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Abstract: Polymyxin-resistant Pseudomonas aeruginosa is a major threat to public health globally.
We investigated the prevalence of polymyxin-resistant P. aeruginosa in a Chinese teaching hospital
and determined the genetic and drug-resistant phenotypes of the resistant isolates. P. aeruginosa
isolates identified by MALDI-TOF MS were collected across a 3-month period in Ruijin Hospital.
Antimicrobial susceptibility was determined by a Vitek-2 Compact system with broth dilution used to
determine polymyxin B (PMB) susceptibility. Polymyxin-resistant isolates were further characterized
by molecular typing using PCR, multi-locus sequence typing (MLST) and whole-genome sequencing.
Phylogenetic relationships were analyzed using single nucleotide polymorphism (SNP) from the
whole-genome sequencing. Of 362 P. aeruginosa isolates collected, 8 (2.2%) isolates from separate
patients across six wards were polymyxin-resistant (MIC range, PMB 4–16 µg/mL and colistin
4–≥16 µg/mL). Four patients received PMB treatments (intravenous, aerosolized and/or topical)
and all patients survived to discharge. All polymyxin-resistant isolates were genetically related and
were assigned to five different clades (Isolate 150 and Isolate 211 being the same ST823 type). Genetic
variations V51I, Y345H, G68S and R155H in pmrB and L71R in pmrA were identified, which might
confer polymyxin resistance in these isolates. Six of the polymyxin-resistant isolates showed reduced
susceptibility to imipenem and meropenem (MIC range ≥ 16 µg/mL), while two of the eight isolates
were resistant to ceftazidime. We revealed a low prevalence of polymyxin-resistant P. aeruginosa
in a Chinese teaching hospital with most polymyxin-resistant isolates being multidrug-resistant.
Therefore, effective infection control measures are urgently needed to prevent further spread of
resistance to the last-line polymyxins.

Keywords: Pseudomonas aeruginosa; polymyxin resistance; phenotypes; genomics

1. Introduction

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen commonly found
in soil, water and plants [1]. This versatile pathogen is associated with a variety of nosoco-
mial and community-acquired infections affecting skin and soft tissue, bone and joints, the
urinary tract and, importantly, the bloodstream and respiratory tract (including ventilator-
associated pneumoniae (VAP)) [2]. P. aeruginosa infections often have higher rates of
morbidity and mortality and higher treatment costs when compared with other bacterial
pathogens, especially in patients with chronic diseases or compromised immune sys-
tems [1]. Although the carbapenems were introduced to treat serious infections caused
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by organisms such as multidrug-resistant (MDR) P. aeruginosa, resistance to the carbapen-
ems has increased globally with between 10 and 50% of P. aeruginosa isolates in most
countries now considered to be carbapenem-resistant [3]. In 2021, it was estimated that
approximately 18.9–23.0% of P. aeruginosa isolates in China were carbapenem-resistant
(http://www.chinets.com/, accessed on 5 January 2022). P. aeruginosa is included among a
group of MDR pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, P. aeruginosa and Enterobacter species) which ‘ESKAPE’ the effects
of commonly used antibiotics [4]. Indeed, carbapenem-resistant P. aeruginosa is listed as one
of only three World Health Organization Priority 1 (Critical) pathogens urgently requiring
the discovery and development of novel antibiotics [5].

The ‘old’ polymyxins (colistin and polymyxin B) were first introduced into the clinic
in the late 1950s but subsequently abandoned due to nephrotoxicity concerns [6]. Given
the ever-increasing resistance to other antibiotics including the carbapenems and amino-
glycosides, polymyxins were re-introduced to clinical practice for the treatment of prob-
lematic Gram-negative ‘superbugs’ in the early 2000s [7]. The polymyxins remain an
important last-line treatment as they retain excellent activity against many of these prob-
lematic pathogens [8]. For example, in 2021 the China Antimicrobial Surveillance Net-
work (http://www.chinets.com/, accessed on 5 January 2022) estimated that only 2.0%
of P. aeruginosa isolates and 1.0% of Escherichia coli and K. pneumoniae isolates in China
were resistant to colistin and polymyxin B. In many countries, the polymyxins are the
only accessible or affordable therapeutic option for carbapenem-resistant organisms [9].
Worryingly, resistance to polymyxins, including in P. aeruginosa, is increasingly reported
both in humans and the surrounding environment [10–12]. As drug resistance genes
such as extended-spectrum β-lactamases (ESBLs), metallo-β-lactamases (MBLs) and New
Delhi metallo-β-lactamases (NDMs), which provide resistance to more recently developed
antibiotics, continue to increase in prevalence globally [13,14], a concurrent increase in
polymyxin resistance threatens the utility of one of the last available treatment options for
MDR Gram-negative pathogens.

