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Purpose: The evaluation of spelling performance in aphasia
reveals deficits in written language and can facilitate the
design of targeted writing treatments. Nevertheless, manual
scoring of spelling performance is time-consuming, laborious,
and error prone. We propose a novel method based on the
use of distance metrics to automatically score spelling. This
study compares six automatic distance metrics to identify
the metric that best corresponds to the gold standard—
manual scoring—using data from manually obtained spelling
scores from individuals with primary progressive aphasia.
Method: Three thousand five hundred forty word and
nonword spelling productions from 42 individuals with
primary progressive aphasia were scored manually. The
gold standard—the manual scores—were compared to scores
from six automated distance metrics: sequence matcher
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ratio, Damerau–Levenshtein distance, normalized Damerau–
Levenshtein distance, Jaccard distance, Masi distance, and
Jaro–Winkler similarity distance. We evaluated each distance
metric based on its correlation with the manual spelling score.
Results: All automatic distance scores had high correlation
with the manual method for both words and nonwords. The
normalized Damerau–Levenshtein distance provided the
highest correlation with the manual scoring for both words
(rs = .99) and nonwords (rs = .95).
Conclusions: The high correlation between the automated
and manual methods suggests that automatic spelling scoring
constitutes a quick and objective approach that can reliably
substitute the existing manual and time-consuming spelling
scoring process, an important asset for both researchers and
clinicians.
The evaluation and remediation of spelling (written
language production) plays an important role in
language therapy. Research on poststroke dysgra-

phia (Buchwald & Rapp, 2004; Caramazza & Miceli, 1990)
and on neurodegenerative conditions, such as primary
progressive aphasia (PPA), has shown effects of brain dam-
age on underlying cognitive processes related to spelling
(Rapp & Fischer-Baum, 2015). For example, spelling data
have been shown to facilitate reliable subtyping of PPA into
its variants (Neophytou et al., 2019), identify underlying
language/cognitive deficits (Neophytou et al., 2019; Sepelyak
et al., 2011), monitor the progression of the neurodegenera-
tive condition over time, inform treatment decisions (Fenner
et al., 2019), and reliably quantify the effect of spelling treat-
ments (Rapp & Kane, 2002; Tsapkini et al., 2014; Tsapkini
& Hillis, 2013).

For spelling treatment and evaluation, spelling-to-
dictation tasks are included in language batteries, such as
the Johns Hopkins University Dysgraphia Battery (Goodman
& Caramazza, 1985) and the Arizona Battery for Reading
and Spelling (Beeson et al., 2010). These evaluations can
identify the cognitive processes involved in the spelling of
both real words and nonwords (pseudowords). Spelling
of real words involves access to the speech sounds and to
lexicosemantic/orthographic representations stored in long-
term memory, whereas nonword spelling requires only the
learned knowledge about the relationship between sounds
and letters to generate plausible spellings (phonology-to-
orthography conversion; Tainturier & Rapp, 2001).

However, the task of scoring spelling errors manu-
ally is exceptionally time-consuming, laborious, and error
prone. In this research note, we propose to apply automated
distance metrics commonly employed in string comparison
Disclosure: The authors have declared that no competing interests existed at the time
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for the scoring of spelling of both regular words (i.e., words
with existing orthography) and nonwords (i.e., words with-
out existing orthography). We used manually scored spelling
data for individuals with PPA to evaluate the distance met-
rics as a tool for assessing spelling performance. The ulti-
mate goal of this work is to provide a tool to clinicians and
researchers for automatic spelling evaluation of individuals
with spelling disorders, such as PPA and stroke dysgraphia.
Spelling Performance Evaluation: Current Practices
Manual scoring of spelling responses is currently a

time-consuming process. The spelling evaluation proposal
by Caramazza and Miceli (1990) involves the comparison
of an individual’s spelling response with the standard spell-
ing of that word, letter by letter. The comparison is based
on a set of rules, which consider the addition of new letters
that do not exist in the target word, the substitution of
letters with others, the deletion of letters, and the movement
of letters to incorrect positions within words. There is also
a set of rules that account for double letters, such as deleting,
moving, substituting, or simplifying a double letter, or dou-
bling what should be a single letter. According to this scoring
approach, each letter in the target word is worth 1 point. If
the individual’s response includes changes such as those listed
above, a specified number of points are subtracted from the
overall score of the word. For example, if the target word is
“cat,” the maximum number of points is 3. If the patient’s re-
sponse is CAP, the word will be scored with 2 out of 3 points
because of the substitution of “T” with “P.”

The process applies slightly differently in words and
nonwords, given that for nonwords there are multiple possi-
ble correct spellings. For instance, for “foit,” both PHOIT
and FOIT are plausible spellings and, therefore, should be
considered correct. In one approach to scoring nonword
spelling, the scorer considers each response separately and
selects as the “target” response the option that would max-
imize the points for that response as long as there is adher-
ence to the phoneme-to-grapheme correspondence rules.
Following the example above, if a participant is asked to
spell “foit” and they write PHOAT, PHOIT would be cho-
sen as the “intended” target and not FOIT, because PHOIT
would assign 4 out of 5 points (i.e., substitute “I” with “A”),
while assuming FOIT as the target would only assign 2 out
of 4 points (i.e., substitute “I” with “A” and “PH” with “F”).
This process assumes that even if two participants get the
same nonwords, the target orthographic forms might be dif-
ferent across participants (depending on their responses),
and therefore, the total possible points for each nonword
might be different across participants. Clearly, when there is
more than one error in a response, nonword scoring depends
on the clinician’s assumptions about the assumed target word,
making the process extremely complex. The manual spelling
evaluation of spelling performance is currently the gold
standard of spelling evaluation, but it is often error prone,
takes a lot of time, and requires high interrater reliability
scores from at least two clinicians to ensure consistency.
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Attempts to automatically evaluate spelling perfor-
mance have been proposed before. For instance, McCloskey
et al. (1994) developed a computer program to identify the
different types of letter errors, namely, deletions, insertions,
substitutions, transpositions, and nonidentifiable errors. The
study has mostly focused on identifying error types rather
than error scores. More recently, Ross et al. (2019) devised
a hierarchical scoring system that simultaneously evaluates
both lexical and sublexical processing. More specifically,
this system identifies both lexical and sublexical parameters
that are believed to have shaped a given response, and these
parameters are matched to certain scores. Scores are coded
as S0–S9 and L0–L9 for the sublexical and lexical systems,
respectively. Each response gets an S and an L score. This
system was first constructed manually and was then autom-
atized with a set of scripts. Undoubtedly, both of these
studies provide valuable tools in qualitatively assessing the
cognitive measures that underly spelling but rely on com-
plex rules and do not offer a single spelling score for every
response, which is the measure that most clinicians need in
their everyday practice.

