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G e W

Abstract: Individuals with schizophrenia (5Z) show impairment in social functioning. The reward
network and the emotional salience network are considered to play important roles in social interac-
tion. The current study investigated alterations in the resting-state (rs-) amplitude of low-frequency
fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo) and functional connectiv-
ity (fc) in the reward network and the emotional salience network in SZ patients. MRI scans were
collected from 60 subjects, including 30 SZ patients and 30 matched healthy controls. SZ symptoms
were measured using the Positive and Negative Syndrome Scale (PANSS). We analyzed the ALFF,
fALFF and ReHo in key brain regions in the reward network and emotional salience network as
well as rs-fc among the bilateral amygdala, lateral orbitofrontal cortex (OFC), medial OFC and
insula between groups. The SZ patients demonstrated increased ALFF in the right caudate and
right putamen, increased fALFF and ReHo in the bilateral caudate, putamen and pallidum, along
with decreased fALFF in the bilateral insula. Additionally, reduced rs-fc was found between the
right lateral OFC and the left amygdala, which simultaneously belong to the reward network and
the emotional salience network. These findings highlight the association between impaired social
functioning in SZ patients and aberrant resting-state ALFF, fALFF, ReHo and fc. Future studies
are needed to conduct network-based statistical analysis and task-state fMRI, reflecting live social
interaction to advance our understanding of the mechanism of social interaction deficits in SZ.

Keywords: schizophrenia; resting-state fMRI; functional connectivity; reward network; emotional
salience network

1. Introduction

Schizophrenia (SZ) is a chronic psychiatric disorder with a substantial disease
burden [1]. Positive symptoms and negative symptoms are two primary dimensions
of SZ symptoms [2], and both sets of symptoms contribute to impaired social functioning
in SZ patients [3]. Positive symptoms, including hallucinations, delusions and disorganiza-
tion, would erode patients’ trust in others [4] and affect their response to social rewards [5].
While negative symptoms, characterized by the loss of motivation, goal-directed behaviors
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and affects, would exacerbate defeatist performance beliefs [6], impede daily functioning
and hinder recovery [7]. A longitudinal study spanning eight years demonstrated a sig-
nificant association between negative symptoms and diminished social functioning in SZ
patients [8]. Improving the social functioning of SZ patients is considered a priority target
for SZ rehabilitation [9].

The decline in social functioning among individuals with SZ is closely related to
deficits in social cognition [10,11]. Representative domains of social cognition encompass
the theory of mind, social perception, emotion processing and attributional style/bias [12].
In SZ patients, the deficits in social cognition have been widely reported [13], for example,
the hostile attributions in SZ contributed to poor social functioning [14], and an impaired
theory of mind was associated with negative symptoms [15].

Neuroimaging studies on healthy adults have found that the reward network and the
emotional salience network play critical roles in social cognition and were identified as
key brain networks in the theory of “Social Brain” [16]. The reward network includes the
dorsal and ventral striatum, ventral tegmental area, substantia nigra, amygdala, anterior
cingulate cortex, insula, orbitofrontal cortex (OFC) and medial prefrontal cortex(MPFC) [17].
Notably, the striatum and OFC are widely recognized in neuroimaging research as central
to reward processing [18], because both of them are involved in reward-based decision-
making, reward learning and approach motivation in social interactions, particularly in
response to positive social feedback [19]. Neurons in the amygdala were also shown to
discriminate social cues and take part in social decision-making [20]. The emotional salience
network comprises brain regions associated with emotional salience, such as the dorsal
anterior cingulate cortex (1ACC) and insular cortices [21] as well as brain regions involved
in emotional regulation like the temporal pole, middle temporal gyrus [22], amygdala
and parietal cortex [23]. Specifically, the dACC is sensitive to events that deviate from
expectations and will be activated when mismatch happens during social interaction [24],
while the insula, integral in interoceptive and emotional processing, exhibits sensitivity
to emotional pain like social rejection [25]. In addition to memory retrieval and language
processing, the temporal pole and the middle temporal gyrus also contribute to social and
emotional processes, including face recognition and theory of mind [26].