Resistance to the polymyxin is primarily chromosomally mediated and involves several
different mechanisms, in particular lipopolysaccharide (LPS) modification [15]. Plasmid-
mediated polymyxin-resistance via mcr genes has also recently been reported [16–18]. In
China, most studies that have investigated mechanisms of polymyxin resistance have ex-
amined Enterobacterales, with few studies examining resistance in P. aeruginosa [19–21]. The
present study aimed to investigate the prevalence, molecular characteristics and antibiotic
susceptibility of polymyxin-resistant P. aeruginosa isolated from patients in a Chinese tertiary
teaching hospital.

2. Methods and Materials
2.1. Bacterial Isolates and Antibiotic Susceptibility Testing

This study (No. 2022051) was approved by the Ruijin Hospital Ethics Committee
(Shanghai Jiao Tong University School of Medicine, Shanghai, China). Ruijin Hospital is a
3624-bed tertiary care teaching hospital with approximately 130,000 hospital admissions per
year. During August to October in 2021, all isolates of P. aeruginosa determined to be polymyxin
resistant were collected by the Department of Clinical Microbiology. Isolates were identified
by the MADLI-TOF MS system (BioMerieux, Missouri, France, software version 3.2) and
antimicrobial susceptibility testing performed using the Vitek-2 AST-N335 Compact system
(Bio Mérieux, France). The antimicrobial agents tested included: amikacin (aminoglycosides);
aztreonam (monobactam); cefepime; cefoperazone/sulbactam; ceftazidime; ciprofloxacin and
levofloxacin (quinolone); colistin; meropenem and imipenem (carbapenems); doxycycline;
piperacillin/tazobactam; tigecycline (glycylcycline); ticarcillin/clavulanic acid; tobramycin
and trimethoprim/sulfamethoxazole. MICs of polymyxin B and colistin were determined
using broth microdilution with E. coli ATCC 25922 used as the quality control strain. All
results (except polymyxins) were interpreted according to the Clinical and Laboratory
Standards Institute (CLSI) guidelines [22].

http://www.chinets.com/
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2.2. Genome Sequencing, Assembly and Annotation

Genomic DNA from each polymyxin-resistant isolate was extracted using the cetyltrimethyl
ammonium bromide (CTAB) method with minor modifications [23]. DNA quantity, quality
and integrity were checked using a Qubit Flurometer (Invitrogen, Waltham, MA, USA) and
NanoDrop Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Sequencing libraries
were generated using the TruSeq DNA Sample Preparation Kit (Illumina, San Diego, CA, USA)
and the Template Prep Kit (Pacific Biosciences, Melno Park, CA, USA), and genome sequencing
performed by Shanghai Personal Biotechnology (Shanghai, China) on the Illumina Novaseq
platform. Genome function elements prediction included prediction of coding genes. Gene
prediction was performed by Glimmer 3.02 (http://ccb.jhu.edu/software/glimmer/index.shtml,
accessed on 8 February 2022). CRISPRs were identified by the CRISPR recognition tool. Subse-
quently, the VFDB (Virulence Factors of Pathogenic Bacteria) and CARD (The Comprehensive An-
tibiotic Resistance) databases were used to retrieve pathogenicity genes and antibiotic resistance
genes, respectively. De novo genome assembly was conducted using A5-Miseq (v20160825) and
SPAdes (v3.12.0), followed by base correction using Pilon. Function annotation was completed
by blast search against different databases including NR (Non-Redundant Protein Database),
GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Gene and Genomes) and COG (Cluster of
Orthologous Groups of proteins) to give an overview of the genome information.