Other studies have used computational connectionist
models to describe the underlying cognitive processes of
spelling production (Brown & Loosemore, 1994; Bullinaria,
1997; Houghton & Zorzi, 1998, 2003; Olson & Caramazza,
1994), which are often inspired by related research on read-
ing (Seidenberg et al., 1984; Sejnowski & Rosenberg, 1987).
These approaches aim to model the functioning of the hu-
man brain through the representation of spelling by inter-
connected networks of simple units and their connections.
Although some of this work involves modeling acquired
dysgraphia, the aim of these models is not to score spelling
errors but rather to determine the cognitive processes that
underlie spelling. To the best of our knowledge, there have
been no attempts to provide automated single response
accuracy values.

Alternative Approaches Using “Distance Functions”
The comparison of different strings and the evalua-

tion of their corresponding differences are commonly carried
out using distance metrics, also known as “string similarity
metrics” or “string distance functions” (Jurafsky & Martin,
2009). A distance is a metric that measures how close two
elements are, where elements can be letters, characters, num-
bers, and more complex structures such as tables. Such
metrics measure the minimum number of alternations, such
as insertions, deletions, substitutions, and so on, required
to make the two strings identical. For example, to make a
string of letters such as “grapheme” and “graphemes” iden-
tical, you need to delete the last “s” from “graphemes,” so
their distance is 1; to make “grapheme” and “krapheme”
identical, you need to substitute “k” with “g”; again, the
distance is 1. In many ways, the automatic approach de-
scribed above is very similar to the manual approach currently
being employed for the calculation of spelling, making auto-
matic distance metrics exceptionally suitable for automating
spelling evaluation. Commonly employed measures are as
4179–4192 • December 2020



follows: sequence matcher ratio, Damerau–Levenshtein
distance, normalized Damerau–Levenshtein distance, Jac-
card distance, Masi distance, and Jaro–Winkler similarity
distance. These measures have many applications in language
research, biology (such as in DNA and RNA analysis), and
data mining (Bisani & Ney, 2008; Damper & Eastmond,
1997; Ferragne & Pellegrino, 2010; Gillot et al., 2010;
Hathout, 2014; Heeringa et al., 2009; Hixon et al., 2011;
Jelinek, 1996; Kaiser et al., 2002; Navarro, 2001; Peng
et al., 2011; Riches et al., 2011; Schlippe et al., 2010; Schlüter
et al., 2010; Spruit et al., 2009; Tang & van Heuven, 2009;
Wieling et al., 2012). In a study by Smith et al. (2019), the
phonemic edit distance ratio, which is an automatic distance
function, was employed to estimate error frequency analysis
for evaluating the speech production of individuals with
acquired language disorders, such as apraxia of speech
and aphasia with phonemic paraphasia, highlighting the
efficacy of distance metrics in automating manual measures
in the context of language pathology.

The Current Study
The aim of this research note is to propose an auto-

matic spelling scoring methodology that employs distance
metrics to generate spelling scores for both real-word and
nonword spellings. Therefore, we compared scoring based
on the manual spelling scoring method to six established dis-
tance metrics: (a) sequence matcher ratio, (b) Damerau–
Levenshtein distance, (c) normalized Damerau–Levenshtein
distance, (d) Jaccard distance, (e) Masi distance, and (f) Jaro–
Winkler similarity distance (see Appendix A for more details).
We have selected these methods because they have the poten-
tial to provide results that can automate the manual method
for scoring of spelling errors using conceptually different ap-
proaches. We selected two types of distance metrics in this
research note: those that treat words as sets of letters and
those that treat words as strings of letters. The sequence
matcher ratio (a.k.a. gestalt pattern matching), the Jaccard
distance, and the Masi distance compare sets and employ
set theory to calculate distance; in a set, a letter can appear
only once. On the other hand, the Damerau–Levenshtein
distance and the normalized Damerau–Levenshtein distance
treat words as strings and are estimating the movements of
letters, namely, the insertions, deletions, and substitutions re-
quired to make two strings equal. The only difference be-
tween these two metrics is that the normalized Damerau–
Levenshtein distance calculates transpositions as well.
Finally, the Jaro–Winkler similarity distance is a method
similar to the Levenshtein distance, but it gives more favor-
able scores to strings that match from the beginning of the
word (see Appendix A for details).

By comparing the outcomes of these metrics to the
manual spelling scoring, this study aims to identify the met-
ric that best matches the manual scoring and can therefore
be employed to automatically evaluate the spelling of both
real words and nonwords. The automated metrics can be
employed in the clinic to facilitate spelling evaluation and
provide a quantitative approach to spelling scoring that
Them
would greatly improve not only speed and efficiency but
also consistency relative to current practice.

Method
Participants

Forty-two patients with PPA were administered a test
of spelling-to-dictation with both words and nonwords. The
patients were recruited over a period of 5 years as part of a
clinical trial on the effects of transcranial direct current stim-
ulation in PPA (ClinicalTrials.gov Identifier: NCT02606422).
The data evaluated here were obtained from the evaluation
phase preceding any treatment. All patients are subtyped
into the three PPA variants following the consensus criteria
by Gorno-Tempini et al. (2011; see Appendix B).

