives + false positives
(18)

recall =
true positives

true positives + false negatives
(19)

F-score = 2 ∗ precision ∗ recall
precision + recall

(20)

Ten-fold cross-validation was employed to test the performance
of all individual classifiers as well as the four ensemble classifiers.
Using the protein interaction dataset from Section 2.5.7, ten random
partitions, or folds, were constructed each containing approximately
10% of the original 457,694 interactions. The classifiers were trained
using nine folds and tested for the percent of misclassified instances
(error rate) on the remaining fold. This process was repeated ten
times. The classification error is reported for all 57 methods including
the four voting classifiers.

3. Results

3.1. Execution time performance of the shared information algorithms

The all-pairs term similarity matrix for annotated terms in BP, MF,
and CC was calculated for each shared information method and the
execution times of these calculations were recorded. The wall-clock
execution times for these calculations showed, as expected, that
GraSM and A-GraSM methods are orders of magnitude slower than
the other shared information methods. Fig. 2 shows the execution

times of all shared information methods combined with Resnik term
similarity. The other term similarity measures showed comparable
execution times. The complete list of execution times is available in
Table S1. Both GraSM and A-GraSM have O(k3) time complexity, and
their execution times dwarf the runtimes of the other algorithms.
The execution time of the SF algorithm is greater than CASI or MICA.
Both CASI and MICA proved to be the most efficient algorithms in
terms of execution speed. The term similarity matrices for BP, MF,
and CC required 64.91 million, 8.60 million, and 1.19 million term
pair calculations respectively. Interestingly, despite requiring over 8
million more calculations, the MF processes completed faster than
the CC processes. These results suggest that the topology of the GO
graph plays an important role in determining the execution speed of
semantic algorithms and that functions of the raw number of terms
in an ontology may not accurately reflect their complexity. Fig. 1 sup-
ports this conclusion since the branching factor and average number
of ancestors of the MF ontology is less than that of the CC ontology
despite MF having more terms. The Jaccard-based methods do not
require calculating term-to-term similarity so this evaluation does
not apply. The Jaccard-based term-set level measures are known to
be more efficient. These findings illustrate that the increased time
complexity of the GraSM methods could be computationally pro-
hibitive in some situations, and the problem may worsen as GO graph
complexity grows.

3.2. RRBS: sequence similarity

Using the 519,892 protein pairs that passed selection, Spearman’s
q correlation between RRBS and each of the 45 shared information-
based and 12 Jaccard-based gene similarity measures was evaluated
by the bootstrapping method described in the Section 2.5.2. The
correlation distributions of all measures are shown in Fig. 3. Sup-
plemental Information Table S2 provides the mean performance and
standard deviations for all measures. The measures are organized by
term similarity type and ontology type. In general, BP methods per-
form best in terms of RRBS correlation. For Lin and Jiang-Conrath
methods no dramatic differences are observed between shared infor-
mation algorithms. For the Resnik methods, CASI and MICA lag
behind GraSM, A-GraSM, and SF across all ontology types. With the
CC ontology, the CASI and MICA Resnik methods show dramatically
lower correlation than all other methods. Despite poor and average
performance in the CC and MF ontologies respectively, Resnik BP
methods using GraSM, A-GraSM, and SF show better correlation with
RRBS than any other methods. Of the MF methods, Jiang-Conrath
term similarity shows the lowest RRBS correlation among the term
similarity algorithms. The Jaccard-based methods perform best out
of the MF methods. The correlation of the MF Jaccard methods
roughly equals the performance of the BP Jaccard methods. In the BP

Fig. 2. The execution times for the all-pairs term similarity for Resnik term similarity show that GraSM and A-GraSM methods are slower than other shared information methods.
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Fig. 3. Performance distributions for the BLAST-based RRBS benchmark for all 57 measures organized by term similarity algorithm and ontology type.