Previous neuroimaging studies have shown varying degrees of deficits in the reward
network and the emotional salience network among SZ patients [27,28]. Within the reward
network, SZ patients showed aberrant reward-related striatal signaling [19], and an im-
paired representation of value-relevant OFC function in response to both social [29,30] and
nonsocial feedback [31]. An increased resting-state functional connectivity between the
amygdala, hippocampus and OFC was also found in SZ patients with paranoia [32]. In
the emotional salience network, recent studies revealed that individuals with SZ manifest
aberrantly increased functional connectivity between the salience network and the right
inferior and middle temporal gyrus in the resting-state [33]. Compared to healthy controls,
SZ patients demonstrated an overall reduction in insula-to-whole-brain functional connec-
tivity [32], coupled with diminished activity in the insula and anterior cingulate cortex
during the ambivalence task [28].

In resting-state functional magnetic resonance imaging (rs-fMRI) studies, two types of
neural imaging markers are commonly used to reflect the local brain functional changes:
(1) the amplitude of low-frequency (0.01-0.08 Hz) fluctuation (ALFF) [34] or fractional
amplitude of low-frequency fluctuation (fALFF, i.e., the ratio of power spectrum of low-
frequency to that of the entire frequency range [35]) and (2) regional homogeneity (ReHo,
which calculates the consistency of time series between each voxel and adjacent voxels [36]).
ReHo and functional connectivity (fc) analyses focus on the similarities of intra- and
inter-regional time series, respectively, while ALFF and fALFF measures the amplitude of
regional activity [37]. These methods demonstrate satisfactory stability and reliability in
assessing spontaneous neural activity in both SZ patients and healthy controls (HC) [37].

In schizophrenia, robust abnormalities in resting-state brain activity have been ob-
served. Shao et al. reported increased ALFF in the left caudate and decreased ALFF in
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the bilateral posterior cingulate cortex/precuneus (PCC/PCu) in early-course SZ patients
compared to healthy controls (HC) [38]. A meta-analysis by Qiu et al. reviewed sponta-
neous brain activity alterations in SZ patients, including abnormalities in the putamen,
lateral globus pallidus, insula, cerebellum and PCC [37]. Another meta-analysis found that
chronic SZ group showed increased ReHo in bilateral superior frontal gyrus (SFG) and
right insula as well as decreased ReHo in left medial frontal gyrus and left ACC [39].

However, previous studies mostly conducted a general observation of abnormalities
from a whole-brain perspective, without delving into the specific brain regions associated
with social interaction networks. Therefore, the current study aims to investigate the
alterations in ALFF, fALFF, ReHo and fc at rest within and between two socially relevant
networks—the reward network and the emotional salience network. Additionally, this
study seeks to explore the correlation between spontaneous neural activity and current
symptom severity as well as social functioning in SZ patients. This study hypothesized
that individuals with SZ would demonstrate abnormal ALFF, fALFF and ReHo in key
components of the reward network and emotional salience network, and show deficits in
functional connections within and between them. Furthermore, the study expected that
altered resting-state ALFF, fALFF, ReHo and fc would correlate with symptom severity and
social functioning in SZ patients.

2. Materials and Methods
2.1. Subjects

Thirty SZ patients were recruited from an interventional study at Shanghai Mental
Health Center (clinical trial registration number: ChiCTR-IOR-15006678). The baseline data
of the interventional study were incorporated into the current study.

The inclusion criteria for SZ patients were: (a) between 18-55 years old; (b) confirmed
diagnosis of schizophrenia according to the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5); (c) the symptoms were stabilized after treatment with
second-generation antipsychotics, and the medication types remained relatively stable for
eight weeks; (d) an education level beyond primary school (=5 years of education); and
(e) having read and signed informed consent explaining the purpose and procedures of
the study, indicating that they have understood the purpose of the required procedure and
volunteered to participate in the study.