High-quality sequence reads were mapped to the P. aeruginosa strain reference genome
B136-33 (GenBank accession no. CP004061.1) using BWA [24] (version 0.7.12-r1039). This
genome was chosen because it most closely matched the genomes of the 3 polymyxin-
resistant P. aeruginosa isolates identified. P. aeruginosa B136-33 belongs to ST 1024 and con-
tains pmrA, pmrB, phoP and blaoxa-50 genes; this strain was also included in the phyloge-
netic analysis. The alignments were improved using the Picard package
(http://sourceforge.net/projects/picard/, accessed on 9 February 2022) with two com-
mands: “FixMateInformation” and “MarkDuplicates”. Where multiple read pairs had
identical external coordinates, the pair with the best mapping quality was retained and
the others marked as duplicates. A two-step local realignment of the mapped reads
around indels was undertaken using the GATK package: firstly, suspicious intervals
that likely needed realigning were determined by the “RealignerTargetCreator” com-
mand; then, realignment of such intervals was performed by the “IndelRealigner” com-
mand [25]. Subsequently, variant calling was carried out using the Bayesian approach
which was implemented in the GATK package (https://software.broadinstitute.org/gatk/,
accessed on 10 February 2022). The variants were further filtered based upon the following
criteria: RMS mapping quality of ≥25, site quality score of ≥30, variant confidence/quality
by depth of ≥2, ≥16 reads covering each site with 8 reads mapping to each strand, and the
reads covering a major variant were at least five times greater than that of the minor variant.
Sites that failed these criteria in any strain were removed from the analysis. The complete
genome sequences of the polymyxin-resistant P. aeruginosa isolates were deposited in the
NCBI BioProject repository under the accession number PRJNA846971.

2.3. MLST and Phylogenetic Analyses

Multiple housekeeping gene internal fragments were amplified by PCR, their se-
quences determined and the variations in the isolates analyzed. The PubMLST database for
P. aeruginosa was employed (https://pubmlst.org/organisms/pseudomonas-aeruginosa,
accessed on 22 February 2022) for multilocus sequence typing (MLST) using the follow-
ing seven housekeeping genes: ascA, aroE, guaA, mutL, nuoD, ppsA and trpE. For isolates
with genome sequences available, MLST was predicted using mlst (https://github.com/
tseemann/mlst, accessed on 24 February 2022) [26].

Using the genome of model strain PAO1 as a reference, Snippy (https://github.
com/tseemann/snippy, accessed on 24 February 2022) was employed to identify SNPs
across 385 complete genomes of P. aeruginosa obtained from RefSeq database and the draft
genomes of the 8 polymyxin-resistant isolates in the present study. Core SNPs were
concatenated and aligned using snippy-multi script. Subsequently, a maximum likelihood
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tree was constructed based on core-SNP alignment using IQ-TREE 2 (using a general time-
reversible model with ascertainment bias correction, 1000 bootstraps) and then visualized
using ggtree with ‘daylight’ layout [27,28].

3. Results
3.1. Patient Demographics and Characteristics of the Polymyxin-Resistant P. aeruginosa Isolates

In total, 362 P. aeruginosa isolates were collected across the study period with eight
polymyxin-resistant isolates collected from separate patients across six different wards
(Table 1). Colistin MICs were 4 µg/mL (one isolate) or ≥16 µg/mL (seven isolates) while
polymyxin B MICs ranged from 4 to 16 µg/mL (Table 2). The patients from which the
polymyxin-resistant P. aeruginosa isolates were obtained ranging in age from 37 to 87 years
with a majority being frail adults with multiple complicated comorbidities. Three patients
received intravenous polymyxin B sulfate and all eight patients from which polymyxin-
resistant P. aeruginosa was isolated were subsequently discharged. With reference to the
PAO1 (polymyxin-susceptible) genome, we identified six, one and one genetic variations in
pmrA, pmrB and phoQ of the polymyxin-resistant isolates, respectively (Table 3). Among
them, V51I, Y345H, G68S and R155H in pmrB and L71R in pmrA were known as variations
that potentially contribute to polymyxin resistance [29–32]. Five of the polymyxin-resistant
P. aeruginosa isolates contained the oxacillinase gene blaoxa-50 and all had the beta-lactamase
gene blaPDC. No mcr-genes were detected, showing that mcr genes were not the cause
of polymyxin resistance. Isolates 150 and 211 belong to the same sequence type (ST823).
While isolate 160 did not belong to any known sequence type, it was very similar to the
ST823 sequence type based on the seven housekeeping genes.