ontology, the Jaccard methods showed similar performance to the
Jiang-Conrath methods but were lower than Lin and the best Resnik
methods. These results show that BP ontology methods most closely
correlate with RRBS similarity. Consistent with the results of Pesquita
et al. [19], SimGIC performed well among the MF methods. In that
work the authors did not consider BP or CC based methods citing
the works Lord et al. [11,12] that report a loose correlation between
gene semantic similarity and sequence similarity. Jain and Bader [4]
analyzed the correlation between semantic methods and sequence
similarity in all ontologies, and their results show the CC methods
have a higher sequence correlation than MF or BP. From the results
of Mazandu et al. [26], BP and CC methods appear to show better cor-
relation with sequence than MF. As Pesquita et al. [19] demonstrated
the relationship between semantic similarity and sequence similar-
ity is not linear, making the Spearman correlation a more appropriate
measure. The use of Spearman correlation over Pearson and using
more recent annotation and GO graph data likely account for some
of the differences with previous works.

Statistical comparisons between performance distributions
examine the relative performance between the methods and estab-
lish a ranking. This approach to ranking is described in Section 2.6.2.
Table 1 shows the rankings for all shared information methods.
These data give insight into which shared information algorithms
show statically significant differences in performance for each com-
bination of term similarity and ontology type. SF shared information
works best with BP and MF methods. CC methods work well with
GraSM on the RRBS benchmark. GraSM and A-GraSM show good per-
formance with Resnik. Lin based method showed CASI, GraSM, and
SF as the best shared information methods. MICA shared information
ranked first in all JC methods.

3.3. Jaccard index of Pfam domain sets

The all-pairs Pfam domain similarity was calculated with the Jac-
card index resulting in 1,219,558 protein pairs. The performance
distributions are shown in Fig. 4 depicting all 57 measures organized
by term similarity type and ontology type. The complete listing of
mean correlation performance and standard deviations can be found
in Supplemental Information Table S3. As with the RRBS dataset,
the shared information methods show smaller variability in perfor-
mance compared to differences in ontology type and term similarity
algorithm. The CASI and MICA methods combined with Resnik term
similarity again perform poorly compared to the other methods, but
these shared information method are comparable with GraSM, A-
GraSM, and SF when combined with Lin and Jiang-Conrath. The CC
ontology methods lag the performance of MF and BP in terms of
correlation with Pfam Jaccard similarity. The Jaccard-based gene sim-
ilarity methods perform best with MF annotations, with the best
method being SimUI. These methods perform slightly better in MF
than in BP. Overall MF Lin methods performed best, but BP Resnik
methods combined with GraSM, A-GraSM, and SF outperformed
most other methods. As the worst performing ontology group, the
CC ontology may fail to encode detailed domain or structural infor-
mation. Despite having a higher correlation than the CC ontology
methods, the BP and MF correlations were lower than in the RRBS
benchmark with the best methods only achieving a correlation near
0.35.

Table 2 shows the ranking of shared information methods for the
Pfam Jaccard evaluations. Among the ontologies, SF performs best
with BP and MF as in the RRBS evaluations. GraSM again shows
the best performance for CC methods. Resnik, Lin and Jiang-Conrath

Table 1
Ranking of shared information for the BLAST-based RRBS benchmark against ontology type and term similarity type. Methods with greater correlation have lower rank. Bold font
represents the best average rank for each category.

Biological process Molecular function Cellular component Mean by term similarity

Method Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC

CASI 4 3 5 4.00 4 2 4 3.33 4 2 2 2.67 4.00 2.33 3.67
MICA 5 5 1 3.67 5 4 1 3.33 5 1 1 2.33 5.00 3.33 1.00
GraSM 3 3 4 3.33 1 2 4 2.33 1 2 2 1.67 1.67 2.33 3.33
A-GraSM 1 2 3 2.00 2 5 3 3.33 2 4 4 3.33 1.67 3.67 3.33
SF 2 1 2 1.67 3 1 2 2.00 3 5 5 4.33 2.67 2.33 3.00
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Fig. 4. Performance distributions for the Pfam Jaccard benchmark for all 57 measures organized by term similarity algorithm and ontology type.

method perform best with GraSM, SF, and MCIA respectively on the
Pfam Jaccard dataset.