Data Collection and Scoring
Spelling-to-dictation tasks were administered to

42 patients with PPA to assess patients’ spelling performance.
Twenty-five patients received a 92-item set (73 words and
19 nonwords), 11 patients received a 138-item set (104 words
and 34 nonwords), three patients received a 184-item set
(146 words and 38 nonwords), two patients received a
168-item set (134 words and 34 nonwords), and one patient
received a 62-item set (54 words and eight nonwords; 4,768
words in total, 3,729 words and 1,039 nonwords). See also
Appendix C for the words included in the five sets of words
and nonwords.

Manual Scoring
For the manual scoring, we followed the schema pro-

posed by Caramazza and Miceli (1990; see also Tainturier
& Rapp, 2003), as summarized in Appendix D. Clinicians
identify letter errors (i.e., additions, doublings, movements,
substitutions, and deletions), and on that basis, they calcu-
late a final score for each word. The outcome of this scoring
is a percentage of correct letters for each word, ranging be-
tween 0 and 1, where 0 indicates a completely incorrect
response and 1 indicates a correct response. The mean score
for words was 0.84 (0.26), and for nonwords, it was 0.78
(0.27). To manually score all the data reported here, the cli-
nician, who was moderately experienced, required approxi-
mately 120 hr (about 1–2 min per word), but this time can
differ, depending on the experience of clinicians.

To evaluate reliability across scorers (a PhD researcher,
a research coordinator, and a clinician), 100 words and
100 nonwords were selected from different patients, and
the Spearman correlations of the scorers were calculated.
From these 200 selected items, 90% had incorrect spellings,
and 10% had correct spellings. As shown in Table 1, real
words exhibited higher interscorer correlations compared to
nonwords, underscoring the need for a more reliable non-
word scoring system.

Automated Scoring
The automated scoring consisted of several steps.

Both the targets and the responses were transformed into
istocleous et al.: A Tool for Automatic Scoring of Spelling 4181
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Table 1. Correlation statistics between the three manual raters (N =
100).

X Y

Real words Nonwords

rs p rs p

Rater A Rater B .93 .0001 .77 .0001
Rater A Rater C .95 .0001 .78 .0001
Rater B Rater C .97 .0001 .88 .0001
lowercase, and all leading and following spaces were re-
moved. Once the data were preprocessed, we calculated the
distance between the target and the response for every indi-
vidual item. Different approaches were taken for words
and nonwords.

• The spelling scoring of words was obtained by com-
paring the spelling of the target word to that of the
written response provided by the participant.

• The spelling scoring of nonwords was estimated by
comparing the phonemic transcriptions of the target
and the response. To do this, both the target and the
response were transcribed into the International Pho-
netic Alphabet (IPA). To convert words into IPA, we
employed eSpeak, which is an open-source software
text-to-speech engine for English and other languages,
operating on Linux, MacOS, and Windows. The
reason we decided to compare the phonetic transcrip-
tions of target and response instead of the spelling
directly is that, as indicated in the introduction, non-
words (in English) can potentially have multiple cor-
rect orthographic transcriptions yet only one correct
phonetic transcription (see example in the Spelling
Performance Evaluation: Current Practices section).
To simplify string comparison, we removed two sym-
bols from the phonetic transcriptions: the stress sym-
bol /ˈ/ and the length symbol /ː/. For example, using
the automated transcription system, a target nonword
“feen” is converted to a matching phonemic presenta-
tion /fin/ (instead of /fiːn/).

The string comparison process was repeated for each
of the six distance metrics described in the introduction,
namely, (a) the sequence matcher ratio, (b) the Damerau–
Levenshtein distance, (c) the normalized Damerau–Levenshtein
distance, (d) the Jaccard distance, (e) the Masi distance,
and (f) the Jaro–Winkler similarity distance (see Appendix A).
The distance values for each of these metrics are values rang-
ing between 0 and 1. For the sequence matcher ratio, a perfect
response is equal to 1, while for the normalized Damerau–
Levenshtein distance, the Jaccard distance, the Masi distance,
and the Jaro–Winkler similarity distance, a perfect response
is equal to 0. The only distance metric that does not have
values ranging between 0 and 1 is the Damerau–Levenshtein
distance, which provides a count of the changes (e.g., dele-
tions, insertions) required to make two strings equal. The
algorithm required less than 1 s to calculate spelling scores
for the whole database of words and nonwords.
4182 Journal of Speech, Language, and Hearing Research • Vol. 63 •
Method Comparison
Once all the distance metrics were calculated for the

entire data set, we estimated their correlation to manual
scoring. The output of the comparison was a Spearman’s
rank correlation coefficient, indicating the extent to which
the word accuracy scores correlate. All distance metrics
were calculated in Python 3. To calculate correlations and
their corresponding significance tests (significance tests for
correlations and the resulting p values are calculated using
t tests from 0), we employed the Python packages, namely,
SciPy (Jones et al., 2001), Pingouin (Vallat, 2018), and
pandas (McKinney, 2010).

Results
The results of the Spearman correlations between

manual and automatic scorings for words and nonwords
are shown in Figures 1 and 2 and in Tables 2 and 3, respec-
tively. The first column of the correlation matrix shows
the correlations of the manual evaluation with each of the
estimated distance metrics. The other columns show the
correlations of the automatic distance metrics with one
another. For words, the manual scoring and the automated
metric scoring provided correlations over .95, which are
high correlations. Specifically, there was a high correlation
of the normalized Damerau–Levenshtein distance, the
Damerau–Levenshtein distance, and the sequence matcher
with the manual scoring of spelling productions, rs(3538) =
.99, p = .001, which indicates that distance metrics provide
almost identical results to the manual evaluation. There
was a slightly lower correlation of the Jaro–Winkler similar-
ity distance with the manual scores, rs(3538) = .96, p = .001.
The Jaccard distance and the Masi distance had the lowest
correlations with the manual scoring, rs(3538) = .95, p = .001.