Exclusion criteria for the SZ group were: (a) received modified electroconvulsive
therapy or systemic psychotherapy within 6 months before screening; (b) alcohol or drug
abuse (defined by DSM-5 [40]) within 6 months before screening; (c) developmental disabil-
ity, (d) display of excited, impulsive or aggressive behavior; (e) have suicidal behavior or
existing suicidal tendencies; (f) a history of cardiovascular, pulmonary, renal, hepatic, gas-
trointestinal, neurological, hematological, endocrine or metabolic diseases; (g) insufficient
visual or auditory function to complete the test; and (h) any other condition preventing
participants from completing the test.

Thirty age-, gender- and education-matched healthy controls (HC) were recruited
through advertisements. Additional exclusion criteria for the healthy controls included:
(a) having a first-degree relative with major psychiatric illnesses; (b) alcohol or drug abuse
(defined by DSM-5 [40]); (c) a history of cardiovascular, pulmonary, renal, hepatic, gas-
trointestinal, neurological, hematological, endocrine or metabolic diseases; (d) insufficient
visual or auditory function to complete the test; and (e) any other condition preventing
participants from completing the test .

All patients received stable antipsychotic medication treatment (including aripiprazole
(n = 4), olanzapine (n = 9), quetiapine (n = 1), risperidone (n = 2), clozapine (n = 12) and
amisulpride (n = 2)). Considering that the medication types varied among patients, we
calculated the mean olanzapine equivalents (OL eq.) using the equivalence scales [41] (see
Table 2).
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2.2. Assessments
2.2.1. Schizophrenia Symptom Assessment

The schizophrenia symptoms were measured using the psychiatrist-rated Positive
and Negative Syndrome Scale (PANSS) [42]. PANSS evaluates the severity of psychosis
syndromes, including positive symptoms, negative symptoms and general symptoms, each
with 7,7 and 16 sub-items, respectively. Scores are assigned on a 7-point scale of 1-7 points
ranging from “none” to “extremely severe”. The total score of PANSS ranges from 30 to
210 points, with higher scores indicating a greater severity of symptoms.

2.2.2. Social Functioning Assessment

The social functioning of SZ patients was indirectly assessed by the Schizophrenia
Quality of Life Scale (SQLS) [43]. This self-administered questionnaire captures the per-
ceptions and concerns of individuals with SZ, which contains a set of 30 items comprising
3 dimensions: “psychosocial” (15 items), ‘motivation and energy’ (7 items) and ‘symptoms
and side-effects’ (8 items). Higher SQLS scores indicate poorer quality of life for the patient.
The SQLS demonstrated satisfactory internal consistency reliability and validity.

2.3. MRI Acquisition and Preprocessing
2.3.1. Image Data Acquisition

The T1-weighted images and resting-state fMRI data were acquired using a 3T Siemens
Verio MR scanner (Erlangen, Germany) at Shanghai Mental Health Center. T1-weighted
images were acquired using multi-band accel factor and magnetization-prepared rapid
gradient-echo (MPRAGE) sequence with the following parameters: echo time (TE) = 3.65 ms,
repetition time (TR) = 2530 ms, field of view (FOV) = 256 x 256 mm?, flip angle = 7°,
voxel size = 1.1 x 1.0 x 7.0 mm? and thickness = 1 mm, slice number = 192. The resting-
state fMRI data were acquired using multi-band accel factor and a gradient-echo Echo
Planar Imaging (EPI) sequence with the following parameters: echo time (TE) = 30 ms,
repetition time (TR) = 2000 ms, field of view (FOV) = 220 x 220 mm?, flip angle = 77°,
voxel size = 3.0 x 3.0 x 3.0 mm?, thickness = 3 mm and slice number = 50.

2.3.2. Image Data Processing

For the T1 MRI images, we first performed quality control using CAT12 to exclude
subjects with quality scores of “C+” or lower. Next, we used the recon-all command
of FreeSurfer 6.0.0 for brain extraction, tissue segmentation, cortical reconstruction and
brain region labeling for each subject’s brain images. The image processing procedures
involved skull stripping, normalization, removal of the non-brain structure, brain tissue
segmentation and surface reconstruction. Finally, we extracted the thickness, surface area,
volume for cortical structures and volume of subcortical structures in different brain regions
based on the DK+Aseg parcellation template implemented in FreeSurfer 6.0.0. Finally, the
brain images of each subject were nonlinearly aligned to the MNI152 template using the
advanced normalization tools (ANTs) alignment toolkit for subsequent analysis of BOLD
fMRI images.