3.4. TF–IDF cosine similarity of Pfam domain sets

To correct for uninformative domains, we applied TF–IDF to pro-
teins represented as sets of Pfam domains. With 1,219,558 unique
protein pairs, evaluations were conducted using the bootstrapping
method. Fig. 5 shows the distribution of Spearman correlations
against TF–IF domain similarity (mean and standard deviation data
are available in Supplemental Information Table S4). Again, shared
information methods show less variability with the exception of
Resnik methods using CASI and MICA. CASI and MICA Resnik meth-
ods are dramatically low in the CC ontology and show the lowest cor-
relations of all measures. BP Resnik methods using GraSM, A-GraSM,
and SF outperform all other methods in terms of TF–IDF correlation.
The Jaccard-based methods perform similarly in BP and CC ontology,
but these methods are among the worst performing measures in MF.
The CC Jaccard-based methods show greater correlation with TF–IDF
than the other CC methods. The BP methods preform best on aver-
age in this evaluations. These novels findings suggest that TF–IDF can
be successfully applied to protein domain sets to correct for nonspe-
cific domains and potentially uncover relationships in both biological
processes and molecular functions.

The performance rankings of the shared information methods in
the TF–IDF benchmark are shown in Table 3. With BP and CC meth-
ods in the TF–IDF benchmark, GraSM shows the best average ranking.
SF shared information works best with MF methods in this dataset.
Resnik methods work best with GraSM which is ranked first in all
Resnik evaluations. Lin methods show the best correlations using

CASI and GraSM while Jiang-Conrath methods perform best with
MICA and SF shared information.

3.5. Gene expression across 79 tissues

All 57 measures were evaluated based on their correlation with
gene expression correlation. Fig. 6 shows the absolute gene expres-
sion correlation for all methods under study. The complete mean
and standard deviation data are available in Supplementary Informa-
tion Table S5 (Pearson gene correlation) and Table S6 (Spearman).
BP Jiang-Conrath methods show the best performance at slightly
greater than 0. All other methods show a negative correlation with
expression correlation. These findings are consistent with the work
of Xu et al. [6] which found that global gene expression correlates
poorly with semantic similarity. Xu et al. observed a steady increase
in semantic similarity as gene expression pairs are binned into sets
of highly correlated gene sets. The same trend is confirmed in our
data (Supplemental Figure S4). At such low levels of correlation, one
might expect greater variability in performance due to a lack of any
strong relationship. The data in Fig. 6 surprisingly shows tighter dis-
tributions than in other evaluations. The differences in performance
between shared information types are minimal, with the exception
of MICA.

The shared information rankings are provided in Table 4 for abso-
lute gene expression. BP, MF, and CC methods work best with SF,
MICA, and CASI shared information respectively for gene expres-
sion. CASI performs best with Resnik methods and A-GraSM with Lin
methods. CASI, GraSM, and A-Grasm work well with Jiang-Conrath
methods. The low and negative correlations associated with this
benchmark makes the significance of this ranking less clear.

Table 2
Pfam Jaccard ranking of shared information against ontology type and term similarity type. Methods with greater correlation have lower rank. Bold font represents the best
average rank for each category.

Biological process Molecular function Cellular component Mean by term similarity

Method Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC

CASI 4 2 3 3.00 5 4 4 4.33 4 2 4 3.33 4.33 2.67 3.67
MICA 5 4 1 3.33 4 3 1 2.67 5 1 1 2.33 4.67 2.67 1.00
GraSM 2 2 3 2.33 1 4 5 3.33 1 2 2 1.67 1.33 2.67 3.33
A-GraSM 3 5 5 4.33 2 2 3 2.33 2 5 5 4.00 2.33 4.00 4.33
SF 1 1 2 1.33 3 1 2 2.00 3 4 2 3.00 2.33 2.00 2.00
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Fig. 5. Performance distributions for the Pfam TF–IDF benchmark for all 57 measures organized by term similarity algorithm and ontology type.