The normalized Damerau–Levenshtein distance
outperformed all other distance metrics on nonwords with
rs(985) = .95, p < .001, followed by the Damerau–Levenshtein
distance and sequence matcher ratio that correlated with
the manual estimate of spelling with rs(985) = .94, p < .001,
for both. The Jaccard distance and the Masi distance
had correlations of rs(985) = .93, p < .001, and finally, the
Jaro–Winkler similarity distance had the lowest correlation
for nonwords, with a value of rs(985) = .91, p < .001. Im-
portantly, for the normalized Damerau–Levenshtein dis-
tance, which outperforms the other distance metrics, if we
remove the correct cases from the data set (the items on
which participants scored 100%), the correlation remains
very high with rs(3538) = .92 (see Table 2) for words and
rs(985) = .82 for nonwords (see Table 3).

Discussion
This study aimed to provide a tool for scoring spell-

ing performance automatically by identifying a measure
that corresponds closely to the current gold standard for
spelling evaluation, the manual letter-by-letter scoring of
spelling performance (Caramazza & Miceli, 1990). We
4179–4192 • December 2020



Figure 1. Correlation matrix for words. JaccardD = Jaccard distance; JWSD = Jaro–Winkler
similarity distance; Manual = manual spelling estimation; MasiD = Masi distance; Norm. RDLD =
normalized Damerau–Levenshtein distance; RDLD = Damerau–Levenshtein distance; SM =
sequence matcher ratio.

Figure 2. Correlation matrix for nonwords. JaccardD = Jaccard distance; JWSD = Jaro–Winkler
similarity distance; Manual = manual spelling estimation; MasiD = Masi distance; Norm. RDLD =
normalized Damerau–Levenshtein distance; RDLD = Damerau–Levenshtein distance; SM =
sequence matcher ratio.

Themistocleous et al.: A Tool for Automatic Scoring of Spelling 4183



Table 2. Correlation statistics between the manual method and the automatic distance metrics for real words
(N = 3,540).

Distance metric

Correct and incorrect spellings Incorrect spellings

rs 95% CI rs 95% CI

SM .994* [.99, .99] .92* [.91, .92]
RDLD −.990* [−.99, −.99] −.86* [−.87, −.84]
Norm. RDLD −.995* [−.99, −.99] −.92* [-.93, −.91]
JaccardD −.952* [−.96, −.95] −.86* [−.88, −.85]
MasiD −.950* [−.95, −.95] −.83* [−.84, −.81]

Note. The table provides correlations of the manual approach with the automated distance metrics on all stimuli
(Correct and incorrect spellings; N = 3,540) and correlations of the manual approach and the automated distance
metrics based only on spellings that were spelled incorrectly (Incorrect spellings; N = 1,327). Shown in the table
are the correlation coefficient (rs) and the parametric 95% confidence intervals (CIs) of the coefficient, while the
asterisk signifies that p < .0001. In bold is the distance metric with the highest score overall. SM = sequence
matcher ratio; RDLD = Damerau–Levenshtein distance; Norm. RDLD = normalized Damerau–Levenshtein distance;
JaccardD = Jaccard distance; MasiD = Masi distance.
compared six distance functions that measure the similarity
of strings of letters previously used in other scientific fields
for estimating distances of different types of sequences (e.g.,
sequencing DNA and in computational linguistics). The re-
sults showed that all six automated measures had very
high correlations with the manual scoring for both words and
nonwords. However, the normalized Damerau–Levenshtein
distance, which had a .99 correlation with the manual scores
for words and .95 correlation with the manual scores for
nonwords, outperformed the other distance metrics. An
important reason for the high correlation between the nor-
malized Damerau–Levenshtein distance and the manual
method is the fact that it considers all four types of errors,
namely, deletions, insertions, substitutions, and transposi-
tions, whereas the simple Damerau–Levenshtein distance
calculates only deletions, insertions, and substitutions (see
Appendix A for more details on the two methods). There-
fore, the findings provide good support for using the nor-
malized Damerau–Levenshtein distance as a substitute
for the manual process for scoring spelling performance.
Table 3. Correlation statistics between the manual method
(N = 987).

Distance metric

Correct and incorrect spe

rs 95

SM .945* [.9
RDLD −.936* [−.9
Norm. RDLD −.947* [−.9
JaccardD −.935* [−.9
MasiD −.933* [−.9

Note. The table provides correlations of the manual approa
(Correct and incorrect spellings; N = 987) and correlations of
metrics on spellings that were spelled incorrectly (Incorrect sp
coefficient (rs) and the parametric 95% confidence intervals
that p < .0001. In bold is the distance metric with the highest sc
Damerau–Levenshtein distance; Norm. RDLD = normalized
distance; MasiD = Masi distance.
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An important advantage of this method over the manual
methods is that it provides objective measures of spelling
errors. The present tool will facilitate the evaluation of
written language impairments and their treatment in PPA
and in other patient populations.

A key characteristic of the approach employed for
the scoring of words and nonwords is that both types of
items are treated as sequences of strings. The evaluation al-
gorithm provides a generic distance that can be employed
to score both words and nonwords. The only difference in
evaluating spelling performance in words and nonwords is
that, as nonwords do not have a standard orthographic
representation, rather, they can be transcribed in multiple
different ways that are all considered to be correct. As dis-
cussed earlier, this is because, in English orthography, dif-
ferent characters and sequences of characters may be used
to represent the same sound (e.g., /s/ can be represented as
〈ps〉 in psychology, 〈s〉 in seen, and 〈sc〉 in scene). Also, as
shown by the interrater reliability check, for real words, the
correlations were high between the three manual scorers,
and the automatic distance metrics of nonwords

llings Incorrect spellings

% CI rs 95% CI

4, .95] .799* [.77, .81]
4, −.93] −.780* [−.79, −.76]
5, −.94] −.821* [−.86, −.78]
4, −.93] −.786* [−.79, −.76]
4, −.92] −.778* [−.78, −.74]

ch with the automated distance metrics on all stimuli
the manual approach and of the automated distance
ellings; N = 520). Shown in the table are the correlation
(CIs) of the coefficient, while the asterisk signifies
ore overall. SM = sequence matcher ratio; RDLD =
Damerau–Levenshtein distance; JaccardD = Jaccard
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but for nonwords, the correlations were lower. This further
highlights the need for a more efficient and consistent way
of scoring nonwords.