3.2. Antimicrobial Susceptibility and Detection of Polymyxin-Resistant P. aeruginosa

Antibiotic susceptibilities are shown in Table 2. Six of the eight (75%) polymyxin-
resistant P. aeruginosa isolates had reduced susceptibility to carbapenems and were resistant
to both imipenem and meropenem (MIC range, 0.5–≥16 µg/mL). The lowest level of
resistance was to ceftazidime (MIC range, 2–64 µg/mL), with resistance detected in only
two of eight (25%) isolates.

The time at which polymyxin-resistant P. aeruginosa was detected in each patient
during hospitalization relative to the commencement of treatment is shown in Figure 1.
Although samples were collected from more than one location in all patients, polymyxin-
resistance was only detected in one location per patient. For example, isolate 150 was
detected in the wound of a burn patient, while polymyxin-susceptible P. aeruginosa was
simultaneously detected in the blood of this patient. Of the four patients who received
polymyxin treatment, polymyxin-resistant P. aeruginosa was detected prior to the com-
mencement of treatment in one patient and after treatment commenced in the remaining
three patients (as shown by the black arrows in Figure 1 which represent the commence-
ment of polymyxin B treatment; the two arrows for isolate 211 represent commencement of
topical treatment (first arrow) and IV plus aerosolized treatment (second arrow)).

3.3. Phylogenetic Analysis

Phylogenetic analysis of the GenBank complete genomes and the polymyxin-resistant
genomes in the present study identified two distinct groups in P. aeruginosa (Figure 2).
Group 1 is larger, and contains less virulent strain PAO1 and PAK, and also the cystic fibrosis
strain LESB58 [33]. Isolates 190 and 207 from ST277 and isolate 149 from ST360 belong
to this group and form a sub-lineage, whereas Group 2 tends to be smaller and includes
the well-known virulent strain PA14 [34]. Five of the eight polymyxin-resistant isolates
(150, 211, 167, 166 and 206) belong to this group, with 167, 150 and 211 being clustered
into an individual sub-lineage, suggesting their close phylogenetic relationship. The most
prominent sequence type in our hospital was ST823 (isolate 150 and 211) which belongs to
one sub-lineage and has previously been reported primarily in Asia [35]. The 385 complete
P.aeruginosa genomes are available in the Supplementary Material File S1.
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Table 1. Patient demographics and main characteristics of the polymyxin-resistant P. aeruginosa isolates.

Isolate Gender Age (Year) Underlying Disease Ward Polymyxin Treatment †
Length of
Hospital

Stay (Day)
Outcome

Specimen
(Collection Date,
Day/Month/Year)

MLST Type
Carbapenem

Resistance
Gene

149 Female 37 Severe acute
pancreatitis; sepsis

Emergency
Intensive Care

Unit (EICU)

No treatment; considered as
colonization in bile 40 Survived

Bile
(10 September

2021)
ST360 blaOXA-50,

blaPDC-5

150 Male 37

Skin, soft tissue and
respiratory infection

due to extensive burns
(52% flame burns

degree II-III)

Burns ward

Local use of topical
polymyxin B plus IV

polymyxin B sulfate 50 mg
12-hourly (both administered

for the same 27 days)

54 Survived
Wound

(10 September
2021)

ST823 blaPDC-7, blaVIM-2

166 Female 70

Diffuse large B-cell
lymphoma;

neutropenia;
decompensated
cirrhosis due to

autoimmune hepatitis.

Dermatology No treatment; considered as
colonization in sputum 6 Survived

Sputum
(23 September

2021)
ST1621 blaOXA-50,

blaPDC-10

167 Female 48 Dermatomyositis;
thrombocytopenia Dermatology Local use of topical

polymyxin B for 8 days 29 Survived
Wound

(23 September
2021)

NT (not
detected) blaPDC-7, blaVIM-2

190 Male 51

Severe abdominal
infection due to acute

suppurative
appendicitis with
perforation; septic

shock

EICU IV polymyxin B sulfate
50 mg 12-hourly for 24 days 87 Survived

Extravasate Fluid
(30 September

2021)
ST277 blaOXA-50,

blaPDC-3

206 Male 76
ANCA-associated

vasculitis with cerebral
infarction

Neurology No treatment; considered as
colonization in sputum 27 Survived Sputum

(3 November 2021) ST671 blaOXA-50,
blaPDC-10

207 Male 61 Vitiligo Respiratory No treatment; considered as
colonization in sputum 2 Survived Sputum

(3 November 2021) ST277 blaOXA-50,
blaPDC-5

211 Male 47

Skin, soft tissue and
respiratory infection

due to extensive burns
(75% flame burns, 50%

degree III)