3.6. Reactome clustering

Using 100 randomly generated pathway datasets (see
Section 2.5.6), the mean VI similarity (1 - normalized VI distance)
was used to compare the closeness of semantic gene similarity
derived clusters to their known Reactome assignments. Fig. 7 shows
the VI similarity distribution for all 57 methods tested. The perfor-
mance variability on this benchmark is much higher than in other
evaluations. The BP methods outperform those of MF and CC, but
within each ontology type all shared information based methods
are essentially equivalent regardless of term similarity type. The
Jaccard-based method tend to under perform the other methods. As
the Reactome pathways were chosen randomly, the high variability
in performance is expected. The success of BP methods confirms
expectations since the BP ontology captures functional information
most closely associated with biological pathways. The CC based
methods out-perform MF method on average for this benchmark.
The complete results are available in Supplemental Information
Table S7.

Table 5 gives the performance rankings of the shared information
methods for the Reactome benchmark. As the Reactome results show
high variability, most methods could not be determined to be statis-
tically different from one another. All shared information methods
within each term similarity group proved to be equivalent in the MF
ontology in terms of the VI similarity to Reactome pathway clusters.
In BP, the CASI method performs poorly with Resnik. In the CC ontol-
ogy, CASI and MICA perform poorly with MICA particular ill suited

to the Lin and Jiang-Conrath methods. Resnik methods show poor
performance with CASI and MICA, while MICA Lin and Jiang-Conrath
methods show poor performance reflecting issues in combination
with the CC ontology.

3.7. Protein–protein interaction prediction

The predictive power of each gene similarity measure was eval-
uated on the human I2D interaction dataset. Performance distri-
butions of the AUC (described in Section 2.5.7) appear in Fig. 8.
Complete data for the mean and standard deviation of the AUC
are available in Supplemental Information Table S8. This prediction-
based evaluation showed heightened variability between shared
information methods compared to other datasets, especially with
the Jiang-Conrath methods. Within Jiang-Conrath term similarity,
MICA shared information performed best. The shared information
methods varied greatly within CC Reskin with the SF and A-GraSM
versions giving the best AUC values of all methods. The Jaccard-based
methods show the worst performance among MF methods and are
superior to only the Jiang-Conrath methods in the BP and CC ontolo-
gies. BP and MF methods tend to under perform compared to CC
methods with the exception of MF Jiang-Conrath. This result is at
odds with older evaluations such as Guo et al. [3] that found BP
methods are better predictors than CC methods. These differences
are likely due to the smaller dataset used in their analysis as well as
the changes in GO structure and annotations in recent years. Con-
flicting performance reports in the literature illustrate the need for

Table 3
Pfam TF–IDF ranking of shared information by term similarity type and ontology. Methods with greater correlation have lower rank. Bold font represents the best average rank
for each category.

Biological process Molecular function Cellular component Mean by term similarity

Method Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC

CASI 4 1 3 2.67 5 3 4 4.00 4 2 2 2.67 4.33 2.00 3.00
MICA 5 5 2 4.00 4 5 3 4.00 5 1 1 2.33 4.67 3.67 2.00
GraSM 1 1 3 1.67 1 3 4 2.67 1 2 2 1.67 1.00 2.00 3.00
A-GraSM 2 4 5 3.67 2 2 2 2.00 2 5 5 4.00 2.00 3.67 4.00
SF 2 3 1 2.00 3 1 1 1.67 3 4 4 3.67 2.67 2.67 2.00
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Fig. 6. Performance distributions for absolute gene expression correlation (Pearson) against all 57 measures organized by term similarity algorithm and ontology type.

transparent open source tools that can evaluate these methods on a
level playing field using consistent ontologies and annotations.

The performance rankings for the protein–protein interaction
prediction benchmark is shown in Table 6. Based on the distribu-
tion of the area under the ROC curve values, the shared information
methods were statistically compared. MICA, A-GraSM, and SF shared
information perform best for BP, MF, and CC ontologies respectively.
GraSM and A-GraSM perform well for Resnik on this benchmark.
CASI is the best performer for Lin term similarity, and MICA works
best for JC across all the ontologies in these evaluations.