With the innovative inclusion of IPA transcription to
represent nonwords phonemically, we have provided a uni-
tary algorithm that can handle both words and nonwords.
For nonwords, once the targets and responses were phone-
mically transcribed, we estimated their distance in the same
fashion as we estimated the distance between targets and
responses for real words. For example, if the target word is
KANTREE, eSpeak will provide the IPA form /kantɹi/.
If the patient transcribed the word as KINTRA, the pro-
posed approach will compare /kantɹi/ to /kɪntɹə/. An advan-
tage of using IPA is that it provides consistent phonemic
representations of nonwords. This approach contrasts with
the challenges faced in manual scoring to estimate the errors
for nonwords that can be orthographically represented in
multiple ways. In these cases, clinicians have to identify the
target representation that the patient probably had in mind
so that the scoring is “fair.” For instance, in the manual
approach, if the target word is FLOPE and the patient wrote
PHLAP, a clinician may not compare the word to the target
word FLOPE but to a presumed target PHLOAP, as this is
orthographically closer to the response. This would give a
score of 5/6. However, a different clinician may compare this
response to PHLOPE and provide a different score, specifi-
cally, 4/6 (see also the Alternative Approaches Using “Dis-
tance Functions” section for discussion). As a result, each
scorer’s selection of a specific intended target can influence
the scoring by enabling a different set of available options
for the spelling of the targets. This clearly poses addi-
tional challenges for manual scoring of nonword spelling
responses.

The phonemic transcription of nonwords generates a
single pronunciation of a spelled word that was produced
using grapheme to pronunciation rules of English, without
accessing the lexicon. The pronunciation rules prioritize
the most probable pronunciation given the context in which
a letter appears (i.e., what letters precede and follow a given
letter). What is novel about the proposed approach is that
it does not require generating an “intended target.” Instead,
the patients’ actual response is converted to IPA and com-
pared to the IPA of the target. If the IPA transcription of
the target nonword and the transcription of the response
match on their pronunciation, the response is considered
correct. Since the IPA transcription always provides the
same representation for a given item, without having to
infer a participant’s intended target, the algorithm produces
a consistent score, which we consider a valuable benefit of
the proposed approach.

The pronunciation rules convert an orthographic
item to the most probable pronunciation transcription.
For example, the nonwords KANTREE, KANTRY, or
KANTRI will all be transcribed by the program into /kæntɹi/,
and all of these spellings would be scored as correct. How-
ever, a less straightforward example is when, for instance,
for the stimulus /raInt/, a patient writes RINT. A clinician
might choose to score this as correct based on the writing of
Them
the existing word PINT /paInt/. On the other hand, the auto-
mated algorithm will transcribe RINT into /rInt/ and mark
this as an error. However, because such cases are ambiguous,
they could also create discrepancies between clinicians.
However, because the automated algorithm provides consis-
tent phonemic representation for every item, it eliminates
discrepancies that might occur between different clinicians
and in human scoring in general, helping to offset the dis-
crepancies between manual and automated scoring.

A problem that might arise is the generalizability of
the algorithm for patients and clinicians with different
English accents, which may lead to different spellings. Some
of these cases can be addressed by selecting the correspond-
ing eSpeak pronunciation when using the algorithm. For
example, the system already includes pronunciations for
Scottish English, Standard British English (received pronun-
ciation), and so on, and further pronunciation dictionaries
can be added. However, in future work and especially when
this automated method is used in areas of the world with
distinct dialects, the target items can be provided in IPA for-
mat as well, especially for the nonwords.

Lastly, it is important to note that, for the purpose
of demonstrating this new methodology, this study used the
spelling data from individuals with PPA. However, tests
evaluating spelling performance are currently being employed
across a broad variety of patient populations, including
children with language disorders, as well as adults with
stroke-induced aphasia and acquired neurogenic language
disorders. Therefore, the proposed method can be employed
to estimate spelling performance across a range of different
populations, for a variety of different purposes.

A limitation of the automated method described here
is that it provides item-specific scores, but it does not iden-
tify error types, for example, it does not identify semantic
and phonologically plausible errors. For instance, if the tar-
get is “lion” but the response is TIGER, then this is a se-
mantic substitution error. On the other hand, if the target is
“lion” but the response is LAION, then this is a phonologi-
cally plausible error. Although this labeling is not provided
by the scoring algorithm as currently configured, it can be a
useful feature to implement both in clinical and research
work (Rapp & Fischer-Baum, 2015). Error type labeling
such as this can extend this work even further, adding to the
value of this new tool, and it thus constitutes important di-
rection for future research.

Conclusions
The aim of this study has been to provide an objec-

tive method for scoring spelling performance that can be
used both in clinical and research settings to replace the
current manual spelling scoring process, which is both time-
consuming and laborious. We obtained spelling scorings
using several automatic distance metrics and evaluated their
efficiency by calculating their correlations with manual scor-
ing. Our findings showed that the normalized Damerau–
Levenshtein distance provides scores very similar to man-
ual scoring for both words and nonwords, with .99 and
istocleous et al.: A Tool for Automatic Scoring of Spelling 4185



.95 correlations, respectively, and can thus be employed to
automate the scoring of spelling. For words, this distance
is estimated by comparing the orthographic representation
of the target and the response, while for nonwords, the
distance is calculated by comparing the phonemic, IPA-
transcribed representation of both the target and response.
Finally, it is important to note that, while the manual scor-
ing for a data set of the size discussed here can take many
hours to complete, the automated scoring can be completed
in less than 1 s. These results provide the basis for develop-
ing a useful tool for the clinicians and the researchers to
evaluate spelling performance accurately and efficiently.
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Distance Metrics
1. The sequence matcher ratio proposed by Ratcliff and Metzener (1988) provides the similarity of two strings as the number
of matching characters divided by the total number of characters in the two strings. It recursively identifies common characters
in the longest common substring (a.k.a. longest common subsequence) and the characters in the string without matched
characters preceding or following the longest common subsequence.