For resting-state functional MRI images, we mainly used the AFNI toolkit for pro-
cessing [44,45]. The first five volumes were removed before motion correction to allow for
magnetization equilibrium. After that, head motion was corrected using AFNI’s 3dvol-
reg. Power’s framewise displacement (FD) was calculated to reflect volume-wise head
movement [46], and those whose mean FD > 5 mm were excluded. Assessment metrics that
measured the degree of rotation and displacement of the head were generated in all three
directions. Then, images of each subject were corrected for temporal layers. The images
of the intermediate time points were aligned with the T1-weighted images, and head
movement outlier time points in the temporal dimension were detected and interpolated
using adjacent time points. Afterward, for each voxel corresponding to the BOLD signal
sequence, the mean signal of white matter and the ventricle, as well as the three noise
sets of head movement parameters, were regressed off and band-pass filtered in the range
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of 0.01-0.1 HZ. Next, the mean value of the whole-brain BOLD signal was adjusted to
10,000. Finally, we used the alignment results of the T1-weighted image of each subject to
transform the resting-state images into MNI152 space and calculated the functional con-
nectivity between all brain regions, as well as the amplitude of low-frequency fluctuation
(ALFF), fractional amplitude of low-frequency fluctuation (fALFF) and regional homo-
geneity (ReHo) mean values for each brain region according to the DK+Aseg partitioning
template [47,48].

2.3.3. Region of Interest

The components of the reward network and emotional salience network have been
described in previous studies (see Table 1) [16]. Among them, the bilateral amygdala,
lateral OFC, medial OFC and insula belong to both of the two networks, playing roles as
vital nodes in brain networks for social interaction. Therefore, we designated these eight
brain regions as regions of interest (ROls).

Table 1. The brain regions in the reward network and the emotional salience network.

Brain Region Side Brain Network
caudate R reward network
L reward network
putamen R reward network
L reward network
pallidum R reward network
L reward network
amygdala R reward network; emotional salience network
L reward network; emotional salience network
caudal anterior cingulate R reward network
L reward network
lateral OFC R reward network; emotional salience network
L reward network; emotional salience network
medial OFC R reward network; emotional salience network
L reward network; emotional salience network
posterior cingulate R emotional salience network
L emotional salience network
rostral anterior cingulate R reward network
L reward network
insula R reward network; emotional salience network
L reward network; emotional salience network

R, right; L, left; OFC, orbitofrontal cortex.

2.3.4. Statistics

For demographics and clinical data, we conducted independent t-tests in SP5526.0
to compare the age and education years between SZ patients and HC, and performed
a chi-squared test to compare gender between groups. For the ALFF, fALFF and ReHo,
we used SPS526.0 to perform an independent t-test between the groups. For ROI-to-ROI
analyses, we calculated correlation coefficients of the timeseries of the blood-oxygenation-
level-dependent (BOLD) signals between ROIs and converted them to z values. Then, we
used an independent samples t-test to determine altered ROI-based functional connections
between SZ patients and HC, and used R for FDR correction of P values. We set the
significance threshold at Prpr < 0.05. Additionally, we conducted Spearman correlations
between the ALFF, fALFF, ReHo, re-fc and the scores of the PANSS and SQLS-P. The
medication dosage (i.e., OL eq.) of each patient was used as a covariate of non-interest
during correlation analysis.
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3. Results
3.1. Demographics and Clinical Data

Between the SZ group and the HC group, no differences were found in gender, age
and education (Ps > 0.05). The detailed demographic and clinical outcomes are presented
in Table 2.

Table 2. Demographic and clinical outcomes of SZ patients and healthy controls.