Burns wards

Local use of topical
polymyxin B for 41 days; IV
polymyxin B sulfate 50 mg
12-hourly plus aerosolized

polymyxin B 25 mg
12-hourly (both administered

for the same 32 days)

79 Survived Sputum
(4 November 2021) ST823 blaPDC-7, blaVIM-2

† Topical treatment involved application of Funuo™ ointment containing 50,000 units of polymyxin B sulfate, 35,000 units of neomycin sulfate, 5000 units of bacitracin and 400 mg of
lidocaine HCl per gram. IV, intravenous.
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Table 2. Antimicrobial susceptibilities of the polymyxin-resistant P. aeruginosa isolates (MICs, µg/mL).

Isolate CAZ AZT IMP CIP TIM CPE MEM AK CL LEV PMB TM TZP SCF

149 16 32 ≥16 1 ≥128 16 ≥16 4 4 0.5 4 ≤1 ≥128 16
150 16 ≥64 ≥16 ≥4 ≥128 8 ≥16 ≥64 ≥16 ≥8 4 ≥16 32 ≥64
166 2 8 1 2 16 2 0.5 ≤2 ≥16 0.5 4 ≤1 ≤4 ≤8
167 16 4 ≥16 ≥4 ≥128 8 ≥16 ≥64 ≥16 ≥8 16 ≥16 16 ≥64
190 ≥64 ≥64 ≥16 ≥4 ≥128 ≥16 ≥16 ≥64 ≥16 ≥8 8 ≥16 ≥128 ≥64
206 2 4 2 ≤0.25 32 4 ≥0.25 ≤2 ≥16 0.25 4 ≤1 8 ≤8
207 ≥64 ≥64 ≥16 ≥4 ≥128 16 ≥16 ≥64 ≥16 ≥8 16 ≤1 ≥128 ≥64
211 16 4 ≥16 ≥4 ≥128 16 ≥16 ≥64 ≥16 ≥8 4 ≥16 32 ≥64

CAZ, ceftazidime; AZT, aztreonam; IMP, imipenem; CIP, ciprofloxacin; TIM, ticarcillin/clavulanic acid; CPE,
cefepime; MEM, meropenem; AK, amikacin; CL, colistin; LEV, levofloxacin; PMB polymyxin B; TM, tobramycin;
TZP, piperacillin/tazobactam; SCF, cefoperazone/sulbactam.

Table 3. Genetic variations in pmrA, pmrB and phoQ of the polymyxin-resistant isolates.

Isolate pmrB pmrA phoQ

149 1033T > C (Y345H) 212T > G (L71R) -

150 43G > A (V15I), 202G > A (G68S),
1033T > C (Y345H) - -

166 43G > A (V15I), 202G > A (G68S),
1033T > C (Y345H) 212T >G (L71R) -

167 464G > A (R155H), 1033T > C (Y345H) 212T > G (L71R)

190 1033T > C (Y345H), 1105C > G (P369A),
1384G > A (A462T) 212T > G (L71R) -

206 43G > A (V15I), 202G > A (G68S),
1033T > C (Y345H) - 789G > T (Q263H)

207 1033T > C (Y345H), 1105C > G (P369A),
1384G > A (A462T) 212T > G (L71R) -

211 43G > A (V15I), 202G > A (G68S),
1033T > C (Y345H) - -
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4. Discussion

Increasing polymyxin resistance threatens the utility of this important last-line class of
antibiotics against otherwise untreatable Gram-negative bacteria. While there have been
previous case reports of infections caused by polymyxin-resistant P. aeruginosa in China and
other countries, these reports did not attempt to determine the prevalence of polymyxin-
resistance in the associated institution [36–38]. Similarly, other studies have pooled data
from multiple institutions to determine regional susceptibility to polymyxins [38,39]. Our
hospital started using polymyxin B and colistin and their susceptibility testing in late 2020
for the treatment of carbapenem-resistant Gram-negative bacteria. In the present study, we
analyzed the prevalence of polymyxin-resistant P. aeruginosa during 2021 and examined
bacterial genetic and resistant phenotypes and the clinical characteristics of the patients
from which they were isolated.