3.8. Analysis of factors affecting semantic similarity performance

Using the six performance benchmarks described in the previous
section, regression models were trained to assess the influence of
ontology type, term similarity type, and shared information type on
the mean performance of the shared information methods. A design
matrix of categorical variables was constructed and used to create a
linear model of mean performance (described in Section 2.6.1). Fig. 9
presents the influence of each factor on each benchmark as the neg-
ative log of the regression p-value. This data demonstrates that the
choice of ontology contributes most to the variability in performance
followed by the choice of term similarity, and shared information
contributes the least. All evaluations tested uphold this trend. The
Reactome benchmark shows the strongest influence by ontology fol-
lowed by the gene expression evaluations. Ontology type exerts the
smallest influence on TF–IDF and PPI benchmarks; however, this
effect is still much greater than the other two factors. The effects of

term similarity and shared information choice are small across all
evaluations except PPI where the effects are negligible or zero. These
results clearly show that the choice of ontology greatly effects the
performance of gene similarity methods.

3.9. Leveraging semantic methods with majority voting

Using the protein–protein prediction dataset from the previ-
ous evaluations, we addressed the feasibility of combining semantic
similarity methods to improve prediction. Using the 10-fold cross-
validation method (described in Section 2.7), we analyzed the per-
formance of all 57 measures in terms of their mean prediction error.
For this evaluation, the percent of misclassified instances represents
the classification error of each gene similarity semantic measure and
voting classifier. Fig. 10 presents the cross-validation classification
error for all methods organized by ontology type and term similar-
ity method (lower is better). The ontology specific voting classifier
performed equivalently with other methods within the ontology
(the far right classifier within each ontology group in Fig. 10). Other
single classifiers outperform the ontology specific voting predictor
within each ontology. This result indicates that simple majority vot-
ing offers no advantage over the best methods within an ontology
group; however, the combination of all semantic similarity meth-
ods substantially out performs even the best individual classifier. The
failure of ontology specific voting predictors to confer any advan-
tage for prediction suggests that variation among shared information
or term similarity semantic methods alone cannot improve learn-
ing at least for this task. Analysis of the factors affecting semantic

Table 4
Absolute gene correlation benchmark ranking for shared information methods organized by term similarity type and ontology. Methods with greater correlation have lower rank.
Bold font represents the best average rank for each category.

Biological process Molecular function Cellular component Mean by term similarity

Method Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC

CASI 4 3 3 3.33 1 5 3 3.00 1 2 1 1.33 2.00 3.33 2.33
MICA 4 3 5 4.00 1 1 1 1.00 5 5 5 5.00 3.33 3.00 3.67
GraSM 3 3 3 3.00 5 4 3 4.00 3 2 1 2.00 3.67 3.00 2.33
A-GraSM 2 2 1 1.67 3 3 3 3.00 2 1 3 2.00 2.33 2.00 2.33
SF 1 1 2 1.33 3 2 2 2.33 4 4 4 4.00 2.67 2.33 2.67
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Fig. 7. Performance distributions for Reactome clustering compared to the 57 gene similarity semantic measures organized by term similarity algorithm and ontology type.

similarity performance of the previous section support this conclu-
sion. The cross-validation evaluation show that BP methods tend to
perform worse than all MF methods and worse than all but Jiang-
Conrath CC methods. Interestingly, the MF methods perform best in
cross-validation analysis while the CC methods tend to perform best
in terms of the area under the ROC curve calculated through boot-
strapping. These results indicate that the AUC metric may not totally
capture the usefulness of a measure for classification.

4. Discussion

As semantic similarity measures have grown in popularity, a
large number of measures have been developed making exhaus-
tive performance assessment a growing challenge. IC based methods
use measures of shared information to calculate term similarity
and ultimately gene similarity. Recent works have devised alterna-
tive methods for calculating shared information. Through modular
combination of shared information measures, term similarity calcu-
lations, and ontology choice, the number of semantic gene similar-
ity measures explodes creating obvious challenges for performance
evaluations. In a departure from previous works, we put forward
robust methods to statistically compare semantic gene similarity
measures in a manner that captures their generalized performance.
We apply these methods to conduct a thorough investigation into
the behavior of varying shared information measures. Given the large
number of measure that can be created though modifications to the
shared information, we considered the feasibility of leveraging these

measures in ensemble classifiers for prediction gains. By isolating
the effects of ontology type, we determined that the shared infor-
mation algorithms themselves could not be combined to improve
protein-protein interaction prediction. Methods across the distinct
ontologies can be leveraged to improve prediction.