Items SZ (n =30) HC (n =30) /x> p

Gender (male/female), n 22/8 17/13 1.83 0.18
Age (years), M(SD) 46.70 (6.47) 47.47 (14.15) —-0.27 0.79
Education (years), M(SD) 12.23 (2.80) 10.50 (4.41) 1.82 0.08

Duration of illness (months), M(SD) 21412 (104.32) n/a
Medication dosage (OL eq.), M(SD) 14.34 (7.44) n/a

PANSS, M(SD)
Positive 14.00 (4.83) n/a
Negative 21.63 (4.55) n/a
General 34.47 (8.03) n/a
Total 70.10 (13.93) n/a

p values are the differences in demographic and clinical outcomes between two groups on the t-test or the
chi-square test; )(2 chi-square; M, mean; SD, standard deviation; OL eq., olanzapine equivalents (mg/day);
SZ, schizophrenia patients; HC, healthy controls; PANSS, Positive and Negative Symptom Rating Scale.

3.2. ALFF, fALFF and ReHo Differences of Key Brain Regions between Two Groups

The mean values of altered ALFF, fALFF and ReHo of key brain regions in the reward
network and the emotional salience network (see Table 1) were included in the analysis.

3.2.1. ALFF Group Difference

Compared with HC, the SZ group had significantly increased ALFF in the right caudate
(#(58) = 4.40, Prpr = 0.001, Cohen’d = 1.136) and right putamen (¢(58) = 3.50, Prpr = 0.009,
Cohen’d = 0.903) (Figure 1, Table 3). No significant correlation was found between ALFF
and the PANSS score or the SQLS score after FDR correction.

R. caudate
2 3
@ R. putamen

Sagittal Axial

T value

—50 —25 0.0 25 5.0

Figure 1. Altered ALFF in the SZ group compared to the HC group. The color bar represents the
range of t values.

Table 3. Group differences of ALFF in key brain regions of the reward network and the emotional
salience network.

Brain Region Side t y Prpr
SZ > HC

caudate R 4.40 <0.001 0.001
putamen R 3.50 <0.001 0.009

SZ, schizophrenia patients; HC, healthy controls; R, right; L, left; SZ > HC, the mean ALFF value of the brain
region in SZ was larger than HC. p values are the differences in mean ALFF values between two groups on t-test.
Prpr is p value after FDR correction.
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3.2.2. fALFF Group Difference

The SZ group had increased fALFF in the bilateral caudate (right: (#(58) = 2.732, Prpr = 0.038,
Cohen’d = 0.705; left: (#(58) = 2.708, Prpr = 0.038, Cohen’d = 0.699), bilateral putamen (right:
(t(58) =2.717, Prpr = 0.038, Cohen’d = 0.702; left: (£(58) = 2.506, Prpg = 0.038, Cohen’d = 0.647)
and bilateral pallidum (right: (#(58) = 2.629, Prpr = 0.038, Cohen’d = 0.679, left: (¢(58) =2.518,
Prpr = 0.038, Cohen’d = 0.65) compared with HC. Furthermore, the SZ group showed
decreased fALFF in the insula (right: (#(58) = —3.082, Prpr = 0.038, Cohen’d = 0.796; left:
(t(58) = —2.608, Prpr = 0.038, Cohen’d = 0.673) (Figure 2, Table 4). No significant correlation
was found between fALFF and the PANSS score or the SQLS score after FDR correction.

Right

L. caudate R. caudate

L. pallidum R. pallidum
'
L. putamen R. putamen
L. insula
Sagmal Axial

Lateral Medial

Tvalue I N -

-50 —25 0.0 25 5.0

(a) (b)

Figure 2. Altered fALFF in the SZ group compared to the HC group. The color bar represents the
range of  values. (a) The fALFF change in the insula. (b) The fALFF change in the caudate, putamen
and pallidum.

Table 4. Group differences of fALFF in key brain regions of the reward network and the emotional
salience network.