2. The Damerau–Levenshtein distance calculates the minimal number of insertions, deletions, and substitutions required to
make two strings equal. The Levenshtein function leva,b(i, j) between two strings a and b is the distance between an i-symbol
prefix (initial substring) of string a and a j-symbol prefix of b. Levenshtein distance is symmetric so that 0 ≤ lev(a, b) ≤ max(|a|, |b|).
Therefore, the Levenshtein distance between two strings a, b (of length |a| and |b|, respectively) is given by leva, b(|a|, |b|), where

leva;b i; jð Þ ¼
max i; jð Þ if min i; jð Þ ¼ 0;

min
leva;b i −1; jð Þ þ 1
leva;b i; j −1ð Þ þ 1
leva;b i −1; j −1ð Þ þ 1 ai≠bjð Þ

otherwise;
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Appendix A (p. 2 of 2)

Distance Metrics
where 1 ai≠bjð Þ is the indicator function equal to 0 when ai = bj and equal to 1 otherwise and leva, b(i, j) is the distance between

the first i characters of a and the first j characters of b. The first element (leva, b(i − 1, j) + 1) in the minimum corresponds to
deletion (from a to b), the second (leva, b(i, j − 1) + 1) corresponds to insertion, and the third to match (leva, b(i − 1, j − 1) + 1) or
mismatch, depending on whether the respective symbols are the same.

3. Normalized Damerau–Levenshtein distance extends the basic Levenshtein distance described above by adding transposition
as an operation in addition to insertions, deletions, and substitutions. The normalized Damerau–Levenshtein distance provides
the Damerau–Levenshtein distance divided by the number of characters of the longest string in characters. The Damerau–
Levenshtein function dleva,b(i, j) between two strings a and b is the distance between an i-symbol prefix (initial substring) of
string a and a j-symbol prefix of b. The “restricted distance” function is defined recursively as follows:

dleva;b i; jð Þ ¼ min

0 if i ¼ j ¼ 0
dleva;b i −1; jð Þ þ 1 if i > 0
dleva;b i; j −1ð Þ þ 1 if j > 0
dleva;b i −1; j −1ð Þ þ 1 ai≠bjð Þ if i; j > 0

dleva;b i − 2; j − 2ð Þ þ 1 if i; j > 1 and a i½ � ¼ b j −1½ � and a i − 1½ � ¼ b j½ �;

8>>>><
>>>>:

(2)

where 1 ai≠bjð Þ is equal to 0 when ai = bj and equal to 1 otherwise.

As in the Damerau–Levenshtein distance, the elements in the minimum match one of the following processes:

1. A deletion (from a to b) is denoted by dleva,b(i − 1, j) + 1.

2. An insertion (from a to b) is denoted by dleva,b(i, j − 1) + 1.

3. A (mis)match is denoted by dleva,b(i − 1, j − 1) + 1 ai≠bjð Þ.
4. A transposition is denoted by dleva,b(i − 2, j − 2) + 1.

4. The Jaccard distance is defined as the ratio of the size of the symmetric difference ((A ∪ B) − (A ∩ B)); the symmetric
difference is the set of elements that are in either of the sets and not in the intersection of the two sets. The Jaccard distance
calculates the dissimilarity between sets, and it is estimated by calculating the intersection over the union (a.k.a. Jaccard similarity
coefficient), which is the division of the difference of the sizes of the union and the intersection of two sets by the size of the
union and then subtracting the intersection over the union from 1.

dJ A;Bð Þ ¼ 1 − J A;Bð Þ ¼ ∣A ∪B∣−∣A∩B ∣
∣A ∪B∣

(3)

5. The Masi distance is measuring the agreement on items of sets (Passonneau, 2006). Like the Jaccard distance, the Masi
distance compares sets, rather than a string of characters. To estimate the Masi distance, the length of the intersection of
strings a and b (a ∩ b) and the length of the union of string a and b (a ∪ b) are estimated.

dmasi a;bð Þ ¼ 1 −
length of a ∩ b
length of a ∪ b

� score (4)

The score value is estimated as follows:
• If the length of string a is equal to string b and to the length of a ∩ b, then the score is equal to 1.

• If the length of a ∩ b is equal to the smallest string (a or b), then the score is 0.67.

• Else if the length of the intersection is greater than 0, then the score is 0.33.

• If nothing holds, then the score is 0.
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Appendix B

Demographic and Neuropsychological Data on the Participants
Variant Gender Education (years) Age Years from disease onset Language severitya Overall severityb

nfvPPA = 10
lvPPA = 17
svPPA = 6
mixed = 9

F = 18
M = 24

M = 13.4 (SD = 7) M = 67.1 (SD = 6.9) M = 4.4 (SD = 2.9) M = 1.8 (SD = 0.9) M = 6.6 (SD = 4.9)

Note. nfvPPA = nonfluent variant primary progressive aphasia; lvPPA = logopenic variant primary progressive aphasia; svPPA = semantic
variant primary progressive aphasia.
aLanguage severity was measured with the Frontotemporal Dementia Clinical Dementia Rating (FTD-CDR Language subscale; see Knopman
et al., 2008; range: 0–3). bOverall severity was measured with the FTD-CDR Language subscale (see Knopman et al., 2008)—rating (FTD-CDR
“sum of boxes”; see Knopman et al., 2008; range: 0–24).
Appendix C (p. 1 of 4)