Xu et al. [6] combined information from across ontologies to
improve prediction; however, they incorporated an artificial root
node connecting BP, MF, and CC into a single graph. Their research
found that BP methods offered the best performance on a yeast
dataset. Later Jain and Bader [4] also showed BP to out perform MF
and CC methods in interaction prediction in yeast based on area
under the ROC curve analysis both with and without the inclusion
of electronically inferred annotations. While our work focused on
human protein–protein interactions, the results resemble the more
recent work of Yang et al. [29] in yeast where they found CC to per-
form better than other methods. Based on ROC analysis, our results
showed CC methods performing best. The work by Yang et al. cites
Collins et al. [46] in identifying that much of the ROC curve rep-
resents classification thresholds that would be useless in practice
for protein interaction prediction. This results from thresholds that
admit far too many false positive predictions to be useful. This issue
became evident in our analysis when many of the MF predictors
showed strong performance based on cross-validation evaluation
but less competitive performance when only the area under the ROC
curve was considered.

The work by Mazandu et al. [26] more closely relates to this
study as they used human interactions to assess the predictive power

Table 5
Reactome based statistical ranking for shared information methods organized by term similarity type and ontology. Methods showing a higher VI similarity to Reactome pathways
have lower rank. Bold font represents the best average rank for each category.

Biological process Molecular function Cellular component Mean by term similarity

Method Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC

CASI 5 1 1 2.33 1 1 1 1.00 5 1 1 2.33 3.67 1.00 1.00
MICA 1 1 1 1.00 1 1 1 1.00 4 5 5 4.67 2.00 2.33 2.33
GraSM 1 1 1 1.00 1 1 1 1.00 1 1 1 1.00 1.00 1.00 1.00
A-GraSM 1 1 1 1.00 1 1 1 1.00 1 1 1 1.00 1.00 1.00 1.00
SF 1 1 1 1.00 1 1 1 1.00 1 1 1 1.00 1.00 1.00 1.00
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Fig. 8. Performance distributions for protein–protein interaction prediction by area under the ROC curve for the 57 gene similarity semantic measures organized by term similarity
algorithm and ontology type.

Table 6
Protein interaction prediction ranking for shared information methods organized by term similarity type and ontology. Rankings were established by comparisons based on the
area under the ROC curve calculated from bootstrap samples. Methods with greater AUC scores have lower rank. Bold font represents the best average rank for each category.

Biological process Molecular function Cellular component Mean by term similarity

Method Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC Mean Resnik Lin JC

CASI 3 1 4 2.67 5 1 4 3.33 5 2 4 3.67 4.33 1.33 4.00
MICA 1 1 1 1.00 4 4 1 3.00 4 5 1 3.33 3.00 3.33 1.00
GraSM 2 3 4 3.00 1 4 4 3.00 3 2 4 3.00 2.00 3.00 4.00
A-GraSM 3 3 3 3.00 1 1 1 1.00 2 2 3 2.33 2.00 2.00 2.33
SF 3 3 2 2.67 3 1 1 1.67 1 1 2 1.33 2.33 1.67 1.67

of semantic algorithms. The data set used by Mazandu et al. was
comprised of a much smaller set of roughly 5000 curated interac-
tion which were filtered to all contain BP and CC annotations. Citing
their previous work [47], Mazandu et al. excluded MF based methods
in their evaluation, and other work by Mazandu et al. [48] sup-
ported the exclusion of Jiang-Conrath methods. These caveats make
a direct comparison to their work difficult. Mazandu et al. exam-
ined a large number of diverse measures which are out of score
for this study of shared information methods. The shared methods
among the two studies are the best match average (BMA) versions of
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Fig. 9. The relative influence of ontology type, term similarity method, and shared
information type (SI) on the mean performance across six evaluations.