Brain Region Side t y Pgpr

SZ >HC

caudate R 2.732 0.008 0.038
L 2.708 0.009 0.038

putamen R 2.717 0.009 0.038
L 2.506 0.015 0.038

pallidum R 2.629 0.011 0.038
L 2.518 0.015 0.038

SZ <HC

insula R —3.082 0.003 0.038
L —2.608 0.012 0.038

SZ, schizophrenia patients; HC, healthy controls; R, right; L, left; SZ > HC/SZ < HC, the mean fALFF value of the
brain region in SZ was larger/smaller than HC. p values are the differences in mean fALFF values between two

groups on t-test. Prpp is p value after FDR correction.

3.2.3. ReHo Group Difference

For ReHo, the SZ group had increased ReHo in the bilateral caudate (right: £(58) = 4.048,
Prpr = 0.002, Cohen’d = 1.045; left: +(58) = 3.987, Prpr = 0.002, Cohen’d = 1.03), bilateral
putamen (right: ¢(58) = 3.601, Prpr = 0.004, Cohen’d = 0.93; left: +(58) = 3.393, Prpr = 0.006,
Cohen’d = 0.876) and bilateral pallidum (right: #(58) = 2.761, Prpg = 0.030, Cohen’d = 0.713;
left: #(58) = 2.697, Prpr = 0.030, Cohen’d = 0.696) compared with HC. (Figure 3, Table 5). No
significant correlation was found between ReHo and the PANSS score or the SQLS score
after FDR correction.
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L. caudate R. caudate

L. pallidum R. pallidum

L. putamen @ R. putamen
Sagittal Axial

2

Figure 3. Altered ReHo in the SZ group compared to the HC group. The color bar represents the
range of ¢ values.

Table 5. Group differences of ReHo in key brain regions of the reward network and the emotional
salience network.

Brain Region Side t p Pepr

SZ >HC

caudate R 4.048 <0.001 0.002
L 3.987 <0.001 0.002

putamen R 3.601 <0.001 0.004
L 3.393 0.001 0.006

pallidum R 2.761 0.008 0.030
L 2.697 0.009 0.030

SZ, schizophrenia patients; HC, healthy controls; R, right; L, left; SZ>HC, the mean ReHo value of the brain region
in SZ was larger than HC. p values are the differences in mean ReHo values between two groups on t-test. Prpg is
p value after FDR correction.

3.3. Altered Resting-State Functional Connections between Reward Network and Emotional
Salience Network

In ROI-to-ROI analysis, SZ patients showed significantly decreased rs-fc between the
R. lateral orbitofrontal cortex and L. amygdala (£(58) = 3.726, Prpr = 0.012, Cohen’d = 0.962)
(Figure 4). However, rs-fc between the R. lateral orbitofrontal cortex and L. amygdala was
not correlated with the PANSS score (Positive: ¥ = —0.172, p = 0.362; Negative: » = 0.115,
p = 0.544; General: r = —0.181, p = 0.339; Total: r = —0.207, p = 0.272) or the SQLS score
(r=0.222, p = 0.309) after FDR correction. We also compared the rs-fc of other regions of
the reward network and the emotional salience network between the SZ group and HC
group, but no significant difference was found after FDR correction.

Caudal
p
1
4””/ % ¢
Lamygdala » R.lateral OFC
Left fy Al ﬁ;/ Right
. ‘ 3 /s ,
) \ of
X8 7 r\
¥ 7773 L VAT
o S -~ . . N
(A > b,
&> LT o x Ny
(o Z - N, =)
4 7 : kS [ /Q \
Rilateral OFC ([ > A Lamygdala """ R |ateral OFC
Lamygdala s — Rlateral OFC g ateral
AU Ik
Lamygdala ———&" 1 &
oy
| g
Dorsal

Figure 4. Altered resting-state functional connections between the reward network and the emotional
salience network in the SZ group, compared to the HC group; OFC, orbitofrontal cortex.
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4. Discussion

The principal finding revealed the deficits in brain networks associated with social
interaction in individuals with schizophrenia. From a global perspective, the current
study observed diminished functional connectivity between the reward network and the
emotional salience network, reflected in the reduced rs-fc between the right lateral OFC
and the left amygdala. From a more concrete view, compared with the HC group, the
SZ group showed increased ALFF in the right caudate and right putamen, along with
increased fALFF and ReHo in the bilateral caudate, putamen and pallidum, while fALFF in
the bilateral insula significantly decreased. In this study, resting-state cerebral perfusion
and functional connectivity did not exhibit significant correlations with PANSS scores and
SQLS scores.