Five Sets of Words and Nonwords Evaluated in the Study
184-set 168-set 138-set

target type target type target

REMMUN nonword MURNEE nonword MURNEE
MUSHRAME nonword HERM nonword HERM
SARCLE nonword DONSEPT nonword DONSEPT
TEABULL nonword MERBER nonword MERBER
HAYGRID nonword TROE nonword TROE
CHENCH nonword PYTES nonword PYTES
MURNEE nonword FOYS nonword FOYS
REESH nonword WESSEL nonword WESSEL
BOKE nonword FEEN nonword FEEN
HERM nonword SNOY nonword SNOY
HANNEE nonword PHLOKE nonword PHLOKE
DEWT nonword DEWT nonword DEWT
KWINE nonword GHURB nonword GHURB
DONSEPT nonword PHOIT nonword PHOIT
PHOIT nonword HAYGRID nonword HAYGRID
KANTREE nonword KROID nonword KROID
LORN nonword KITTUL nonword KITTUL
FEEN nonword BRUTH nonword BRUTH
SKART nonword KANTREE nonword KANTREE
REMMUN nonword BERK nonword BERK
MUSHRAME nonword WUNDOE nonword WUNDOE
SARCLE nonword SARCLE nonword SARCLE
TEABULL nonword SORTAIN nonword SORTAIN
HAYGRID nonword LORN nonword LORN
CHENCH nonword BOKE nonword BOKE
MURNEE nonword TEABULL nonword TEABULL
REESH nonword HANNEE nonword HANNEE
BOKE nonword KWINE nonword KWINE
HERM nonword REMMUN nonword REMMUN
HANNEE nonword SUME nonword SUME
DEWT nonword SKART nonword SKART
KWINE nonword REESH nonword REESH
DONSEPT nonword MUSHRAME nonword MUSHRAME
PHOIT nonword CHENCH nonword CHENCH
KANTREE nonword SHOOT word DECIDE
LORN nonword HANG word GRIEF
FEEN nonword PRAY word SPEND
SKART nonword SHAVE word LOYAL
SHOOT word KICK word RATHER
HANG word CUT word PREACH
PRAY word SPEAK word FRESH
SHAVE word ROPE word CONQUER

Them
92-set 62-set

type target type target type

nonword REMMUN nonword REMMUN nonword
nonword MUSHRAME nonword MUSHRAME nonword
nonword SARCLE nonword SARCLE nonword
nonword TEABULL nonword TEABULL nonword
nonword HAYGRID nonword HAYGRID nonword
nonword CHENCH nonword CHENCH nonword
nonword MURNEE nonword MURNEE nonword
nonword REESH nonword REESH nonword
nonword BOKE nonword BOKE nonword
nonword HERM nonword HERM nonword
nonword HANNEE nonword HANNEE nonword
nonword DEWT nonword DEWT nonword
nonword KWINE nonword KWINE nonword
nonword DONSEPT nonword DONSEPT nonword
nonword PHOIT nonword PHOIT nonword
nonword KANTREE nonword KANTREE nonword
nonword LORN nonword LORN nonword
nonword FEEN nonword FEEN nonword
nonword SKART nonword SKART nonword
nonword SHOOT word ENOUGH word
nonword HANG word FRESH word
nonword PRAY word QUAINT word
nonword SHAVE word FABRIC word
nonword KICK word CRISP word
nonword CUT word PURSUIT word
nonword SPEAK word STREET word
nonword ROPE word PRIEST word
nonword DEER word SUSPEND word
nonword CANE word BRISK word
nonword LEAF word SPOIL word
nonword DOOR word RIGID word
nonword ROAD word RATHER word
nonword BOOK word MOMENT word
nonword BALL word HUNGRY word
word SEW word PIERCE word
word KNOCK word LISTEN word
word SIEVE word GLOVE word
word SEIZE word SINCE word
word GAUGE word BRING word
word SIGH word ARGUE word
word LAUGH word BRIGHT word
word CHOIR word SEVERE word

(table continues)
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. (Continued).

184-set 168-set 138-set 92-set 62-set

target type target type target type target type target type

KICK word DEER word SHALL word AISLE word CARRY word
CUT word CANE word SOUGHT word LIMB word AFRAID word
SPEAK word LEAF word THREAT word HEIR word WHAT word
ROPE word DOOR word ABSENT word TONGUE word STARVE word
DEER word ROAD word SPEAK word SWORD word MEMBER word
CANE word BOOK word ENOUGH word GHOST word TALENT word
LEAF word BALL word CAREER word EARTH word UNDER word
DOOR word SEW word CHURCH word ENOUGH word LENGTH word
ROAD word KNOCK word BRIGHT word FRESH word BORROW word
BOOK word SIEVE word ADOPT word QUAINT word SPEAK word
BALL word SEIZE word STRICT word FABRIC word FAITH word
SEW word GAUGE word LEARN word CRISP word STRICT word
KNOCK word SIGH word QUAINT word PURSUIT word HAPPY word
SIEVE word LAUGH word BECOME word STREET word GRIEF word
SEIZE word CHOIR word STRONG word PRIEST word ABSENT word
GAUGE word AISLE word BUGLE word SUSPEND word POEM word
SIGH word LIMB word STARVE word BRISK word THOUGH word
LAUGH word HEIR word DENY word SPOIL word GREET word
CHOIR word TONGUE word LENGTH word RIGID word PROVIDE word
AISLE word SWORD word PILLOW word RATHER word WINDOW word
LIMB word GHOST word CAUGHT word MOMENT word
HEIR word EARTH word BEFORE word HUNGRY word
TONGUE word DECIDE word AFRAID word PIERCE word
SWORD word GRIEF word BODY word LISTEN word
GHOST word SPEND word HUNGRY word GLOVE word
EARTH word LOYAL word COLUMN word SINCE word
ENOUGH word RATHER word THESE word BRING word
FRESH word PREACH word STRIPE word ARGUE word
QUAINT word FRESH word MUSIC word BRIGHT word
FABRIC word CONQUER word CRISP word SEVERE word
CRISP word SHALL word HURRY word CARRY word
PURSUIT word SOUGHT word PIERCE word AFRAID word
STREET word THREAT word TINY word WHAT word
PRIEST word ABSENT word ARGUE word STARVE word
SUSPEND word SPEAK word DIGIT word MEMBER word
BRISK word ENOUGH word COMMON word TALENT word
SPOIL word CAREER word ANNOY word UNDER word
RIGID word CHURCH word STREET word LENGTH word
RATHER word BRIGHT word COULD word BORROW word
MOMENT word ADOPT word RIGID word SPEAK word
HUNGRY word STRICT word OFTEN word FAITH word
PIERCE word LEARN word BRING word STRICT word
LISTEN word QUAINT word LISTEN word HAPPY word
GLOVE word BECOME word FIERCE word GRIEF word
SINCE word STRONG word NATURE word ABSENT word
BRING word BUGLE word UNDER word POEM word
ARGUE word STARVE word MOTEL word THOUGH word
BRIGHT word DENY word SHOULD word GREET word
SEVERE word LENGTH word VULGAR word PROVIDE word
CARRY word PILLOW word CHEAP word WINDOW word
AFRAID word CAUGHT word SPOIL word
WHAT word BEFORE word CERTAIN word
STARVE word AFRAID word ABOVE word
MEMBER word BODY word LOUD word
TALENT word HUNGRY word SINCE word
UNDER word COLUMN word SLEEK word
LENGTH word THESE word REVEAL word
BORROW word STRIPE word BOTH word
SPEAK word MUSIC word NOISE word
FAITH word CRISP word INTO word
STRICT word HURRY word STRANGE word
HAPPY word PIERCE word CARRY word