In our study from a single hospital, the prevalence over 2021 was 2.2% (8/362), which
is consistent with the 2.0% average figure for polymyxins reported in 2021 by the China An-
timicrobial Surveillance Network (http://www.chinets.com/, accessed on 5 January 2022).
All eight polymyxin-resistant isolates have similar MICs of polymyxin B and colistin,
which is not surprising given their structural similarity (differing only by a single amino
acid) [12]. Of concern is that six of the eight isolates contained OXA, ODC and VIM lacta-
mases which confer resistance to both imipenem and meropenem, although four of these
isolates remained susceptible to ceftazidime. Using the definitions for MDR, extensively
drug-resistant (XDR) and pandrug-resistant (PDR), isolate 190 was PDR and resistant to
all antibiotics tested, while another five isolates (isolate 149, 150, 167, 207, 211) were XDR
or MDR [40]. Only isolate 166 and 206 were not MDR. While the MDR P. aeruginosa ST
most prevalent globally is ST235, none of the polymyxin-resistant P. aeruginosa isolates here
matched this sequence type [41]. ST277 (isolate 190) has previously been reported in Brazil
and was highly correlated with the accessory genome ST-274 (both in the same clade), the
latter having been previously reported in Nepal [42,43]. While ST 277 has previously been
reported in Brazil and contains 13 different antibiotic resistance genes, in our study isolate
190 contained only 5 antibiotic resistance genes [42] (Table 1). Isolate 206 in our study
carried five antibiotic resistance genes and belongs to ST671 which has previously been
reported in China [44]. All eight polymyxin-resistant isolates contained characteristic drug
resistance genes and a genetic background confined to different geographic locations. Our
finding is worrying given it severely limits the treatment options available.

http://www.chinets.com/
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Several studies have shown an association between polymyxin use and the emergence
of polymyxin resistance in carbapenem-resistant K. pneumoniae in hospital, although results
are controversial [45–48]. In our study, the eight polymyxin-resistant P. aeruginosa isolates
were all obtained from patients with multiple comorbidities located in settings where
infections commonly occur, necessitating long-term antibiotic therapy. Half of the patients
from whom the resistant isolates were collected received polymyxin B treatment (either
topical, IV or via inhalation) during hospitalization, while the remaining patients received
no polymyxin therapy. While the small number of patients precludes determining any
association between polymyxin use and the emergence of its resistance, we hope to collect
more isolates to examine this relationship. Interestingly, polymyxin-resistant isolates
were also isolated in the four patients who received no polymyxin therapy during the
hospitalization, and further investigations are warranted.

The acquisition of polymyxin resistance is primarily due to mutations in two-component
regulatory systems (TCSs), including PhoPQ and PmrAB [14,21,49]. Specific mutations trig-
ger constitutive upregulation of the pmrHFIJKLM-ugd operon, which in turn leads to the
covalent modification of lipid A phosphate groups with positively charged motifs such as
phosphoethanolamine (pEtN) and/or 4-amino-4-deoxy-L-arabinose (L-Ara4N) [50–52]. Given
an initial electrostatic interaction with lipid A of the Gram-negative outer membrane is a re-
quirement for bacterial killing by the polymyxins, L-Ara4N and pEtN modifications decrease
the negative charge of lipid A and consequently its interaction with the positively charged
polymyxin molecules [53]. In P. aeruginosa, multiple TCSs (PmrAB, ParRS, CprRS, and ColRS)
are involved with the addition of L-Ara4N to LPS and thus play a role in polymyxin resis-
tance [54,55]. Recently, plasmid-mediated polymyxin resistance via the pEtN transferase
mcr genes (mcr-1 to mcr-10) has also been reported, including in P. aeruginosa [56–58]. Fur-
thermore, P. aeruginosa can readily acquire transmissible antibiotic resistance (AbR) genes,
resulting in the emergence of MDR or XDR isolates [59]. In our study, all the polymyxin-
resistant isolates had mutations in pmrB, a major TCS in Gram-negative bacteria which causes
polymyxin resistance.

5. Conclusions

In conclusion, we reported a low prevalence of polymyxin-resistant P. aeruginosa soon
after polymyxins were introduced in a Chinese tertiary teaching hospital. Given polymyxin-
resistant P. aeruginosa is a major threat to public healthcare, it is important for clinical
laboratories to detect polymyxin resistance and characterize the epidemiological trends
in high-risk P. aeruginosa isolates to optimize the use of this last-line class of antibiotics.
Furthermore, effective infection control measures are urgently needed to prevent further
transmission of polymyxin resistance.
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