4.1. Altered ALFF, fALFF and ReHo in the SZ Group

In this study, we found increased fALFF and ReHo in the bilateral caudate, putamen
and pallidum in the SZ group compared to the HC group, which is consistent with pre-
vious studies [37,49,50]. The caudate, putamen and pallidum collectively form the dorsal
striatum, a crucial node in the dopamine pathway [51]. In healthy people, studies have
found that striatum plays an important role in integrating sensorimotor, cognitive and
motivational /emotional information as well as decision-making [52,53]. Functional studies
in individuals with schizophrenia have reported increased striatal dopamine neurotrans-
mission and striatal activity [54], while blunted striatal reward signals might contribute
to deficits in motivation and hedonism [55]. Recent researchers have also identified struc-
tural changes in the dorsal striatum in SZ, including enlarged gray matter volume in the
putamen [56,57], as well as genetic variations, like the dopamine D2 receptor short isoform
in the caudate, which are associated with schizophrenia risk [58]. Therefore, thw aber-
rantly increased activations observed in the dorsal striatum of SZ patients may indicate
abnormalities in their processing of social rewards.

Compared with the HC group, SZ patients in this study showed decreased fALFF
in the insula. Previous studies have reported varying results: one study found lower
fALFF in the left insula for deficit schizophrenia, characterized by primary and persistent
negative symptoms, compared to non-deficit schizophrenia [59], while another study found
increased fALFF in the insula for SZ patients with persistent auditory verbal hallucinations,
compared to non-hallucinating SZ patients and HC [60]. These discrepant findings indicate
that variations in the primary symptoms of SZ patients may influence their spontaneous
neural activity. Neuroimaging studies have highlighted the anterior insula’s pivotal role in
emotional experience and social cognition, including empathy [61]. Similar to our findings,
previous studies have noted decreased resting-state cerebral blood flow in the insula in
SZ patients [62]. Beyond emotional processing, the insula is crucial for discriminating
self-generated and external information, suggesting that insula dysfunction may contribute
to hallucinations, a cardinal feature of schizophrenia [63,64].

4.2. Altered Functional Connectivity in the SZ Group

Decreased orbitofrontal-amygdaloid functional connectivity was frequently found in
the SZ group [65-67]. In this study, decreased rs-fc between the R. lateral OFC and L. amyg-
dala was also observed. The amygdala is neurochemically and physiologically sensitive
to stress [68] and plays an important role in affective salience processing [69]. Amygdala
lesions are often considered central to schizophrenia-related psychopathology [67]. The
OFC, in turn, exerts inhibitory control over subcortical structures, including the amyg-
dala, and contributes significantly to affective decision-making in humans [70]. Functional
impairment in the OFC leads to increased impulsivity [71] and reduced emotional flexi-
bility [72]. Hence, the deficiency in orbitofrontal-amygdaloid connectivity may indicate a
diminished capacity in individuals with schizophrenia to make value-based decisions and
regulate emotions.
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Neuroimaging research has identified the amygdala and OFC as crucial components
in the reward network and emotional salience network, which are activated during social
interactions [16]. In the reward network, the amygdala not only takes part in nonsocial
contexts but is also involved in processing social rewards, such as positive feedback in
social interaction [73] and fair cooperation during economic games [74]. The emotional
salience network serves as a salience detector when one is included in/excluded from
social interaction, directing attention to experiences of emotional engagement (especially
the pain of social rejection) (see reference [35] for a review). Engagement in, or the belief of
engaging in, live social interaction can increase the activation of the OFC in the emotional
salience network [75,76]. Thus, the decreased functional connectivity observed in this study
between the emotional salience network (integral to attentional processes for personally
relevant or highly salient events) and the reward network (essential for value representa-
tion of socially rewarding stimuli) may shed light on why patients with SZ would show
suspiciousness and feelings of persecution and apathy during social interactions. Studies
using passive observation paradigms and social engagement paradigms have also demon-
strated decreased affective processing of social reward in individuals with SZ compared to
healthy people (reviewed, for example, in reference [5]). Longitudinal studies are needed
to ascertain whether the altered perception of social reward and punishment in SZ patients
stems from difficulties in directing attention to themselves and emotional processing, or if
the attention deficit arises from aberrant value representation.