(table continues)
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Five Sets of Words and Nonwords Evaluated in the Study
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. (Continued).

184-set 168-set 138-set 92-set 62-set

target type target type target type target type target type

GRIEF word TINY word SOLVE word
ABSENT word ARGUE word OCEAN word
POEM word DIGIT word DECENT word
THOUGH word COMMON word THOUGH word
GREET word ANNOY word SHORT word
PROVIDE word STREET word ABOUT word
WINDOW word COULD word BOTTOM word
SHOOT word RIGID word FRIEND word
HANG word OFTEN word LOBSTER word
PRAY word BRING word VIVID word
SHAVE word LISTEN word BROAD word
KICK word FIERCE word WHILE word
CUT word NATURE word CHILD word
SPEAK word UNDER word HAPPEN word
ROPE word MOTEL word SEVERE word
DEER word SHOULD word AFTER word
CANE word VULGAR word PRIEST word
LEAF word CHEAP word MERGE word
DOOR word SPOIL word GLOVE word
ROAD word CERTAIN word ONLY word
BOOK word ABOVE word GREET word
BALL word LOUD word MEMBER word
SEW word SINCE word BEGIN word
KNOCK word SLEEK word BRISK word
SIEVE word REVEAL word WHAT word
SEIZE word BOTH word BORROW word
GAUGE word NOISE word JURY word
SIGH word INTO word SLEEVE word
LAUGH word STRANGE word BOUGHT word
CHOIR word CARRY word HAPPY word
AISLE word SOLVE word SPACE word
LIMB word OCEAN word ANGRY word
HEIR word DECENT word THOSE word
TONGUE word THOUGH word FAITH word
SWORD word SHORT word
GHOST word ABOUT word
EARTH word BOTTOM word
ENOUGH word FRIEND word
FRESH word LOBSTER word
QUAINT word VIVID word
FABRIC word BROAD word
CRISP word WHILE word
PURSUIT word CHILD word
STREET word HAPPEN word
PRIEST word SEVERE word
SUSPEND word AFTER word
BRISK word PRIEST word
SPOIL word MERGE word
RIGID word GLOVE word
RATHER word ONLY word
MOMENT word GREET word
HUNGRY word MEMBER word
PIERCE word BEGIN word
LISTEN word BRISK word
GLOVE word WHAT word
SINCE word BORROW word
BRING word JURY word
ARGUE word SLEEVE word
BRIGHT word BOUGHT word
SEVERE word HAPPY word
CARRY word SPACE word
AFRAID word ANGRY word

(table continues)
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Five Sets of Words and Nonwords Evaluated in the Study
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. (Continued).

184-set 168-set 138-set 92-set 62-set

target type target type target type target type target type

WHAT word THOSE word
STARVE word FAITH word
MEMBER word
TALENT word
UNDER word
LENGTH word
BORROW word
SPEAK word
FAITH word
STRICT word
HAPPY word
GRIEF word
ABSENT word
POEM word
THOUGH word
GREET word
PROVIDE word
WINDOW word

Note. Set 1: 184 items, Set 2: 168 items, Set 3: 138 items, Set 4: 92 items, and Set 5: 62 items.

Appendix C (p. 4 of 4)

Five Sets of Words and Nonwords Evaluated in the Study
Appendix D

Instructions for Manual Scoring
Values are assigned to letters in the target, not the response. For nonwords, use the target spelling that maximizes points for
given response.

Each letter of the target word is assigned a value between 0 and 1, with the general guidelines being:
• any letter that is present and in the correct position (relative, not absolute) gets 1 point;

• any letter that is present but in the incorrect position gets 0.5 points;

• any letter that is not present gets 0 points.

To determine the value:
1. Maximally align the target item and the response.

2. If the response is correct, give each target letter a value of 1.

3. If the response is incorrect, score depending upon error type:
a. ADDITION: give each of the letters that allow the addition (i.e., the letters adjacent to the added letter) a value of 0.5.
b. SUBSTITUTION: give the letter that is substituted a value of 0.
c. DELETION: give the letter that is deleted a value of 0.
d. TRANSPOSITION: give a value of 0.5 to each transposed letter.
e. MOVEMENT: give value of 0.5 to the moved letter.
f. DOUBLING: give a value of 0.5 to doubled letter.
g. DELETION OF DOUBLE LETTER: give a value of 0.5 to both letters of double.
h. MOVEMENT OF GEMINATE: give a value of 0.75 to both letters of geminate and a value of 0.5 to the letter the

geminate moved to.
i. SUBSTITUTION/DELETION COMBINATION: give a value of 0 to missing letters.
j. SUBSTITUTION/ADDITION COMBINATION: give 0 to incorrect letter and 0.75 to surrounding letters.
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