Resnik (called RBMA, by Mazandu et al.), Lin (LBMA), SimUI, SimGIC
(AGIC), SimDIC (ADIC), and SimUIC (AUIC). The area under the ROC
curve reported Mazandu et al. for the CC base methods is 0.9999656
(RBMA), 0.4853167 (LBMA), 0.8483416 (SimUI), 0.9173889 (AGIC),
0.8486233 (ADIC), and 0.9654985 (AUIC). The values reported for
the BP verions of these methods are 0.9995277 (RBMA), 0.6194642
(LBMA), 0.9582268 (SimUI), 0.9689432 (AGIC), 0.9514534 (ADIC),
and 0.9654985 (AUIC). The range of these values is consistent with
those found in this study for the area under the ROC curve bench-
mark. All the methods tested achieved high performance using the
most up-to-date annotations and GO graphs. Inconsistent with the
reports of this study is the disparity between Resnik and Lin meth-
ods within the same ontology. Based on our evaluations, we would
expect these methods to have scored more closely in the evaluations
of Mazandu et al.

Difficulty in comparing the results of semantic similarity analysis
in GO is a known problem [14]. In an excellent review, Mazandu et
al. [15] describe two key challenges known as the dataset issue, where
different tools use different version of GO or annotation datasets, and
the scaling issue that results from tools making different assumption
regarding normalization methods and other minor considerations
such as root membership in ancestor sets etc. GGTK is an attempt
to provide correct, transparent, and modular implementations of
semantic algorithms where the dataset issue can be tackled eas-
ily and the assumptions that could lead to the scaling issue are
clearly stated. The benchmarks used in this work are provided as
simple lists of protein pairs and scores to facilitate comparisons
by other researchers (available at github.com/paulbible/ggtk). This
work demonstrates that many conclusions from the literature still

http://github.com/paulbible/ggtk
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Fig. 10. The percent of misclassified samples for each method under study, trained as classifiers, and four voting predictors evaluated by 10-fold cross-validation. The voting
predictor for an ontology type is presented as the last classifier within that ontology (red), and the voting predictor utilizing all semantic methods is presented at the far right.

hold despite changes in the structure of the ontologies and increases
in the number of annotations. In opposition to previous reports, we
find that MF methods performed best in predicting protein inter-
actions using cross-validation. We found that an ensemble of gene
similarity semantic methods could out perform any single method in
interaction prediction, but this boost in performance results mainly
from the integration of distinct information gained through the sep-
arate ontologies of BP, MF, and CC. Furthermore, we have developed
an efficient C++ toolkit with an easy-to-use Python interface, GGTK,
that will not only allow other researchers to take advantage of these
findings but also facilitate their own research into semantic methods.
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Appendix A. Detailed description of shared information
algorithms

A.1. Common ancestor shared information

Common ancestor shared information (CASI) is a naive baseline
algorithms that calculated the simple mean IC of all common ances-
tors. Eq. (A.2) defines CASI where |CA(t1, t2)| is the number of shared
ancestors.

SICASI(t1, t2) =

∑
t∈CA(t1,t2)IC(t)∣∣CA(t1, t2)

∣∣ (A.1)

A.2. Most informative common ancestor shared information

Most informative common ancestor (MICA) shared information is
equivalent to Resnik term similarity and is defined by the IC of min-
imum subsumer. MICA shared information is completely described
in the main text above through Eqs. (3), (4), and (5). The MICA rep-
resents the most specific concept that contains both t1 and t2 as
descendants.

A.3. Couto et al. 2007, GraSM

The graph-based semantic measure or GraSM was developed by
Couto et al. [20]. GraSM calculates the set of disjunctive common
ancestors (DCA) and computes their average as the shared infor-
mation. Eq. (A.2) defines the disjunctive ancestor pairs for a term t
where a1 and a2 are ancestor terms and Paths represents the num-
ber of unique paths from the ancestor to the descendant [49]. Couto
et al. [20] give an algorithm for calculating if a pair of ancestor terms
(a1, a2) are disjunctive in a descendant term t reproduced here in
Algorithm 1. From this definition, the DCA set is defined in Eq. (A.3).
Finally, the shared information is calculated as the mean IC of the set
of DCA(t1, t2) in Eq. (A.4).