4.3. The Correlation between ALFF, fALFF, ReHo, rs-fc and Symptom Severity or
Social Functioning

No significant correlation between altered ALFF, fALFF, ReHo, rs-fc and the PANSS
score or the SQLS score was found in this study, which is contrary to our hypothesis. Similar
to our results, a cross-sectional study including different stages of SZ found that, rather
than ALFF or ReHo values, only gray matter volume was negatively correlated with total
PANSS scores [54]. In Cheon’s study, negative symptom scores showed predominantly
stronger positive associations with ALFF in the temporal and frontal brain regions [77].
However, Chen’s research demonstrated that OFC-related re-fc was negatively correlated
with excited symptoms in first-episode patients with SZ [78]. Therefore, further evidence on
the relationship between spontaneous brain activity and clinical symptoms in SZ patients
is required for consensus. Although SQLS is commonly used to measure the life quality of
SZ patients and contains the ‘psychosocial’ dimension, it lacks specialization in assessing
social functioning [43]. Thus, it may not be sufficiently sensitive to discern varying levels
of social functioning, potentially causing the negative results. Future studies should use
scales explicitly designed for measuring social functioning, such as the social functioning
scale (SFS) [79], to explore the correlation between aberrant social-related brain networks
and social functioning deficits in SZ patients.

4.4. Limitations and Future Studies

This study has several limitations. Firstly, the sample size was relatively small when
considering that various spontaneous brain activity analyses were conducted exploratorily.
A larger sample size of the homogenous population is essential for robustly testing neural
activities in the social-related brain networks of SZ patients. Secondly, it is worth noting
that antipsychotics may potentially influence symptom severity and rs-fc in SZ patients [80].
While efforts were made to control for this by using the olanzapine equivalence scale to as-
sess medication dosage and adjusting for it in data analysis, it is important to acknowledge
that the complete medication profile of each patient could not be captured due to the lack
of certain medications (e.g., selective serotonin reuptake inhibitors) in the scale. Future
studies should endeavor to conduct large randomized controlled trials to establish a more
comprehensive equivalence scale. Thirdly, this study did not use directly relevant scales or
behavioral tasks to assess individuals’ social functioning. It will be necessary for future
studies to use relevant instruments such as the social functioning scale (SFS) [79], behavioral
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tasks, like the Cyberball task [81], and passive social observation paradigms [82] to explore
the direct correlation between aberrant social-related brain networks and the deficits in
social functioning in individuals with SZ. Finally, as a resting-state f{MRI study, we failed to
examine the real-time activation of social-related brain networks during individuals’ social
interactions by using tasks or paradigms. Task-state fMRI could be employed in future
studies involving patients with SZ to further investigate the changes in society-related
brain networks during social interactions. What is more, future studies are also required
for further analysis, like network-based statistical analysis (NBS) [83], in order to elucidate
the complex characteristics and functional connections of social-related brain networks and
to delineate the map of the social brain in individuals with SZ.

5. Conclusions

This study identified deficits in key brain regions for social interaction, with increased
activations in the bilateral dorsal striatum (including the caudate, putamen and pallidum)
and decreased activations in the bilateral insula among individuals with SZ. No significant
correlation was observed between this abnormal neural pattern and symptom severity or
social functioning in SZ. The decreased orbitofrontal-amygdaloid functional connectivity
underscores the abnormal connection within key brain networks (i.e., the reward network
and the emotional salience network) for social interaction in SZ. To facilitate our under-
standing of the interplay within social-interactive brain networks, network-based statistical
analysis and task-state fMRI, reflecting real-time social interactions, will be required to
elucidate the mechanism behind social skill deficits in SZ.
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