DA(t) = {(a1, a2)|(∃p : p ∈ Paths(a1, t) ∧ a2 /∈ p)∧
(∃p : p ∈ Paths(a2, t) ∧ a1 /∈ p)} (A.2)

Algorithm 1. DisjAnc(t, (a1, a2))

DCA(t1, t2) =
{
a1 |a1 ∈ CA(t1, t2)∧

∀a2 : (a2 ∈ CA(t1, t2) ∧ IC(a1) ≤ IC(a2) ∧ a1 �= a2)

⟹ (a1, a2) ∈ DA(t1) ∪ DA(t2)
}

(A.3)

http://helix.nih.gov
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SIGraSM(t1, t2) =

∑
t∈DCA(t1,t2)IC(t)∣∣DCA(t1, t2)

∣∣ (A.4)

A.4. Adjusted GraSM

Adjusted GraSM makes only a slight change to the original
algorithm. Changing the greater than or equal to (≥) in Algorithm 1
to a strictly greater than (>) in the path number comparison causes
the algorithm’s behavior to change, and the size of the DCA set is
reduced. Supplemental Information Trace 1 and 2 provided a detailed
example of the differences between these two algorithms on a small
calculation.

A.5. Semantic frontier

The semantic frontier (SF) algorithm was developed to address
the potential under estimation of shared information and costly run-
time of GraSM. The SF algorithm calculates shared information by
averaging the IC of concepts that form the border between the com-
mon ancestor set and ancestors unique to each term. We term these
concepts the semantic frontier because they represent different bor-
ders to a shared territory. The SF calculation is outlined in Algorithms
2 and 3. The target function in Algorithm 3 returns the destination
node of a directed edge. The SF algorithm is based on the concept
of a breadth first search (BFS) visitor. A BFS visitor performs actions
when certain events in a BFS occur. The SF algorithm constructs a
BFS visitor that starts at a specific term in the GO graph and visits all
ancestor terms on its way to the ontology root. Anytime a new edge
is visited, it is added to the visitedEdges set for the starting term. Two
sets are constructed in this way (visitedEdgesT1 and visitedEdgesT2)
for the terms of interest t1 and t2. Any term t that satisfies Eq. (A.5) is
a member of the semantic frontier of t1 and t2.

Algorithm 2. SemanticFrontier(t1, t2)

Algorithm 3. V isitedEdgesBFS(t, visitedEdges, IncidentEdges)

t ∈ CA(t1, t2) ∧ ∃e | target(e) = t∧
((e ∈ visitedEdgesT1 ∧ e /∈ visitedEdgesT2)∨
(e ∈ visitedEdgesT2 ∧ e /∈ visitedEdgesT1)) (A.5)

The SF algorithm is an efficient implementation of an algorithm
developed by Zhang and Lai [21] that they call exclusively inher-
ited shared information (EISI). The shared information of these two
equivalent methods is defined in Eq. (A.6) where SF(t1, t2) represents
the set of terms in the semantic frontier (or exclusively inherited
common ancestors). Although equivalent in runtime complexity to
EISI, the SF algorithm uses an edge visitor to construct only the nec-
essary set of terms and descendants. This leads to a reduction in the
search space as well as more opportunities for early exit. A side-
by-side runtime comparison of the two algorithms was conducted,
but neither algorithm showed a consistent and repeatable speed
advantage (data not shown). As the size of the GO graph continues
to grow, the SF algorithm may offer more of an advantage through
reduction of the search space.

SISF(t1, t2) = SIEISI(t1, t2) =

∑
t∈SF(t1,t2)IC(t)∣∣SF(t1, t2)

∣∣ (A.6)

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.csbj.2017.01.009.
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